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20. lecture 20

20.1. Colimits, directed colimits, filtered colimits. Recall colimits of modules
(over a category). Special case: filtered colimits (over filtered categories). Special
case of this: direct colimits are colimits over directed sets.

Examples of colimits include finite and infinite direct sums, cokernels, and unions.
There is a subtle difference between colimits and filtered colimits. In practice

filtered and direct colimits are quite similar.

Example 20.1. Q is a direct limit (union) of copies of Z. Localization of a ring is
a direct limit. A cokernel or a direct sum or pushout is a colimit but not a filtered
colimit.

We will show that filtered or directed colimits of flat modules are flat, but arbi-
trary colimits need not be.

Example. A colimit of flat modules need not be flat (examples: the cokenel of
multiplication by 2 for Z→ Z is a non-filtered colimit. For non-directed posets use
Z←Z→ Z with both morphisms being multiplication by 2.) However a FILTERED
(or directed) colimit of flat modules is flat. (Recall that a category is called filtered
if any two objects can both be mapped to a third, and any two morphisms between
objects can be made equal by composing them with another morphism. The special
case of a filtered poset is a directed set.)

We have several sort of colimits: they can be filtered, and they can be taken
over a poset rather than a category. Examples: cokernels, direct sums, pushouts,
unions.

The key point is that a filtered colimit of modules Mi can be described as the
disjoint union of the Mi modulo the following equivalence relation: m = n if their
images are the same in some Mi. The properties of a filtered category are used to
show that this is an equivalence relation (and in particular is transitive).

When is a colimit of exact sequences exact?
The colimit of injective maps need not be injective. (Example: Z is a submodule

of Q, but the cokernel (colimit) of Z 7→2 Z is not a submodule of the cokernel of
Q 7→2 Q.) However it nearly is: taking cokernels is right exact (exercise) so the
only question is when it preserves the condition of being injective. However a
FILTERED colimit of injective maps is injective. The point is that any element of
a filtered colimit of modules Mi is represented by an element of some Mi. Suppose
that we have injective maps Mi 7→ Ni. If x is in colim Mi then x is represented by
some y in some Mi, so if its image in colim Ni is 0 then y is 0.

Another way of putting this is that the colimit functor from (modules indexed
by a category) to modules is right exact so has a left derived functor colim1. We
have shown that this derived functor vanishes for filtered colimits. (On the other
hand, the derived functor of filtered limits need not vanish! See later.)

Now we can show that a filtered colimit of flat modules Mi is flat. If 0→ A→
B → C → 0 is exact, it remains exact when tensored with Mi as Mi is exact. Then
0 → colim(A ⊗Mi) → colim(B ⊗Mi) → colim(C ⊗Mi) → 0 is exact as filtered
colimits preserve exactness. FInally tensor products commute with colimits, so
0→ A× (colimmMi)→ ... is exact. This is what we needed to prove.

In particular any union of an increasing sequence of flat modules is flat.
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We have proved half of Lazard’s theorem: a module is flat if and only if it is
a filtered colimit of finitely generated free modules. (Note that any module is a
possibly unfiltered colimit of fg free modules.)

20.2. Completions. We define a 10adic number to have an infinite number of
digits before the decimal point but only a finite number after. The 10-adic integers
are those with no digits after the decimal point. Two nontrivial solutions of x2 = x
in 10-adics: 762 = 5776, 6252 = 390625, etc. ...1787109376...8212890625 (second
comes by starting with 5 and repeated squaring). These are the numbers congruent
to 1 or 0 mod 2n and 0 or 1 mod 5n. Examples: −1/7 = ...142857 in the 10adics
and −1 = ...999999.

There are 2 ways to define the 10-adics more rigorously. One way is to define
them as the completion of the rationals under a strange metric where d(x, y) is
10−n if the last n digits of x, y are the same. Then we can copy the construction of
the reals via Cauchy sequences. This works but is needlessly complicated. However
it does suggest that completions are rather like the real numbers: for example we
can often define things like exponential functions, Gamma functions, and so on for
complete rings.

An easier way to to construct the Ring of 10-adics integers as an inverse limit
of Z/10nZ. (Recall definition of (inverse) limits.) The 10-adics integers are not an
integral domain. By the chinese remainder theorem it is the product of 2-adics, 5
adics. These are integral domains.

The same construction works for any ideal of any ring: the I-adic numbers are
the completion of R for the topology defined by the ideal I, which is just the inverse
limit of the rings R/In.

Example. The ring of formal power series is the completion of the ring of poly-
nomials for the ideal (x, y, z, ...).


