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COMPLETE MODULES AND TORSION MODULES 

By W. G. Dwyer and J. P. C. Greenlees 

Abstract. Suppose that R is a ring and that A is a chain complex over R. Inside the derived category 
of differential graded A-modules there are naturally defined subcategories of A-torsion objects and of 

A-complete objects. Under a finiteness condition on A, we develop a Morita theory for these subcat 

egories, find conceptual interpretations for some associated algebraic functors, and, in appropriate 
commutative situations, identify the associated functors as local homology or local cohomology. 
Some of the results are suprising even in the case R = Z and A = 

Z/p. 

1. Introduction. Let R be a ring and R-mod the derived category of chain 

complexes of left /?-modules (see Section 1.2). We choose a fixed complex A 

which is perfect, in other words, isomorphic in /?-mod to a complex of finite 

length in which the entries are finitely generated projective /?-modules. We de 

clare another complex N to be A-trivial if Hom/?(A,A0 = 0, where Hom^(-,) 
denotes the chain complex of morphisms in R-mod. Going further, we say that 

X is A-torsion if Hom/?(X, AT) = 0 for all A-trivial N9 and that X is A-complete if 

HomR(N9X) = 0 for all A-trivial N. We then study the category Ators of A-torsion 

complexes and the category Acomp of A-complete complexes (both of these are 

triangulated full subcategories of R-mod). It turns out that these categories are 

equivalent to one another, and also equivalent to the derived category of dif 

ferential graded modules over the endomorphism complex of A. We construct 

approximation functors CelU: R-mod ?> At0rs and (-)A: R-mod ?> 
Acomp. For 

an object M of R-mod9 the complex CelU(M) is a kind of A-cellular approxi 
mation to M, in the sense that it is the best approximation to M which can be 

cobbled together from A and its suspensions; the complex MA is the Bousfield 

localization of M with respect to a homology theory on R-mod derived from A. 

We provide algebraic formulas for the functors, and find that the functors are 

related in interesting ways, one of which involves an arithmetic square. We also 

show that if CcIIa(R) has certain finite-dimensionality properties, then an object 
M of R-mod is A-torsion or A-complete if and only if the homology groups 77/M 

individually satisfy appropriate torsion or completeness conditions. 

Suppose now that R is a commutative ring, that 7 C R is a finitely generated 

ideal, that A = 
R/I9 and that K is the associated Koszul complex. The complex A 

Manuscript received August 4, 2000; revised April 5, 2001. 

Research of the first author supported in part by the National Science Foundation. 

American Journal of Mathematics 124 (2002), 199-220 

199 

This content downloaded from 192.231.202.205 on Fri, 19 Dec 2014 00:00:23 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


200 W. G. DWYER AND J. P. C GREENLEES 

is not necessarily perfect (i.e., R/I does not necessarily have a finite projective 
resolution over R)9 but K is, and it turns out that an object of R-mod is A-trivial 

if and only if it is A^-trivial, and hence A-torsion (resp. A-complete) if and only 
if it is ^-torsion (resp. ^-complete). We can therefore use our techniques to 

study functors CelU = Cell*: and (-)A 
= 

(-)?, and we identify these functors 

respectively in terms of local cohomology and local homology. One remarkable 

aspect of the theory we describe is how much can be said in general. In fact, 
the general case seems to shed some light on local homology and cohomology, 
and on the meaning of torsion and completeness: the local cohomology of M is 

a universal /^//-torsion object mapping to M9 and the local homology of M is 

a universal /^//-complete object accepting a map from M (see Section 6). The 

first is a cellular approximation, the second a Bousfield localization. Moreover, 
the question of whether a chain complex is /^//-torsion or /^//-complete can be 

settled by examining its homology groups one at at time; for instance, a chain 

complex is /?//-torsion if and only if each element of its homology is annihilated 

by some power of /. 

We emphasize that we assume almost everywhere that A is perfect, the one 

exception is Section 6, where in any case A = 
R/I is immediately replaced by 

the Koszul complex K. It is easy to see that a complex A is perfect if and only 
if it is small in the sense that Hom/?(A,-) commutes with arbitrary coproducts. 

Complexes like this could just as well be called finite /^-complexes, since they 

represent the elements of /?-mod which can be built in a finite number of steps 
from R itself by taking suspensions, cofibration sequences, and retracts. They are 

the analogs in 7?-mod of finite complexes in the stable homotopy category. 

Acknowledgments. The authors are grateful to MIT for its hospitality in May 
1999 when this work was begun, and the second author thanks J. D. Christensen 

for useful conversations. 

1.1. Organization of the paper. In Section 2 we develop a Morita theory 
which shows that Ators and ACOmp are both equivalent to the derived category of 

modules over the endomorphism algebra of A; in particular, Ators and Acomp 
are 

equivalent to one another. Section 3 describes some special cases of this Morita 

theory, and in particular a striking one with R = Z and A = 
Z//?. Section 4 estab 

lishes new notation for some of the functors from Section 2 and interprets these 

functors in terms of standard constructions: cellular approximations, homology 

localizations, and periodicizations. The functors fit into a homotopy fibre square 

(Proposition 4.13) which generalizes the arithmetic square of abelian group the 

ory (4.2). The next section establishes conditions under which the question of 

whether or not a chain complex belongs to Ators or ACOmp 
can be answered by 

examining its homology groups. Finally, Section 6 specializes to the case in which 

R is commutative, / C R is a finitely generated ideal, and A = 
R/I. As explained 

above, a device involving the Koszul complex allows the previous theory to be 

This content downloaded from 192.231.202.205 on Fri, 19 Dec 2014 00:00:23 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


COMPLETE MODULES AND TORSION MODULES 201 

applied, even though R/I is not necessarily perfect. The functors from Section 4 

in this case turn out to be classical local cohomology, or its dual local homology, 
at the ideal 7; a chain complex M belongs to Ators or 

Acomp if and only if its 

homology groups are 7-torsion or 7-complete in an appropriate sense. 

1.2. Notation and terminology. The derived category R-mod is obtained 

from the category of unbounded chain complexes of /?-modules by formally 

inverting the maps which induce isomorphisms on homology. See [18], [2], or 

[19, ?10] for algebraic ways to look at this, and [14] for a topological approach. 
Note that the differentials in our chain complexes always lower degree by one. 

The statements in this paper are expressed almost exclusively in terms of such 

derived categories. In particular, Horn is the derived homomorphism complex 

(sometimes written RHom) considered as an object of the appropriate derived 

category, and ? refers to the left derived tensor product (sometimes written (g)L). 
The convention of working in the derived category has some startling effects and 

should not be forgotten. 
There is one exception to our convention. If A is an object of R-mod9 then 

End/?(A) denotes the actual differential graded algebra obtained by taking a cofi 

brant (projective) model for A and forming the usual DGA of endomorphisms of 

this model (see [19, 2.7.4], but re-index so that all of the differentials reduce de 

gree by one). We will use this construction only when A is perfect, in which case 

picking a cofibrant model amounts to chosing a finite projective resolution of A; 
in a more general situation, it would be necessary to find a "^-projective" reso 

lution in the sense of [18]. Up to multiplicative homology equivalence, End#(A) 
does not depend upon the choice of cofibrant model. 

The significance of the above exception can be explained by a topological 

analogy. The category R-mod is like the homotopy category Ho(Sp) of spectra; the 

derived homomorphism complex Hom/?(M,AT) is then like the derived mapping 

spectrum Map (X9 Y)9 which assigns to two spectra X and Y the object of Ho(Sp) 
obtained by taking a cofibrant model for X9 a fibrant model for Y and forming 
a mapping spectrum. In particular Map(Z,X), since it belongs to Ho(Sp), is a 

ring spectrum up to homotopy; there is no good theory of modules over such an 

object. To improve matters one could find a model X' for X which is both fibrant 

and cofibrant, form the (structured, strict, A^, ...) endomorphism ring spectrum 

End(X'), and call it End(Z) for convenience. This ring spectrum does have a 

good module theory associated to it. The spectrum Msp(X9X) then represents 
an object in the homotopy category of End(X)-module spectra (in fact, in the 

homotopy category of (End(X), End(X))-bimodule spectra) which is isomorphic 
in this homotopy category to the object derived from the strict action of End(X) 
on itself. In the same way, End#(A) is a (strict) DGA, and Hom#(A,A) represents 
an object in the derived category of (End#(A), End/?(A))-bimodules which is iso 

morphic in this derived category to the object derived from the multiplicative 
action of End#(A) on itself. 
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202 W. G. DWYER AND J. P. C. GREENLEES 

Remark 1.3. This paper is intended to establish a framework and introduce 

some terminology in a simple but relatively general setting. With little change, 
our key arguments can be extended to cover a number of important categorically 
similar cases. For instance, R could be replaced by a graded ring (this comes up in 

some examples from Section 3), a differential graded algebra, or a ring spectrum; 
with some adjustments in terminology R could even be replaced by a ring with 

many objects, or a ring spectrum with many objects [17]. These extensions are 

important in constructing an algebraic model for rational equivariant cohomology 
theories. The framework provided here is also the starting point for our study with 

Iyengar [6] of various duality properties in algebra and topology. 
Some of the results in this paper, especially in Section 6, are related to results 

in [8], but here we take a different point of view. In the setting of commutative 

rings (or even schemes), the authors of [1] have already shown that At0rs and 

Acomp 
are equivalent categories; their approach does not involve the category of 

modules over End(A). In the commutative ring case this result appears in [12] as 

well. In [1] there is an interpretation of local homology as a Bousfield localization 

functor; in a sense this way of looking at local homology goes back to [10]. 

2. Morita theory. Recall that A is a perfect object of R-mod. In this section 

we show that the categories Ators and Acomp are equivalent, by relating them to a 

third category which is at least as interesting as the other two. Let ? = 
End#(A). 

This is a differential graded ring (Section 1.2), and there is a derived category 
mod-? of right ^-modules formed as usual by taking differential graded ? 

modules and inverting homology isomorphisms. We may define a functor 

E: R- mod ? mod -? E(M) = HomR(A9 M). 

Note here that A is naturally a left ?-module; this left module structure commutes 

with the action of R on A and passes to a right ?-module structure on Hom#(A, M). 
Let 

()tt: R-mod ?> mod-/? 

be the duality functor defined by M^ = Hom#(M,/?), and note that A* is an object 
of mod-?, as well as an object of mod-7?. Define functors 

T: mod-i ? R-mod T(X) =X?eA9 

C: mod-i ? R-mod C(X) 
= 

Hom?(A?,X). 

Here the left /^-structure on T(X) is obtained from the left /?-structure on A, and 

the left R-structure on C(X) from the right /?-structure on AK The main result of 

this section is the following theorem. 
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COMPLETE MODULES AND TORSION MODULES 203 

Theorem 2.1. Let Abe a perfect complex of R-modules, and let ? = End# (A). 
Then the above functors E, T, and C give two pairs of adjoint equivalences of 

categories 

T E 
<- < 

Ators- mod-?-> 
Acomp E C 

(where the left adjoints are displayed above the right ones). 

Remark 2.2. If R is a commutative ring, then in the situation of Theorem 2.1 

it has already been shown by Hovey, Palmieri, and Strickland [12, 3.3.5] that 

Ators and ACOmp are equivalent categories. See also [1]. 

Remark 2.3. Theorem 2.1 is a variant of Morita theory. Since A is perfect it is 

small, in the sense that Hom#(A, ) commutes with arbitrary coproducts. Ordinary 
Morita theory implies that if A is a small generator of /?-mod (e.g., A = Rn for 

some n > 0) then the category of modules over ? = End/? (A) is equivalent to 

R-mod itself. Theorem 2.1 states that if A is small but not necessarily a generator, 
then the category of modules over ? is equivalent both to the subcategory Ators 
and the subcategory Acomp of R-mod. This is particularly plausible in the case of 

Ators, since this is just the category of chain complexes which can be built from 
A (Section 4.5). 

Before beginning with the proof of Theorem 2.1, it is useful to point out a 

few simple facts. 

2.4. A-equivalences. It is convenient to say that a map M ? N in R-mod 

is an A-equivalence if its cofibre is A-trivial, or equivalently if E(M) = E(N). We 

leave it to the reader to check that an A-equivalence between A-torsion objects of 

R-mod is an isomorphism, and that an A-equivalence between A-complete objects 
of R-mod is an isomorphism. This is formal: for instance, the cofibre of an A 

equivalence between A-torsion objects is both A-torsion and A-trivial, and hence 

is trivial. 

2.5. Adjunctions. Note that for each left /?-module M and right ^-module 

X there is an adjunction isomorphism 

Hom?-(X, UomR(A9 M)) 
* 

Hom?(X ?s A, M). 

The unit map 

(2.6) X?>UomR(A9X?eA) 
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204 W. G. DWYER AND J. P. C. GREENLEES 

is obtained by applying the functor ?? A to pass from X = Homs(?9X) to 

HomR(A9 X (g)? A). The counit map 

(2.7) HomR(A9 M) ?eA 
? M 

is obtained from evaluation. Similarly, for any left /^-module M and right ? 

module X there is an adjunction isomorphism 

(2.8) HomR(M9 Hom?(A*, X)) 
* 

Home(A* ?R M9 X). 

2.9. Maps and tensors. Finally, note that since A is perfect there are iso 

morphisms 

HomR(A9 N) = AB ?RN and in particular ? = A? ?? A. 

This last is an isomorphism inside the derived category of either left or right 
? -modules (see Section 1.2), with ? acting on the left on A$ ?RA via its action 

on A, and on the right via its action on AK 

2.10. The left side of Theorem 2.1. We begin by observing that for any 

right ? -module X9 the module T(X) = 
X?g A is in fact an object of Ators- In fact, 

one can use 2.5 to calculate that for any A-trivial N9 

HomR(T(X)9N) = Hom/KX ?e A9N) = 
Hom?:(X, HomR(A9N)) ^ 0. 

Note that this is an isomorphism in the derived category Z-mod. This adjunction 
shows that T is left adjoint to E. 

We now need to show that the unit map (2.6) is always an equivalence, and 

that the counit (2.7) is an equivalence if M is an object of Ators- The unit is a 

natural map and preserves both cofibre sequences and coproducts (since A is small 

(Section 2.3)) and therefore it suffices to check the result for X = ?9 where it is 

clear. The counit is a natural map and its domain is A-torsion. In order to prove 
that it is an isomorphism if its range is A-torsion, it is enough (Section 2.4) to 

show that the counit map is always an A-equivalence. To prove this, we calculate 

HomR(A9 TE(M)) = Att ?R (HomR(A9M) ?s A) 
* HomR(A9M) ?s (A0 ?RA) 
* 

HomR(A9M). 

The first equivalence comes from the fact that the action ofR on UomR(A9 M)<g>? A 

comes from an action of R on A which commutes with the action of ?\ the second 

equivalence from Section 2.9. 
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COMPLETE MODULES AND TORSION MODULES 205 

2.11. The right side of Theorem 2.1. First we show that C(X) = 
Hom?(A0, X) 

belongs in fact to Acomp. Suppose that N is A-trivial. We may use (2.8) and 2.9 

to calculate 

HomR(N9 C(X)) = HomR(N9Home(AKX)) 

=* Home(A$?RN9X) 

=* Home(HomR(A9N)9X) 
* 0. 

This reasoning also shows that C is right adjoint to E. 

We now have to show that the counit map EC(X) ?? X is an isomorphism 

for all right ^-modules X. This follows from 2.5 and 2.9: 

EC(X) = Hom*(A,Hom?:(A0,X)) 
* 

Hom?(Att ?R A9X) 
* X. 

Finally, we have to check that the unit map M -? CE(M) is an isomorphism for 

each A-complete left A-module M. Since the target of this map is A-complete, it is 

enough by Section 2.4 to verify that the map itself is always an A-equivalence, i.e., 

becomes an isomorphism when the functor E is applied. But as above, EC(X) = 

X9 so ECE(M) 
* 

E(M). 

Remark 2.12. It is useful to note that even when A is not perfect, the functor 

C: mod-? ?> R-mod given by C(X) = 
Homs(A^9X) is right adjoint to the functor 

E'\ R-mod -> mod-? given by E'(N) 
= A? ?R N. 

3. Sample applications of the Morita theory. We describe three situations 

in which Theorem 2.1 holds. 

3.1. The paradoxical case of Z//?. This simplest nontrivial application of 

Theorem 2.1 is already very striking. Let R = Z and A = 
Z//?, this last considered 

as a chain complex concentrated in degree 0. The complex A is perfect because 

it is isomorphic in Z-mod to the resolution Z -^> Z. An object N of Z-mod is 

A-trivial if and only if all of its homology groups are uniquely /^-divisible, or 

equivalently if and only if the natural map TV ?> 
Z[l//?] <S>z N is an isomorphism. 

From this and the isomorphism 

Homz(X9Z[l/p] ?z Y) * 
Homz(Z[l//7] <g>zX,Z[l/p] ?z Y) 

it is easy to see that Ators is the subcategory of Z-mod consisting of objects X 

with Z[l//?] %X = 0, i.e., objects X which have /^-primary torsion homology 

groups. By inspection ? is a DG algebra whose homology algebra is isomorphic to 

Ext^(Z//7, Z//?); from a multiplicative point of view this homology is an exterior 

algebra over Z/p on one generator of dimension (-1). (Recall that all of our chain 
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206 W. G. DWYER AND J. P. C GREENLEES 

complexes have lower indices, so that the differentials decrease degree by one; 

the group Ext%(Z/p9Z/p) corresponds to H-iHomz(Z/p9Z/p).) Theorem 2.1 

says that the functor E gives an equivalence between the category Ators and the 

category of ? -modules. 

For instance, E(Z/p??) 
= 

Z/p. Accordingly, it follows that 

H0Homs(Z/p9 Z/p) 
= H0Homz(Z/pOG9 Z/p??) = 

Z;. 

This seems very difficult to believe, since the identity map of Z/p has additive 

order p. 
The issue, though, revolves around what "additive order" means. Although 

p times the identity map of Z/p is null-homotopic as a Z-map, it is not null 

homotopic as an ?-map. To calculate ? = 
Endz(Z//?) as a strict DGA we have to 

replace the abelian group Z/p by the above resolution M = 
(Z -^ Z). Viewing 

an element of M as a column vector with the top entry recording the copy of 

Z in homological degree 0, we may view ? = End^(M) as the algebra of 2 x 2 

matrices (appropriately graded). One then calculates 

'G ?H?1 -(Si)., 

'C9.-63. 4?).-(: 7).. 
The elements of M$ are row vectors, with ? acting on the right. The map/?: M$ ? 

M** is indeed the boundary of right multiplication by (?x ?). However this ma 

trix is not a central element of ? and therefore right multiplication by it does 

not represent an <f-map. In fact, the identity map of M has infinite order as an 

?-map. 

We may also give a constructive interpretation. Observe that the usual con 

struction of an Adams spectral sequence gives a conditionally convergent spectral 

sequence 

Exts?[?(H*(Z/p)9H*(Z/p)) 
=> Ht-5Ende(Z/p). 

This may be identified as an unravelled Bockstein spectral sequence. The gener 

ator of H-\? is a Bockstein operator, and the multiplication-by-p map described 

above is represented by an element of bidegree (1,1) which a stable homotopy 

theorist would denote ho. In effect we may regard the category mod-? as en 

coding Bockstein spectral sequences for both ^-torsion and /7-complete modules, 

and Theorem 2.1 as stating that the Bockstein spectral sequence determines a 

/7-torsion or a /^-complete module. 
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Example 3.2. Let T be the circle group ('T" stands for "torus"; in the follow 

ing discussion T is not related to the functor of the same name from Section 2). 
This second example suggests an approach to studying T-equivariant rational co 

homology theories. We content ourselves here with sketching an analogy which 

is refined elsewhere to a theorem and proved in greater generality. 
We take R = k[c]9 where A: is a field, c is of degree ?2, 7 = (c), and A = 

R/I. 
If k = 

Q it is natural to think of R/I 
= k as analogous to the free T-cell T+. Thus 

? is analogous to the DGA of self-maps of T+9 and mod-? to the category of free 

rational T-spectra. The left-hand equivalence of Theorem 2.1 is then analogous 
to the theorem of [7] stating 

(c)-torsion-Q[c]-mod 
~ free rational T-spectra. 

From this point of view, the great attraction of the equivalence is that the category 
of torsion Q[c]-modules is of injective dimension 1, whilst that of ^-modules 

is of infinite homological dimension. The analogue of the Adams spectral se 

quence in Example 3.1 is the descent spectral sequence. Generally speaking this 

is much less useful than the Adams spectral sequence based on the torsion module 

k[c9c~l]/k[c]9 which collapses to a short exact sequence. 

Example 3.3. The third example is connected with chromatic stable homotopy 

theory [16]. One might take R = 1\px, t>i,..., vn-x, vn9 v~l], I = 
(p, vx,..., vn-x), 

and A = 
R/I. The category of 7-primary torsion modules is analogous to the nth 

monochromatic category, whilst the category of 7-complete modules is analogous 
to the category of Bousfield ^(n)-complete modules. For topological purposes it 

is better to take A to be a small Ln(S?)-module Bousfield equivalent to K(n). The 

proof of Theorem 2.1 then gives the equivalence [13, 6.19] 

nth monochromatic category 
~ 

K(n)-comp\ete spectra, 

with the intermediate category of ?-modules being the category of modules over 

the ring spectrum of self-maps of A. We plan to investigate this example in more 

detail in [6]. 

4. Cellular approximations and homology localizations. We work in the 

setting of Section 2, but in order to organize the results more clearly we will 

introduce some new notation. For an object M of R-mod9 let CelU(M) stand 

for TE(M) and MA for CE(M). There is a natural A-equivalence (Section 2.4) 
M ?> M?. There is also a natural A-equivalence CelU(M) ?> M, and we will 

denote the cofibre (which is A-trivial) by M\/A. 
It follows easily from the arguments in Section 2 that the functor CelU(-) 

is idempotent and is right adjoint to the inclusion Ators ?> R-mod. Similarly, 
the completion functor (-)a is idempotent and is left adjoint to the inclusion 

Acomp 
? 

/?-mod. 

This content downloaded from 192.231.202.205 on Fri, 19 Dec 2014 00:00:23 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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4.1. Another look at Z/p. One way to get some insight into these construc 

tions is to consider the special case R = Z, A = 
Z//?; this can be analyzed either 

by direct calculation (Section 3.1) or by applying the results of Section 6. We 

describe the situation in this case, using terminology and results which will be 

explained below. For simplicity, write Cellp(), ()i/p, 
and ()?, for CelU(-), (Oi/a> 

and (-)a when A = 
Z/p. For any object M of Z-mod, there are isomorphisms 

Z-lZ/pOG?zM 

Z[l/p]?zM 

Homz(I,-lZ/poc9M). 

The map Ctllp(M) 
? M is cellular approximation (Section 4.5) with respect to 

Z/p (i.e., gives the universal p-torsion approximation to Af). The map M ?> 
Mp 

is Bousfield localization (Section 4.7) with respect to the homology theory on 

Z-mod given by M \-> 
H*(Z/p ?z Af) (the complex Mp is sometimes called the 

Ext-p-completion of Af.) . The map M ?? 
Af^ 

is nullification (Section 4.10) with 

respect to Z/p. Since Z//? is perfect, this is a smashing localization [15], and so 

M -* 
Mxjp 

is also Bousfield localization with respect to the homology theory 
M i?> 

H*(Z[l/p] (g>z Af). Finally, there is a homotopy fibre square 

m - m; 

A^i/p 
-> 

(Mp)i/P 

The square is obtained by applying the natural map X ?> 
Xi/p 

to the upper row. 

The goal of this section is to obtain the above results in the general case. We 

assume as usual that A is a perfect object of R-mod. 

Proposition 4.3. For any object M of R-mod, there are natural isomorphisms 

CellA(M) * CellA(R) ?R M 

Mi, a = 
R\/a?rM 

Ma = HomR(CellA(R),M). 

Remark A A. Implicit in the above formulas is the fact that CelU(7?) and 
Rx/A 

can be constructed as objects in the derived category of 7?-bimodules. This is a 

consequence of the fact that R itself is an /?-bimodule. It is easier to explain this 

in a slightly more general setting. Suppose that Af is a left module over R and 

Cellp(M) ^ 

Ml/P 
= 

Mp 
* 
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a right module over S, in such a way that the two actions commute. Recall the 

formula 

CelU(M) = HomR(A9M) ?e A. 

The extra right action of S on M persists to a right action of S on HomR(A9M). 
This 5-action commutes with the action of ? on HomR(A9M) (because the action 

of ? works on the A variable) and so passes through the tensor product to give a 

right action of S on CelU(M) which commutes with the normal left action of R. 

Applying this in the special case M = R and S = R gives the 7?-bimodule structure 

on CelU(/?). The bimodule structure on 
Rx/A 

is obtained similarly. 
If R is commutative, these bimodules are obtained from ordinary modules by 

taking the action on one side to be the same as the action on the other. 

Proof. For the first isomorphism we use the chain 

CellA(M) = HomR(A9M)?sA 
* 

(A*?RM)?EA 
* 

(A*?eA)?RM9 

where the last isomorphism comes from the fact that the action of ? on A$ ?R M 

is induced by an action of ? on A^ which commutes with the right action of R. 

Now note that A^ ??A is CelU(/?). For the second, use a naturality argument and 

tensor the exact triangle 

CelU(/?) -+/?-> 
Rl/A 

over R with M. For the third, use the adjunction argument 

Ma = Homs(AKHomR(A9M)) 
* 

HomR(A* ?s A, M) = Hom?(CellA(?), M). D 

4.5. Cellular approximation. An object M of R-mod is said to be A-cellular 

if M is built from A in the sense that it belongs to the smallest triangulated sub 

category of R-mod which contains A and is closed under arbitrary coproducts 

(i.e., it belongs to the localizing subcategory of 7?-mod generated by A). If M is 

A-cellular then any A-equivalence (Section 2.4) X ?> Y induces an isomorphism 

HomR(M9X) 
? 

HomR(M9 Y) (in particular, M is A-torsion). A map Mf ?> M 

is said to be an A-cellular approximation map if M' is A-cellular and the map 
M' ?> M is an A-equivalence. A formal argument shows that A-cellular approxi 
mations are unique, if they exist; the arguments of Dror-Farjoun show that they 
do exist [5]. 
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Proposition 4.6. The objects of At0rs cire exactly the A-cellular objects of 
R-mod. For any object M of R-mod, the natural map CcIIa(M) ?> M is an A 

cellular approximation map. 

Proof. We noted above that any A-cellular object of /?-mod belongs to Ators 
If M is A-torsion, we can choose an A-cellular approximation map M' ?> M. This 

is an A-equivalence between A-torsion complexes, and so it is an isomorphism. 

Therefore, M is A-cellular. 

The second statement is proved by observing that CellA(M) is A-torsion, 
hence A-cellular, and that the map CellA(M) ?> M is an A-equivalence (2.10). 

4.7. Homology localization. For our purposes a homology theory on 7?-mod 

is a functor S* from R-mod to graded abelian groups determined by the recipe 

S*(M) = H*(S?RM) 

for some object S in the derived category of right /^-modules. An object M is 

said to be S ^-acyclic if S*(M) 
= 0. A map M ? M1 is an S ^-equivalence if 

it induces an isomorphism S*(Af) = S(M')9 or equivalently if its cofibre is S* 

acyclic. An object M is S*-local if HomR(N9M) = 0 for each S*-acyclic N. An 

S ^-localization of M is an 5*-equivalence M ? M' with the property that M' is 

5*-local. A formal argument shows that S* -localizations are unique, if they exist; 
Bousfield's arguments show that in fact they do exist [3] [4] [5]. 

Proposition 4.8. For any object M of R-mod, the natural map M ?> Ma is an 

S ^-localization map for S = A$. 

Proof. It is necessary to show that Ma is S* -local and that M ?> Ma is a 

5*-equivalence. Given that A^ ?R M = HomR(A9M)9 it is clear than an object of 

/?-mod is 5*-acyclic if and only if it is A-trivial in the sense of Section 1. Thus 

the first statement follows from the fact that M? is A-complete, and the second 

from the arguments of Section 2.11. 

Proposition 4.9. For any object M of R-mod, the natural map M ?> 
M\/A 

is 

an S ^-localization map for S = 
Rx/a 

Proof In this case S ?R M = 
Mx/A (Proposition 4.3), so it is enough to 

show that 
(Mx/a)x/a 

- 
M\/A (i.e., that M ?> 

Mx/A 
is an 5*-equivalence), and 

that if 
Nx/a 

= 0, then 
KomR(N9Ml/A) 

= 0 (i.e., that 
M1/A 

is 5*-local). The 

first statement follows from the fact that CelU(CellAM) = CelU(M), so that 

(CellAM)1/A 
= 0. The second follows from the fact that if 

Nl/A 
= 0 then iV = 

CellAAf, i.e., Af is A-torsion, so that HomR(N9K) = 0 for any A-trivial object K9 

in particular, for K = 
MXja- 

d 

4.10. Nullification. Suppose that W is an object of R-mod. An object TV of 

R-mod is said to be Vf-null if YiomR(W9N) = 0. A map M -> M' is a Vf-null 
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equivalence if it induces an isomorphism HomR(M'9 N) ?> HomR(M9 N) for each 

W-null object N. A map /: M ?> Af' is a W-nullification of Af if Af7 is W-null 

and / is a W-null equivalence. A formai argument shows that W-nullifications 

are unique up to isomorphism if they exist; the arguments of Bousfield and Dror 

Farjoun show that in fact they do exist [5]. 

Proposition 4.11. For any object M of R-mod, the map M ? 
MX,A 

is a W 

nullification of M for W = A. 

Proof. Note that for W = A, "W-null" is the same as "A-trivial." The object 

Mx/a 
is A-trivial because CelU(Af) 

? Af is an A-equivalence. The map Af ? 

M\,A 
is a W-null equivalence because its fibre CelU(Af) is A-torsion, and so 

Hom/?(CellA(M), AO = 0 for any A-trivial N. U 

4.12. An arithmetic square. For our purposes, the term "homotopy fibre 

square" means a commutative square which can be completed in such a way as 

to induce an isomorphism between the fibre of the right vertical map and the 

fibre of the left vertical map. 

Proposition 4.13. For any object M of R-mod, there is a homotopy fibre square 

M -> Ma 

i i 
Mx,a 

-> 
(Ma)i/a 

Proof. Since Af ?? MA is an A-equivalence, it induces an isomorphism 

CelU(Af) ?> CelU(AfA). This is the required isomorphism between the fibres. 

5. Homology groups. In this section we identify conditions on R under 

which it is possible to determine whether an object of R-mod is A-torsion or A 

complete by examining its homology groups one by one. As always, we assume 

that A is perfect. 
We emphasize that in this section an R-module9 as opposed to an object of 

R-mod9 is an ordinary classical left /?-module. Of course, an /^-module Af can 

be viewed as a chain complex concentrated in degree 0, and thus treated as an 

object of /?-mod. 

Definition 5.1. An ?-module Af is homotopically A-complete if the natural 

map Af ?? M a is an isomorphism in R-mod. An /?-module Af is homotopically 
A-torsion if the natural map CelU(Af) ?> Af is an isomorphism in R-mod. 

The main results of this section are the following: Recall that CelU(?) = 

A^ <g)? A can be considered to be an object of the derived category of /?-bimodules 
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(Remark 4.4). For the statements, we will say that a chain complex is essentially 
concentrated between dimensions i andj (i < j) if it is isomorphic in the appro 

priate derived category to a chain complex of projective modules which vanishes 

except between dimension / and dimension j. 

Proposition 5.2. Suppose there exists an n > 0 such that as an object of 
R-mod the complex CelU(R) is essentially concentrated between dimensions ?n 

and 0. Then an object X of R-mod is A-complete if and only if each homology group 

Hi(X) is homotopically A-complete. 

Proposition 5.3. Suppose there exists an n > 0 such that as an object of 
mod-R the complex CcIIa(R) is essentially concentrated between dimensions ?n 

and 0. Then an object X of R-mod is A-torsion if and only if each homology group 

Hi(X) is homotopically A-torsion. 

Remark 5.4. The hypotheses in the previous two propositions may seem un 

motivated. Of course, the hypotheses are needed for the proofs. But we are 

particularly interested in these conditions because they apply when R is a com 

mutative ring, / c /? is a finitely generated ideal, and A is the associated Koszul 

complex (the perfect surrogate for R/I). 

5.5. Some initial observations. Somewhat surprisingly, an /^-module Af is 

homotopically A-complete if and only if H?(Ma) = 0 for / < 0 and the natural 

map Af ?> Ho(Ma) is an isomorphism. The surprise is that under these conditions 

the groups H?(Ma) vanish for / > 0. For suppose the conditions are satisfied. Let 

X be the quotient of MA obtained by dividing out by the cycles in dimension 1 

and by all elements in dimensions > 1. Then X = M, and the composite 

Af -> MX 
- X 

exhibits Af as a retract of the A-complete complex MA. It follows that Af is A 

complete, so that MA = Af and Af is homotopically A-complete. It is useful to 

note that (by Proposition 4.3) the condition H?(Ma) = 0 for / < 0 is automatically 
satisfied under the assumptions of Proposition 5.2. 

A similar argument shows that Af is homotopically A-torsion if and only if 

//?CelU(Af) vanishes for / > 0 and the map //oCelU(Af) ?> M is an isomorphism. 

Again, it is useful to note that (by Proposition 4.3) the condition //?CelU(Af) 
= 0 

for / > 0 is automatically satisfied under the assumptions of Proposition 5.3. 

Proof of Proposition 5.2. Let C = CelU(/?), which can be taken to be a pro 

jective chain complex supported between dimension ( 
? 

n) and 0. For any object 
X of R-mod9 Xa is isomorphic to HomR(C9X) (see Proposition 4.3). Suppose 
that the homology groups of X are homotopically A-complete. Let X(i,j) (i < j) 
be the subquotient of X which agrees with X between dimensions / and j, has 
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Xj+i /cycles in dimension j + 1, has d(X?) in dimension / - 1, and has zero else 

where. In particular, the homology groups of X(i9j) agree with the homology 

groups of X between dimensions / and j and are otherwise zero. The cofibre 

sequences 

x(j+i9j+i)->x(ij+i)^>x(i,j) 

allow X(iJ) to be pieced together inductively out of complexes with only one 

nonzero homology group. By assumption, each of these complexes is A-complete. 
It follows that X{iJ) is A-complete, and hence that the (evident) complexes 

X(i9 oo) are A-complete, since 

HomR(C9X(i9oo)) 
* 

HomR(C9holimj X(iJ)) 
* 

holim/HomJ?(C,X(iJ)) 
* 

holimj X(iJ) ^X(i9oo). 

The identification X(i9 oo) 
= 

holimj X(i9j) is made by noting that before passing 
to the derived category the tower {X(i9j)}j>i of chain complexes is a tower of 

epimorphisms with inverse limit X(i9oo). Since C is concentrated in a finite 

number of dimensions, an easy connectivity argument shows that 

UomR(C9X) = 
Hom/?(C,colimiX(/,oo)) 

= 
colim/Hom/?(C,X(/,oc)). 

The point is that the direct system {X(i9 oo)} is convergent in the sense that the 

homology groups above any given dimension stabilize after a certain point. It 

follows that X is A-complete. 

Suppose on the other hand that X is A-complete. We need to show that for 

any k9 the /^-module Hk(X) is homotopically A-complete. By the dimensional 

assumption on C there are isomorphisms 

HkHomR(C9X(k -n-l9oc))^ HkHomR(C9X) = Hk(X) 

and so after replacing X by the complex on the left, it is possible to assume that the 

homology groups of X vanish below a certain point. We now show by ascending 
induction on k that 77?(X) is homotopically A-complete for / < k. This is true for 

i<0, because in that case the groups all vanish. Suppose that the claim is true 

for k? 1; we must show that the module M = 
Hk(X) is homotopically A-complete. 

By the inductive assumption, X(?oo9k 
? 

1) is a complex with homology groups 
that are homotopically A-complete, and so, as above, this complex is A-complete. 

The cofibre sequence 

X(k9oo) -^X->X(-oc9k- 1) 
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shows that X(k9 oc) is A-complete. Since C vanishes in positive dimensions and 

the map X(k9 oo) 
?+ 

X(k, k) 
= ?*M is an isomorphism on homology up through 

dimension k9 the induced map 

Af * 
HkHomR(C9X{k9 oc)) 

-* H0?lomR(C9M) 

is also an isomorphism. By 5.5, Af is homotopically A-complete. D 

The proof of Proposition 5.3 is exactly parallel to the one above, with the op 

posite orientation (upward induction replaced by downward induction). It depends 
on the tensor product formula for CelU(X) from Proposition 4.3. 

6. Commutative rings. In this section, we assume that R is commutative 

and that / C R is a finitely generated ideal. We wish to study the A-complete and 

A-torsion objects of /?-mod in the special case A = 
R/I9 but the theory from the 

rest of the paper does not immediately apply, because R/I need not be perfect, 

i.e., R/I need not have a finite length resolution by finitely generated projective R 

modules. To get around this problem we construct an associated perfect complex 
K with the property that an object Af of /?-mod is /i-torsion, ^-complete, or K 

trivial if and only if Af is ^//-torsion, /^//-complete, or /^//-trivial. Elaborating 
a little on the construction of Pleads to explicit formulas for the torsion functor 

C?lico) and the completion functor ( )?; these turn out to be identical to the usual 

local cohomology and local homology functors with respect to the ideal /. This, 

for instance, gives an interpretation of local homology with respect to / as the 

Bousfield localization functor on the category R-mod associated to the homology 

theory Af h-> 
H*(R/I ?r Af). 

The Koszul complex. For an element r in R9 let K*(r) denote the chain 

complex r: R ?> R9 with the two copies of R in dimensions 0 and ( 
? 

1), 

respectively. For a sequence r = (ri,... ,r?), let ^#(r) be the tensor product 

Km(v\) <S>r 
? - 

<8)r Km(rn). This is the Koszul complex associated to r. 

Recall from Section 4.5 that if A and B are two objects of /?-mod, then 

B is said to be built from A if B is in the smallest localizing subcategory of 

/?-mod which contains A, i.e., B is in the smallest full subcategory of 7?-mod 

which contains A and is closed under isomorphisms, desuspensions, coproducts, 
and cofibre sequences. If B is built from A then the class of 5-trivial objects 
in R-mod contains the class of A-trivial objects. If A and B can each be built 

from one another, then the classes of A-trivial and B-trivial objects coincide, and 

it follows immediately that the classes of A-torsion and ?-torsion objects also 

coincide, as do the classes of A-complete and ?-complete objects. 
The following is the property of K*(r) which interests us. 

Proposition 6.1. Suppose that R is a commutative ring and that I C R is an 

ideal generated by the sequence r = 
(ri,... 9rn). Then the two objects R/I and K*(r) 
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of R-mod can each be built from one another. 

Remark 6.2. Given Proposition 6.1 the results in the previous sections can 

be applied with A = K*(r) to give conclusions involving R/I. It follows from 

Theorem 2.1, for instance, that the category of ?/7-torsion objects of R-mod is 

equivalent to mod-?, where ? = 
End/?(jfif#(r)). The same is true of the category 

of /?/7-complete objects of R-mod. Note that ? is a matrix algebra of rank 2n 

over R9 graded so as to lie between dimensions ? n and n9 and provided with a 

suitable differential. 

Remark 6.3. Suppose that R is a noetherian ring. The argument below easily 
shows that if R/I is a field (or more generally R/I is a regular ring) then K*(r) can 

be built from R/I and its suspensions by a finite number of cofibration sequences, 

i.e., K*(r) is in the thick subcategory of R-mod generated by R/I. On the other 

hand, R/I is in the thick subcategory of R-mod generated by Km(r) only if R 

itself is regular. 

Convention. Suppose that R is a commutative ring and that 7 C R is an 

ideal generated by the finite sequence r. For the rest of this section we will 

write Cellfl/zO and ( )*// instead of CelljK) and ( )? with K = K*(r). These 

objects are defined in terms of K (Section 2) but, in view of Proposition 6.1 

and the results of Section 4, easy to interpret in terms of R/I. For instance, it 

follows from Proposition 4.6 that the natural map Ct\\R/?(M) 
?> M is an R/I 

cellular approximation map. There is a corresponding interpretation of 
(M)R/? 

in 

Proposition 6.14. 

Proof of Proposition 6.1. Let K = K*(r). Any object M of J?-mod can be built 

out of R9 and it follows immediately that K ?RM can be built out of K. Since 

K ?R (R/I) is a direct sum of shifted copies of R/I9 we conclude that R/I can be 

built from K. 

Conversely, note that for each i the map r,-: K ? K is chain homotopic to 

zero, because r,-: K9(ti) ?> Km(Vi) is chain homotopic to zero. It follows that the 

homology groups of K are modules over the ring R/I. Any module M over R/I 
can be built out of R/I as an object in the derived category of R/I9 and the same 

recipe will build M out of R/I in the category R-mod. In the notation of the proof 
of Proposition 5.2, there are cofibre sequences 

K(jJ) - K(-ooJ) -+ K(-ooJ 
- 

1). 

As just noted, each one of the fibres is built from R/I. The fact that K itself 

is built from R/I follows from a finite induction, beginning with the fact that 

K(-oo9 -(n + 1)) 
= 0 and ending with the fact that K(-oo, 0) 

= K. 
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The dual Koszul complex. If r R9 let Km(r) denote the chain complex 
r: R ?> R9 with the two copies of R in dimensions 1 and 0, respectively. 

Clearly K.(r) 
= 

!Km(r) 
* 

Km(r)K For a sequence r = 
(n,... ,r?), let K.(r) denote 

*.(ri) <g>* ?r K.(rn). Then K.(r) 
= 

ZnK'(r) 
* 

Km(r)$. Since K\r) and K.(r) 
are suspensions of one another, the following proposition is a consequence of 

Proposition 6.1. 

Proposition 6.4. Suppose that R is a commutative ring and I C R is an ideal 

generated by the sequence r = (r\9... 9rn). Then the two objects R/I and K9(r) of 
R-mod can each be built from one another. 

As a consequence we obtain the following. 

Proposition 6.5. Suppose that R is a commutative ring and I C R is an ideal 

generated by the sequence r = 
(n,... 9rn). Then for an object M of R-mod the 

following four conditions are equivalent: 

(1) R/I?RM^0, 

(2) K'(r)?RM^0, 

(3) HomR(K.(r)9 M) ? 0, and 

(4) HomR(R/I9M)^0. 

Proof. The first and second are equivalent by Proposition 6.1, the third and 

fourth by Proposition 6.4, the second and third because K0(r) 
= 

Km(r)K 

Remark 6.6. It is a little surprising that the first and fourth conditions of 

Proposition 6.5 are equivalent in such generality. 

Local cohomology. For re R9 the commutative diagram 

R ?^?+ R 

(6.7) 
^| |^+1 

R ?^? R 

gives a map #V) 
- 

#V+1). Let Km(r??) denote colim^V); this is just the 

flat complex r: R ?> 
/?[l/r]. It is easy to see that K*(r??) is isomorphic in 7?-mod 

to a free chain complex over R with nonzero groups only in dimensions 0 and 
? 1 ; this can be taken to be the chain complex 

d: ?i>0R -+ 0,->ol? 

d(xo,xi9x2,...) 
= 

(xo -x\9rx\ -x2,rx2 -x3,...). 

If r = (ri,... ,r?) is a sequence of elements in R9 we let r* denote (r\9... ,r?). 

Tensoring together the maps from (6.7) gives a map ?*(r*) 
? 

?r#(r*+1). Let 
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K*(r??) denote colima* (r*), so that in R-mod there is an isomorphism 

(6.8) K\r??) 
* 

K*(r?) ?R ?R K9(r ). 

The following result is clear. 

Lemma 6.9. Ifr 
= (n,..., rn), then K*(r??) is isomorphic in R-mod to a free 

chain complex over R which is concentrated between dimensions (?n) and 0. 

Suppose that 7 c R is the ideal generated by r. If M is an (ordinary) R 

module, the local cohomology of M at 7 (see [11] or [9]) is denoted Hf(M) and 
defined by the formula 

Hk(M) 
= 

H.k(K9(r??)?RM). 

In line with this, if M is an arbitrary object of R-mod we define Hj(M) 
= 

K*(r??) ?R M and call H?(M) the derived local cohomology of M at 7. There 

is a Kunneth spectral sequence 

E2M 
= 

HiP(Hq(M)) =* Hp+q(H!(M)). 

This converges strongly because Km(r??) is a flat chain complex concentrated in 

a finite range of dimensions. 

Proposition 6.10. Suppose that R is a commutative ring and that I C Ris the 

ideal generated by the sequence r = (n,..., rn). Then 
CellR/j(R) 

is isomorphic as 

an object of R-mod to K*(r??). 

Proof. Let K = K'(r) and K?? = 
K9(r??). There is a natural map K?? -> R 

which amounts to taking a quotient by the elements in K??of strictly negative 
dimension. We have to show that K??is AT-torsion, i.e., built from K (see Propo 
sition 4.6) and that the map K?? ?> R becomes an isomorphism when HomR(K9 ) 
is applied. 

Fix k9 and consider an ordinary A-module M on which the elements r\,..., r* 

act trivially. Such a module is annihilated by the ideal Ink and so has a finite 

filtration {FM} such that the associated graded modules are annihilated by 7. In 

particular, each subquotient {PM/P+lM} is a module over R/I and so, as in the 

proof of Proposition 6.1, can be built from R/I. The cofibre sequences 

IjM/IJ+lM -? 
M/Ij+lM -> M/VM 

allow for an inductive proof that the quotient modules M/PM9 and hence also 

the module M itself, are built from R/I. Since each homology group of ̂ (r*) 
is annihilated by r\,..., r^9 it now follows from the argument in the proof of 

This content downloaded from 192.231.202.205 on Fri, 19 Dec 2014 00:00:23 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


218 W. G. DWYER AND J. P. C. GREENLEES 

Proposition 6.1 that ̂ (r*) can be built from R/I. Passing to a directed (homo 

topy) colimit shows that K^can be built from R/I and hence (Proposition 6.1) 
from K. 

To finish the proof, it is enough, by Proposition 6.5, to show that tensoring 
the above map K?? ?> R with R/I gives an equivalence 

R/I ?r K?? - 
R/I ?RR = 

R/I. 

However, K?? is given as a flat chain complex (6.8) and so we can compute 
the derived tensor product on the left as an ordinary tensor product. In this 

interpretation, the displayed map is an actual isomorphism of chain complexes, 
since R[l/r?] ?R R/I 

= 0 for i = 1,..., n. 

The following proposition is a consequence of Propositions 6.10 and 4.3. 

Proposition 6.11. Suppose that R is a commutative ring and that I C R is a 

finitely generated ideal. Then local cohomology at I computes R/I-cellular approx 

imation, in the sense that for any object M of R-mod there is a natural isomorphism 

///(Af) 
* 

CellR/I(M). 

We can now apply the results of Section 5 to give a simple characterization 

of the R/I-cellulai objects of mod-/?. An ordinary /?-module Af is said to be an 

/-power torsion module if for each x E Af there is a k such that Ikx = 0. 

Proposition 6.12. Suppose that R is a commutative ring and that I C R is a 

finitely generated ideal. Then an object M of R-mod is R/I-cellular if and only if 
each homology group of M is an I-power torsion module. 

Proof Let r be a finite sequence of generators for /, and K = ^*(r). It follows 

from Propositions 4.6 and 6.1 that an object Af of /?-mod is /^//-cellular if and 

only if Af is ̂ -cellular, or, equivalently, ^-torsion. 

It is easy to argue from the definitions that if M is built from K then the 

homology groups of Af are /-power torsion modules. Suppose that the homology 

groups of Af are /-power torsion modules. Let K?? = 
K%(t??). The argument in 

the proof of Proposition 6.10 shows immediately that K?? ?R ///(Af) = ///(Af) 

for all i, so by Proposition 6.10 Cell/K///Af) = ///Af. In other words, all of the 

homology groups of Af are homotopically if-torsion. In view of Lemma 6.9 and 

Proposition 5.3, Af is Zf-torsion. 

Local homology. Suppose that / c R is an ideal generated by the finite 

sequence r. If Af is an (ordinary) /?-module, the local homology of M at I (see 

[9]) is denoted H[(M) and defined by the formula 

H[(M) 
= //^Hom^(^(r??),M). 
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In line with this, if M is an arbitrary object of R-mod we define Hl(M) 
= 

YiomR(K*(Y??)9M) and call H\M) the derived local homology of M at 7. It 

is easy to construct a spectral sequence 

E\A 
= 

H!p(Hq(M)) 
=> Hp+q(H!(M)). 

This converges strongly because K*(r??) is equivalent to a projective chain com 

plex of finite length. 
The following proposition is a consequence of Propositions 6.10 and 4.3. 

Proposition 6.13. Suppose that R is a commutative ring and that I C R is a 

finitely generated ideal. Then local homology at I computes R/I-completion, in the 

sense that for any object M of R-mod there is a natural isomorphism H!(M) = 
MR/?. 

Note that under the isomorphism of Proposition 6.13, the natural completion 

map M ?? 
MR/j 

is obtained by applying HomR(-9M) to the map Km(r??) ?* R 

mentioned at the beginning of the proof of Proposition 6.10. 

According to Proposition 4.8, the natural map M ?> M? is a Bousfield local 

ization map for the homology theory on R-mod given byMt-> H*(K$ ?RM). By 

Proposition 6.4, this homology theory has the same acyclic objects as the theory 

given by M i?> 
H*(R/I?RM)9 and thus the same notion of localization. We have 

obtained the following interpretation of ( )#//> 
and hence of local homology. 

Proposition 6.14. Suppose that R is a commutative ring and that I C R is a 

finitely generated ideal. Then the natural map M ?> 
M*R/? 

is a Bousfield localization 

map for the homology theory on R-mod given byM\-+ H*(R/I?RM). In particular, 
since H!(M) = 

MR/?, 
local homology at I computes Bousfield localization with 

respect to the homology theory determined by R/I. 

Finally, along the lines of Proposition 6.12 we obtain the following char 

acterization of the objects of R-mod which are local with respect to the above 

homology theory. It depends on combining Proposition 5.2 and Section 5.5 with 

the above observation that these local objects are exactly the objects which are 

A'-complete. 

Proposition 6.15. Suppose that R is a commutative ring and that I C R is a 

finitely generated ideal. Then an object M of R-mod is local with respect to the 

homology theory on R-mod given by M h-> 77* (R/7 ?R M) if and only if for each 

integer k the natural map Hk(M) ?> 
Ho(HkM) is an isomorphism. 
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