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Central limit theorem for toric Kähler manifolds
Steve Zelditch

∗
and Peng Zhou

Abstract: Associated to the Bergman kernels of a polarized toric
Kähler manifold (M,ω,L, h) are sequences of measures {μz

k}∞k=1
parametrized by the points z ∈ M . For each z in the open orbit,
we prove a central limit theorem for μz

k. The center of mass of
μz
k is the image of z under the moment map upto O(1/k); after

re-centering at 0 and dilating by
√
k, the re-normalized measures

tend to a centered Gaussian whose variance is the Hessian of the
Kähler potential at z. We further give a remainder estimate of
Berry-Esseen type. The sequence {μz

k} is generally not a sequence
of convolution powers and the proofs only involve Kähler analysis.
Keywords: Bergman kernel, holomorphic line bundle, measures
on moment polytope.

1. Introduction

Let (L, h,M, ω) be a polarized toric Kähler manifold of complex dimension
m, with an ample toric line bundle L → M . Thus, there exists a Hamiltonian
torus action Φ�t(z) : Tm ×M → M on M which extends holomorphically to
a (C∗)m action, and M is the closure of the open orbit Mo = (C∗)m{z0}. Let
h denote a Tm-invariant Hermitian metric on L with curvature form ω. The
moment map

(1) μh := μ : M → P ⊂ R
m,

associated to this data defines a torus bundle on the open orbit over a convex
lattice polytope P known as a Delzant polytope. As reviewed in Section 2.1,
there is a natural basis {sα}α∈kP∩Zm of the space H0(M,Lk) of holomorphic
sections of the k-th power of L by eigensections sα of the Tm action. In a
standard frame eL of L over Mo, they correspond to monomials zα on (C∗)m.
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For any z ∈ Mo and k ∈ N, we define the probability measure,

(2) μz
k = 1

Πhk(z, z)
∑

α∈kP∩Zm

|sα(z)|2hk

‖sα‖2
hk

δα
k
∈ M1(Rm),

on Rm. Here, ‖sα‖hk is the L2 norm of sα with respect to the natural in-
ner product Hilbk(h) induced by the Hermitian metric on H0(M,Lk) and
Πhk(z, z) is the contracted Szegö kernel on the diagonal (or density of states);
see §2.3 for background. The measures are discrete measures supported on
P ∩ 1

kZ
m, and were previously studied in [SoZ10, SoZ12]. The main result of

this article is that for each z, the sequence {μz
k}∞k=1 satisfies a CLT (central

limit theorem) with a Berry-Esseen type remainder estimate.
To state the results precisely we need to introduce some notation and

background. A Gaussian measure on R
m with mean �m and covariance matrix

Σ is a measure of the form,

γ�m,Σ(�x) := (2π det Σ)−m/2e−
1
2 〈Σ

−1(�x−�m),(�x−�m)〉.

Our aim is to prove that in the sense of weak convergence, dilations of (2)
tend to a certain Gaussian measure,

(3) 1
Πhk(z, z)

∑
α∈kP∩Zm

|sα(z)|2hk

‖sα‖2
hk

δ√k(α
k
−μh(z)) → γ0,Hessϕ(z),

whose mean is 0 and whose covariance matrix is the Hessian Hessϕ(z) of the
Kähler potential. In Section 2, we review the fact that the Kähler potential
ϕ(z) of a toric variety is a convex function of (ρ1, · · · , ρm) = (log |z1|2, · · · ,
log |zm|2) on R

m. Here, we use orbit coordinates (ρ, θ) where eρi = |zi|2.
Then ∇ρϕ is the gradient, resp. Hess ϕ = ∂2

ρiρjϕ(eρ/2) is the Hessian in the ρ
variables. We refer to Section 2.2 for definitions and details.

1.1. Mean and covariance

To determine the appropriate Gaussian measure we need to determine the
asymptotics as k → ∞ of the mean, resp. covariance matrix
(4)
�mk(z) =

∫
P
�xdμz

k(x), resp. [Σk]ij(z) =
∫
P
(xi −mk,i(z))(xj −mk,j(z))dμz

k.

Lemma 1.1. Let μh : M → P be the moment map (1). Then,

�mk(z) = μh(z) + O(1/k), Σk(z) = 1
k

Hess ϕ(z) + O( 1
k2 )



Central limit theorem for toric Kähler manifolds 845

The proof is reviewed in Section 2.5 (from [Z09, Proposition 6.3]). It
implies the law of large numbers for the sequence {μz

k}: In the weak topology
of measures on C(P̄ ), μz

k → δμh(z). We therefore center the measures (2) at
μ(z), i.e. put

(5) μ̃z
k = μz

k(x− μh(z)),

and then dilate by
√
k to obtain the normalized sequence,

(6) D√
kμ̃

z
k = 1

Πhk(z, z)
∑

α∈kP∩Zm

|sα(z)|2hk

‖sα‖2
hk

δ√k(α
k
−μh(z)).

Equivalently, if f ∈ Cb(Rm), then,

(7) 〈f,D√
kμ̃

z
k〉 = 1

Πhk(z, z)
∑

α∈kP∩Zm

|sα(z)|2hk

‖sα‖2
hk

f(
√
k(α

k
− μh(z)).

Here, Cb(Rm) denotes the space of bounded continuous functions on R
m.

1.2. Weak* convergence on Cb(Rm)

Our first main result is the following

Theorem 1.2. In the topology of weak* convergence on Cb(Rm),

D√
kμ̃

z
k

w∗→ γ0,Hess ϕ(z).

That is, for any f ∈ Cb(Rm),
∫
Rm

f(x)D√
kdμ̃

z
k(x) →

∫
Rm

f(x)dγ0,Hess ϕ(z)(x).

The role of the parameter z is similar to that of the parameter p in
the Bernoulli measures μp = pδ0 + (1 − p)δ1 and their convolution powers
on the unit interval [0, 1]. In very special cases, such as the Fubini-Study
metric h of M = CP

m, μz
k is itself a sequence of dilated convolution pow-

ers, μz
k = (μz

1)∗k = μz
1 ∗ μz

1 · · · ∗ μz
1 (k times). It has been pointed out in

[D08, STZ03] that such a situation occurs for the Fubini-Study metric on
the dual hyperplane line bundle O(1) → CP

m and for the Bargmann-Fock
case. This is equivalent to the condition that Πhk = (Πh1)k. In [STZ03] the
relation between Πhk and (Πh1)k on a toric Kähler manifold has been given
in terms of partition functions of lattice random walks and a certain pseudo-
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differential operator. To the author’s knowledge, conditions on h which are
necessary and/or sufficient that Πhk = (Πh1)k are not known even for a toric
variety. Donaldson points out that it holds for sequences of metrics defined
by Veronese embeddings.1 The proof of Theorem 1.2 does not appeal to any
prior results on central limit theorems or probablility theory but is purely a
result of toric Kähler analysis and is based on the quantum dynamics of the
torus action (see (27)).

1.3. Berry-Esseen type remainder

The classical Berry-Esseen theorem gives a quantitative remainder estimate
for the CLT for sums SN = X1 + · · · + XN of i.i.d. real-valued random
variables with finite third moment. With no loss of generality, assume that
EXj = 0,Var(Xj) = 1 and let m3 = E|Xj |3. Let μ denote the common
distribution of the Xj . Then the Berry-Esseen remainder bound states that
if f is a “γ0,1-continuous bounded function” then

(8)
∫
Rm

f(x)D√
kdμ

∗k(x) =
∫
Rm

f(x)dγ0,1(x) + O(m3√
k

).

Such functions include characteristic functions of sets whose boundaries have
Lebesgue measure zero. The Berry-Esseen bound was extended to the mul-
tivariate CLT by Bergstrom, Bhattacharya, Rotar, Sazonov and von Bahr
around 1970; see [Bhat] for background and references. The measures μz

k of
this article would be referred to as distributions of lattice random variables
�Xk, i.e. random variables whose values are almost surely located on lattice
points of 1

kZ
m ∩ P . Special techniques are available for lattice random vari-

ables (see [Bhat, Chapter 5]) but we do not use them here. The following is a
simple analogue of the remainder estimate of [ZZ19b], and is stated for certain
continuous test functions rather than for characteristic functions of sets.

Theorem 1.3. If f ∈ C0(Rm), with f̂ ∈ L1(Rm) bounded by a radially
decreasing L1 function, then∫

Rm
f(x)D√

kdμ̃
z
k(x) =

∫
Rm

f(x)dγ0,Hess ϕ(z)(x) + Of (
1√
k

).

The analogous remainder estimate is proved for S1 actions with scalar
moment map in [ZZ19, Theorem 2] and we generalize the periodization argu-
ment from that article.

1What Donaldson calls the CLT in [D08, (9)] is a local limit law of the kind
proved in [SoZ07] (see Section 5). The Poisson limit law alluded to in [D08] was
proved in [SoZ10, F12].
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1.4. Local limit theorem

In this section, we tie together some results of [SoZ10, SoZ12] to Theorem 1.2.
We show that the former imply a “local limit law” for the dilated measures
μz,1
k (p) := μz

k(p/k) for p ∈ R
m.

Classically, a local limit theorem for lattice random variables pertains to
a triangular array {XN,k}Nk=1 of independent random variables with values
in Z

m. Let SN =
∑N

k=1 XN,k. Assuming that SN−ESN√
N

→ γ0,Σ in the weak-*
sense, the local limit theorem states that

PN (α) := P{SN = α} = N−m/2γ0,Σ(α− ESN√
N

) + o(N−m/2).

For instance, in the model case of Bernoulli random variables with P(X1 =
1) = 1

2 = P(X1 = 0), P(SN = k) =
(N
k

)
2−N and

P (SN = k) 

√

2√
πN

e
− (k−N/2)2

N/2 .

We refer to [GK, Chapter 9] and [Muk91] for discussion of local limit theorems
for lattice distributions.

These results do not apply to the measures (2). However, we prove that
they satisfy the following local limit theorem:

Theorem 1.4. for α ∈ Z
m,

(9) μz,1
k (α) = k−m/2γ0,Hessϕ(z)

(√
k

(
α

k
− μh(z)

))
(1 + O(1/k)).

All of the necessary calculations and esimtates were proved in [SoZ10,
SoZ12], but the conclusion was not drawn there.

In the classical case of independent lattice variables, such as the de
Moivre-Laplace theorem, the CLT can be derived from the local limit law
by integrating (i.e. summing) the latter. The localization formulae in [SoZ10]
could probably be used to prove Theorem 1.2 from Theorem 1.4 in this way.
But the proof we give of Theorem 1.2 seems simpler as well as giving a sharper
remainder estimate.

1.5. Related results

Theorem 1.2 has some resemblence in both its statement and proof to the
CLT proved in [ZZ19b] for Hamiltonian flows and in [ZZ19] for S1 actions.
See also [PS, RS] for prior articles with related results. But these articles
involve sequences of probability measures on R, while the CLT in this article
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is about the sequence μz
k of probability measures on P ⊂ R

m. Moreover, those
articles gave Erf asymptotics for scaled partial Bergman kernels around the
interface ∂A in M between an allowed region A and its complement. This
article gives a vector-valued refinement of the CLT of [ZZ19] in which μ−1

h (z)
is a single torus instead of a hypersurface ∂A, and Gaussian asymptotics hold
in all normal directions to the torus.

In Theorem 1.2, we assume that μh(z) ∈ P o, the interior of P , and show
that the limit is uniform on compact subsets of Mo. If we allow varying points
zk → ∂P , then as in the model binomial case, the measures μzk

k tend to some
kind of Poisson limit law. Results of this kind are proved in [SoZ10, F12]
in the toric setting. It would be interesting to investigate such Poisson limit
laws on general Kähler manifolds and for general Hamiltonian, where D is
replaced by the set of critical points of H. Critical levels were excluded in
[ZZ19, ZZ19b].

An intriguing question is whether Theorem 1.2 admits a generalization to
non-toric Kähler manifolds. One possibility is to try to adapt it to the other
Kähler manifolds of large symmetry discussed in [D08]. Another is to try to
define analogues of μz

k on Okounkov bodies of polarized Kähler manifolds. In
the latter case, even the law of large numbers does not seem to have been
formulated.

2. Background on toric varieties

We employ the same notation and terminology as in [Z09, SoZ10, SoZ12]. We
recall that a toric Kähler manifold is a Kähler manifold (M,J, ω) on which
the complex torus (C∗)m acts holomorphically with an open orbit Mo. We
choose a basepoint z0 on the orbit open and identify Mo ≡ (C∗)m{z0}. The
underlying real torus is denoted Tm so that (C∗)m = Tm × R

m
+ , which we

write in coordinates as z = eρ/2+iθ in a multi-index notation.
We assume that M is a smooth projective toric Kähler manifold, hence

that P is a Delzant polytope, i.e. that P is defined by a set of linear inequalities

lr(x) := 〈x, vr〉 − αr ≥ 0, r = 1, ..., d,

where vr is a primitive element of the lattice and inward-pointing normal to
the r-th (n − 1)-dimensional face of P . We denote by P o the interior of P
and by ∂P its boundary; P = P o ∪ ∂P .

2.1. Monomial basis of H0(M,Lk), norms and Szegö kernels

A natural basis of the space of holomorphic sections H0(M,Lk) associated to
the kth power of L → M is defined by the monomials zα where α is a lattice
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point in the kth dilate of the polytope, α ∈ kP ∩ Z
m. That is, there exists

an invariant frame eL over the open orbit so that sα(z) = zαeL. We equip L
with a toric Hermitian metric h whose curvature (1, 1)-form ω = i∂∂̄ log ‖e‖2

h

is positive. We often express the norm in terms of a local Kähler potential,
‖e‖2

h = e−ϕ, so that |sα(z)|2hk = |zα|2e−kϕ(z) for sα ∈ H0(M,Lk).
Any hermitian metric h on L induces inner products Hilbk(h) on H0(M,

Lk), defined by

(10) 〈s1, s2〉Hilbk(h) =
∫
M

(s1(z), s2(z))hk

ωm
h

m! .

The monomials are orthogonal with respect to any such toric inner product
and have the norm-squares

(11) Qhk(α) =
∫
Cm

|zα|2e−kϕ(z)dVϕ(z),

where dVϕ = (i∂∂̄ϕ)m/m!. We denote the dimension of H0(M,Lk) by Nk.

2.2. Kähler potential, moment map and sympletic potential

Recall that we use log coordinate (ρ, θ) on Mo ∼= (C∗)m by setting zi =
eρi/2+

√
−1θi . Since the Kahler potential ϕ is Tm-invariant, ϕ(z) only depends

on the ρ variables, hence we may write it as ϕ(ρ).
The moment map μh is defined as the gradient of the Kähler potential

ϕ : Rm → R. Let Rm
p be the dual space of Rm

ρ , where we use coordinates p =
(p1, · · · , pm) and ρ = (ρ1, · · · , ρm) respectively. The gradient map induced by
ϕ is defined by

Φϕ : Rm
ρ → R

m
p , ρ �→ p(ρ) := (∂ρ1ϕ, · · · , ∂ρmϕ).

The moment map is then defined by,

(12) μh(z) = Φϕ(ρ).

The moment map μh : M → R
m is only well-defined up to an additive

constant. The equivariant toric line bundle L fixes this degree of freedom as
follows: Let Ik ⊂ Z

m be the subset consisting of weight H0(M,Lk) under the
action of (C∗)m, and let Pk be the convex hull of Ik. Then Pk = kP ′ for a
fixed convex polytope P ′. We normalize μh by requiring that μh(M) = P ′.
For background, see [Fu].
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2.3. The Szegö kernel and the Bergman kernel

The Szegö (or Bergman) kernels of a positive Hermitian line bundle (L, h) →
(M,ω) are the kernels of the orthogonal projections Πhk : L2(M,Lk) →
H0(M,Lk) onto the spaces of holomorphic sections with respect to the in-
ner product Hilbk(h),

(13) Πhks(z) =
∫
M

Πhk(z, w) · s(w)ω
m
h

m! ,

where the · denotes the h-hermitian inner product at w. In terms of a local
frame e for L → M over an open set U ⊂ M , we may write sections as s = fe.
If {skj = fje

⊗k
L : j = 1, . . . , Nk} is an orthonormal basis for H0(M,Lk), then

the Szegö kernel can be written in the form

(14) Πhk(z, w) := Fhk(z, w) e⊗k
L (z) ⊗ e⊗k

L (w) ,

where

(15) Fhk(z, w) =
Nk∑
j=1

fj(z)fj(w) , Nk = dimH0(M,Lk).

We also introduce the local kernel Bhk(z, w), defined with respect to the
unitary frame:

(16) Πhk(z, w) = Bhk(z, w) ekL(z)
‖ekL(z)‖h

⊗ ekL(w)
‖ekL(w)‖h

The density of states Πhk(z) is the contraction of Πk(z, w) with the hermitian
metric on the diagonal,

Πhk(z) :=
Nk∑
i=0

‖ski (z)‖2
hk

= Fhk(z, z) |e(z)|2kh = Bhk(z, z),

where in the first equality we record a standard abuse of notation in which
the diagonal of the Szegö kernel is identified with its contraction. On the
diagonal, we have the following asymptotic expansion the density of states,

(17) Πhk(z) = km + 1
2S(z)km−1 + a2(z)km−2 + . . .

where S(z) is the scalar curvature of ω.
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2.4. Bergman kernels for a toric variety

In the case of a toric variety, we have

(18) Fhk(z, w) =
∑

α∈kP∩Zm

zαw̄α

Qhk(α) ,

where Qhk(α) is defined in (11). If we sift out the αth term of Πhk by means
of Fourier analysis on Tm, we obtain

(19) Phk(α, z) := |zα|2e−kϕ(z)

Qhk(α) .

Let ϕ̃(z, w) denote an almost analytic extension of ϕ(z) from the diagonal,
that is ϕ̃ satisfying the condition ∂̄k

z ϕ̃(z, w)|z=w = ∂k
wϕ̃(z, w)|z=w = 0 for all

k ∈ N and ϕ̃(z, w)|z=w = ϕ(z). The Tm action is by holomorphic isometries
of (M,ω) and therefore, by averaging over the compact group Tm, we may
assume

(20) ϕ̃(Φ�tz,Φ�tw) = ϕ̃(z, w).

The Szegö kernel (16) admits a parametrix with complex phase ϕ̃ (see e.g.
[BBSj]). In the case of a toric Kähler manifold, it takes the following simple
form [STZ03].

Proposition 2.1. For any hermitian toric positive line bundle over a toric
variety, the Szegö kernel for the metrics hN

ϕ have the asymptotic expansions
in a local frame on M ,

Bhk(z, w) ∼ ek(ϕ̃(z,w)− 1
2 (ϕ(z)+ϕ(w)))Ak(z, w) mod k−∞,

where Ak(z, w) ∼ km
(
1 + a1(z,w)

k + · · ·
)

is a semi-classical symbol of order
m and where the phase satisfies (20).

2.5. Proof of Lemma 1.1

As mentioned above, Lemma 1.1 was proved in [Z09, SoZ10]. We briefly review
the proof as preparation for the proof of Theorem 1.2.

Proposition 2.2. Let (M,L, h, ω) be a polarized toric Hermitian line bun-
dle. Then the means, resp. variances of μz

k are given respectively by,

1. mk(z) = μh(z) + O(k−1);
2. Σk(z) = k−1Hess ϕ + O(k−2).
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Proof. We briefly review the proof. Recall that the Bergman density function
Πhk(z) is Tm-invariant, hence is a function of ρ, and can be written as

Πhk(ρ) =
∑

α∈kP∩Zm

Πhk,α(ρ) =
∑

α∈kP∩Zm

e〈α,ρ〉−kϕ(ρ)

Qk(α) ,

Thus by explicit calculation we have

k−1∂ρjΠhk(ρ) =
∑

α∈kP∩Zm

(
αj

k
− ∂ρjϕ(ρ)

)
e〈α,ρ〉−kϕ(ρ)

Qk(α)
= Πhk(ρ)(mk(z) − μh(z))j

where we used ∂ρjϕ(ρ) = μh(z)j . Using the asymptotic expansion for Πhk(ρ),
we get mk(z) = μh(z) + O(1/k).

Then for the variance, we use

k−2∂2
ρiρjΠhk(ρ) =

∑
α∈kP∩Zm

(
αi

k
− ∂ρiϕ(ρ)

)(
αj

k
− ∂ρjϕ(ρ)

)
e〈α,ρ〉−μh(z)

Qk(α)

−
∑

α∈kP∩Zm

(1
k
∂2
ρiρjϕ(ρ)

)
e〈α,ρ〉−kϕ(ρ)

Qk(α)

Then divide by Πk(ρ) and use mk(z) = μh(z) + O(1/k), we get the desired
result for variance.

3. Quantum dynamics: Proof of Theorem 1.2

The proof is somewhat similar to that of [ZZ19, Theorem 4] but in fact simpler
because of the extra degrees of symmetry of a toric variety. A key simplifying
feature is that, like the S1 action of [ZZ19], Tm acts holomorphically on M .
As above, denote the action by

(21) (ei�t, z) ∈ Tm ×M �→ ei
�t · z =: Φ�t(z)

and denote the infinitesimal generators of the action by ∂
∂θj

. As discussed in
[STZ03, SoZ10, SoZ12], the torus action can be quantized as a sequence of
unitary operators Uk(�t) on H0(M,Lk), or more precisely as a semi-classical
Toeplitz Fourier integral opertator. We briefly review the key ideas and refer
to the articles above for details and further background.

Let Xh = ∂D∗
h where D∗

h is the unit co-disc bundle in L∗ with respect to
h and let H2(Xh) ⊂ L2(Xh) denote the Hardy space of L2 Cauchy-Riemann
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functions on Xh. It is an S1 bundle π : Xh → M and carries the S1 action
rθ : S1 ×Xh → Xh by rotation of the fibers. The S1 action on Xh commutes
with ∂̄b; hence H2(Xh) =

⊕∞
k=0 H2

k(Xh) where H2
k(Xh) = {F ∈ H2(Xh) :

F (rθx) = eikθF (x)}. Section sk of Lk lift to equivariant functions ŝl on L∗ by
the rule

ŝk(λ) =
(
λ⊗k, sk(z)

)
, λ ∈ L∗

z , z ∈ M ,

where λ⊗k = λ⊗ · · · ⊗ λ. We henceforth restrict ŝ to Xh and then the equiv-
ariance property takes the form ŝk(rθx) = eikθŝk(x). The map s �→ ŝ is a
unitary equivalence between H0(M,Lk) and H2

k(Xh).
There is a natural contact 1-form α on Xh defined by the Hermitian

connection 1-form, which satisfies dα = π∗ω. The Tm action lifts to Xh as
an action of the torus by contact transformations. The generators ∂

∂θj
of the

Tm action on M lift to contact vector fields Ξ1, . . .Ξm on Xh. The horizontal
lifts of the Hamilton vector fields ξj are then defined by

π∗ξ
h
j = ξj , α(ξhj ) = 0,

and the contact vector fields Ξj are given by:

(22) Ξj = ξhj + 2πi〈μ ◦ π, ξ∗j 〉
∂

∂θ
= ξhj + 2πi(μ ◦ π)j

∂

∂θ
,

where μ is the moment map. These vector fields act as differential operators
Îj : H2

N (Xh) → H2
N (Xh) satisfying

(23) (ÎjŜ)(ζ) = 1
i

∂

∂ϕj
Ŝ(eiϕ · ζ)|ϕ=0 , Ŝ ∈ C∞(Xh) .

Furthermore, the generator of the S1 action acts on these spaces and

(24) Îm+1 : H2
k(Xh) → H2

k(Xh) ,
1
i

∂

∂θ
ŝk = kŝk for ŝN ∈ H2

k(Xh) .

The monomial sections sα (equal to zα on the open orbit) lift to Tm×S1

equivariant functions ŝα on Xh, i.e. as joint eigenfunctions of the (m + 1)
commuting operators Îj .

The lifts Π̂k(x, y) of the Szegö kernels (13) are the (Schwarz) kernel of the
orthogonal projection Π̂k : L2(Xh) → H2

k(Xh). They are Fourier components,

(25) Π̂hk(x, y) =
∫ 2π

0
e−ikθΠ̂(rθx, y)

dθ

2π ,

of the full Szegö projector Π̂(x, y).
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The quantum torus action is defined by

Uhk(�t) := e
∑m

j=1 tj Îj =
m∏
j=1

eitj Îj

on H2
k(Xh). Since the torus acts holomorphically, it is simply given by

(26) Ûk(�t, x, y) = Π̂hkΦ�tΠ̂hk
(x, y) = Π̂hk

(x,Φ�ty).

We are most interested in the diagonal Ûk(�t, x, x). It is S1-invariant and de-
pends only on z = π(x), so we denote it by

(27) Uk(�t, z, z) := Bhk(z,Φ�tz) =
∑

α∈kP∩Zm

|sα(z)|2hk

‖sα‖2
hk

e−i〈�t,α〉.

Here and henceforth we use the identification of the base and lifted Szegö
kernels and torus actions. Literally speaking, the translation of sections on
the base requires parallel translation; but on the open orbit we may think of
the sections as scalar functions.

3.1. Proof of Theorem 1.2

We prove Theorem 1.2 by the classical Fourier method, which is based on the
‘continuity theorem’ that weak convergence D√

kμ
z
k → γ0,Hess ϕ(z) is equivalent

to pointwise convergence of the Fourier transforms (‘characteristic functions
in probability language) as long as the pointwise limit is continuous at 0 (see
e.g. [Res, Theorem 9.5.2]).

It is obvious that

(28) F−1
x→tD

√
kμ̃

z
k(�t) = B−1

hk (z)Uk(
�t√
k
, z, z)ei

√
k〈μ(z),t〉,

or equivalently,

(29) 〈f,D√
kμ̃

z
k〉 = B−1

hk (z)
∫
Rm

f̂(�t)Uk(
�t√
k
, z, z)ei

√
k〈μ(z),t〉dt

Thus, the key point is to study the pointwise scaling asymptotics of (27).
Let Hz = Hessϕ(z) = ∂2

∂ρi∂ρj
ϕ|z denote the Hessian of ϕ.

Proposition 3.1. B−1
hk (z)Uk( �t√

k
, z, z)ei

√
k〈μ(z),t〉 → F−1γ0,Hz pointwise.
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Proof. We need to show that, for each z ∈ Mo,

B−1
k (z)Uk(

�t√
k
, z, z)ei

√
k〈�t,μh(z)〉 =B−1

hk (z)Bk(Φ
�t√
k z)ei

√
k〈�t,μh(z)〉→F−1γ0,Hz(�t).

Substituting the Boutet-de-Monvel-Sjoestrand parametrix of Proposition
2.1 gives,

(30) Uk(
�t√
k
, z, z)ei

√
k〈�t,μh(z)〉 ∼ ek(ϕ̃(z,Φ

�t√
k z)−ϕ(z))ei

√
k〈�t,μh(z)〉Ak

(
z,Φ

�t√
k z

)
,

where ∼ means that the difference is a function which decays rapidly in k
along with its derivatives. Such a remainder may be neglected if we only con-
sider expansions modulo rapidly decaying functions of k. Using the parame-
trix, this comes down to the statement that

(31) ek(ϕ̃(z,Φ
�t√
k z)−ϕ(z))e−i

√
k〈�t,μh(z)〉Ak

(
z, (Φ

�t√
k z)

)
→ Fγz(�t)

Use the Tm-invariance of ϕ, we get (20), i.e.

ϕ̃(Φcz,Φcw) = ϕ̃(z, w),

which implies

ϕ̃(z,Φ
�t√
k z) = ϕ̃(Φ

−�t

2
√

k z,Φ
�t

2
√
k z).

The Tm can be extended to a (C∗)m action, For τ ∈ C
m, let eτ ∈ (C∗)m acts

on z ∈ Mo by multiplication. Then we may define the following function

Ψ(τ) := ϕ̃(eτz, eτz),

so that ϕ̃(z,Φ
�t√
k z) = Ψ(−it/2

√
k). Since ϕ̃(z, w) is almost holomorphic in

z and anti-holomorphic in w when z = w, Ψ(τ) is almost holomorphic in
τ at τ = 0. If τ ∈ iRm, this corresponds to action of Tm. We restrict to
τ = c ∈ R

m, and then ecz = ecz. Recall that z = eρ/2+iθ and ϕ is a function
of ρ only,

Ψ(c) = ϕ(ecz) = ϕ(ρ) + 2c∂ρϕ(ρ) + 1
2〈Hessρϕ(ρ)2c, 2c〉 + O(c3).

Finally, using Ψ is analytic at c = �0, we have

Ψ(−it/2
√
k) = ϕ(ρ) − (it/

√
k)∂ρϕ(ρ) − 1

2k
−1〈Hz�t,�t〉 + O(k−3/2)
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Also note that μh(z) = ∂ρ(ϕ(ρ) from (12), we then have

kϕ̃(z,Φ
�t√
k z) − kϕ(z)) + i

√
k〈�t, μh(z)〉 = −1

2〈Hz�t,�t〉 + O(k−1/2)

The amplitude Ãk has an expansion of the form,

Ãk

(
z, ei

ξ
k z, 0, N

)
= km + km−1a1 + O(km−1),

for various smooth coefficients aj(z); the first one is a universal constant. We
conclude that

(32) k−mUk(
�t√
k
, x, x)ei

√
k〈�t,μh(z)〉 → e−

1
2 〈Hz�t,�t〉.

The proof of Proposition 3.1 actually shows that there is a pointwise
expansion asymptotic expansion to all orders, with remainders of polynomial
growth in �t. For this it suffices to carry out the Taylor expansions of the phase
and amplitudes to higher order. We can then integrate the result against
suitable test functions to obtain the following result, analogous to [ZZ19,
Proposition 8.1]:

Proposition 3.2. Let z ∈ M0. For f ∈ S(Rm) with f̂ ∈ C∞
0 (Rm),

∫
Rm

f̂(�t)B−1
hk (z)Uk(

�t√
k
, z, z)edt =

∫
Rm

f̂(�t)e−
1
2 〈Hz�t,�t〉dt + O(k−

1
2 ),

where Hz = Hess ϕ(ρ) is the Hessian of the toric Kähler potential. In fact,
there exists a complete asymptotic expansion of the integral in powers of k− 1

2 ,
and the asymptotics are uniform on compact subsets of Mo.

Proof. For f ∈ S(Rm) with f̂ ∈ C∞
0 (Rm),

(33)

〈f,D√
kμ̃

z
k〉 = 1

Πhk (z,z)
∑

α∈kP∩Zm

|sα(z)|2
hk

‖sα‖2
hk

f(
√
k(αk − μh(z))

= B−1
hk (z)

∫
Rm f̂(�t)Uk( �t√

k
, z, z)ei

√
k〈�t,μh(z)〉dt

= B−1
hk (z)

∫
Rm f̂(�t)Bhk(z,Φ

�t√
k z)ei

√
k〈�t,μh(z)〉dt

Since the integrand is compactly supported, we may apply the pointwise
limit of Proposition 3.1 to obtain the principal term. By Taylor expanding
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the factor ek
− 1

2 R3(k,z) one obtains an oscillatory integral with the same phase
and a remainder of order k− 1

2 .

Further details will be given in the proof of Proposition 4.1.

3.2. Completion of the proof of Theorem 1.2

Since S(Rm) is dense is C0(Rm) (continuous functions vanishing at infinity,
equipped with the sup norm), Proposition 3.2 implies weak* convergence of
D√

kμ̃
z
k → γ0,Hess ϕ(z) on C0(Rm) (continuous functions vanishing at infinity).

For weak* convergence on Cb(Rm) one needs tightness of the sequence μz
k.

The so-called Levy continuity theorem on R
m says that if μk is a sequence of

probability measures on R
m and μ̂k(t) → ϕ(t) pointwise and ϕ(t) is continu-

ous at 0, then ϕ(t) = μ̂(t) for some probability measure μ and μk
w∗→ μ on Cb.

The continuity of ϕ at t = 0 implies tightness of the sequence μk. We refer
to [Res, Theorem 9.5.2] for background. Hence, D√

kμ
z
k

w∗→ γ0,Hess ϕ(z) in the
sense of weak* convergence on Cb(Rn) as long as Fx→tD√

kμ
z
k → Fγ0,Hess ϕ(z)

pointwise. Proposition 3.1 thus implies that the sequence is tight, and and
further implies weak* convergence on Cb(R). Hence Theorem 1.2 is proved.

It follows from Theorem 1.2 and the Portmanteau theorem that

lim
k→∞

D√
kμ̃

z
k(K) = γ0,Hessϕ(z)(K),

for any convex subset of Rm, or more generally for any ‘continuity set’ such
that γ0,Hess ϕ(z)(∂K) = 0.

4. Berry-Esseen remainder estimate

The purpose of this section is to improve the limit formula of Theorem 1.2
and the expansion in Proposition 3.2 by giving the remainder estimate of
Theorem 1.3. We aim to give a representative result rather than the most
general one possible, and therefore restrict to a reasonably general class of
continuous functions rather than indicator functions.

For any bounded continuous function f ∈ Cb(R), we define a slight sim-
plification of (33),

(34) Ik,f (z) := k−m
∑

α∈kP∩Zm

|sα(z)|2hk

‖sα‖2
hk

f(
√
k(α

k
− μh(z)).

Since Πhk(z, z) = km(1 + O(k−1/2)), we have

〈f,D√
kμ̃

z
k〉 = Ik,f (z)(1 + O(k−

1
2 )),
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and it suffices to prove the desired bound for (34).
We now prove the Berry-Esseen remainder bound for integrals of μz

k

against certain types of f ∈ C0(Rm) (functions vanishing as |x| → ∞).

Proposition 4.1. Let f ∈ C0(Rm) have the properties that f̂ ∈ L1 and
that |f̂(�t)| ≤ Cg(|�t|) where g(|�t|) ∈ L1 and is monotonically decreasing as a
function of |�t|. Then,

Ik,f (z) =
∫
Rm

f(x)dγ0,Hess ϕ(z)(x) + Of ( k−1/2).

Proof. We start again from the last formula of (33). We note that �t →
Π̂hk

(Φ
�t√
kx, rθx)) is periodic with respect to the lattice 2π

√
kZm (similarly

for the parametrix and remainder terms), so the integrals converge when
f̂ ∈ S(R). We periodize g(�t) = f̂(�t)e−i

√
k〈�t,μh(z)〉 with respect to the lattice

2π
√
kZm by means of the

√
k-periodization operator

P√
kg(�t) :=

∑

∈Zm

g(�t + 2π
√
k�), g ∈ S(Rm).

The sum converges as long as |g(�t)| ∈ L1(Rm) is bounded by a decreasing
positive L1 function. Hence, as long as f̂ has this property,

P√
k(f̂ e

−i
√
k〈�t,μh(z)〉) =

∑

∈Zm

f̂(�t + 2π
√
k�)e−i

√
k〈�t,μh(z)〉e−2πik〈
,μh(z)〉

=: e−i
√
k〈�t,μh(z)〉F̂k(�t),

with F̂k(�t) =
∑


∈Zm f̂(�t + 2π
√
k�)e−2πi(k〈
,μh(z)〉). Then,

Ik,f (z) = k−m
∫
√
k[−π,π]m

F̂k(�t)e−i
√
k〈�t,μh(z)〉Bhk(Φ

�t√
k z, z)d�t.

We then localize the last integral using a smooth cutoff χ( �t
(log k)2 ), where

χ ∈ C∞
0 (Rm) is supported in (−1, 1)m and equals to 1 in (−1/2, 1/2)m.

When π
√
k ≥ |�t| ≥ (log k)2, the off-diagonal Bergman kernel Bhk(Φ

�t√
k z, rθz))

is rapidly decaying at the rate O(e−(log k)2). Here, we use the standard off-
diagonal estimate, |Bhk(z, w)| ≤ Ckme−β

√
kd(z,w) for certain β,C > 0 (see

[ZZ19b] for background). Hence,

Ik,f (z) = k−m
∫
Rm

χ(
�t

(log k)2 ) F̂k(�t)e−i
√
k〈�t,μh(z)〉Bhk

(Φ
�t√
k z, z))d�t + Of (k−∞),
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where the constant in Of (k−∞) depends on ‖F̂k‖L1(−
√
k,
√
k)m = ‖f̂‖L1 .

We then introduce the Boutet-de-Monvel-Sjöstrand parametrix (2.1) to
get,

Ik,f (z) =
∫ ∞

−∞
χ( t

(log k)2 ) F̂k(t)e−i
√
k〈�t,μh(z)〉ekϕ̃(eit/

√
kz,z)−kϕ(z)Ak(eit/

√
kz, z)dt

+
∫ ∞

−∞
χ( t

(log k)2 ) F̂k(t)e−i
√
k〈�t,μh(z)〉Rk(eit/

√
kz, z)dt + Of (k−∞).

By the parametrix construction, Rk ∈ k−∞C∞(M × M)2 hence the second
term is O(k−∞) and may be absorbed into the remainder estimate.

As in the proof of Proposition 3.1, the phase function of Ik,f has the
Taylor expansion (or asymptotic expansion),

(35)
Ψ(it, z) = −i

√
k〈�t, μh(z)〉 + kϕ̃(eit/

√
kz, z) − kϕ(z)

= −1
2〈Hz�t,�t〉 + g1(it, z),

where

(36) g1 = O(k−1/2|t|3).

We substitute the Taylor expansion into the phase of the first term of
Ik,f (z), and also Taylor expand eg1 to order 1. Let e1(x) = 1− ex. Since |�t| ≤
(log k)2 on the support of the integrand, |g1| ≤ C( (log k)6√

k
) on |�t| ≤ (log k)2.

Since ex = 1 + e1(x) where e1(x) ≤ 2x on [0, C( log k)6√
k

)], eg1 = 1 + g̃1 where
g̃1(k, t) ≤ 2g1 ≤ C0k

− 1
2 (1 + |�t|3) on [0, (log k)2].

We get

Ik,f (z) =
∫
Rm

χ(
�t

(log k)2 )F̂k(�t)e−
1
2 〈Hz�t,�t〉(1 + g̃1))dt + Of (k−1/2)

=
∫
Rm

χ(
�t

(log k)2 )F̂k(�t)e−
1
2 〈Hz�t,�t〉dt + Of (k−1/2)

where χ( t
(log k)2 )|g̃1| ≤ C0k

−1/2(1+ |�t|3) after integration against the Gaussian
factor is of size O(k−1/2).

2To be clear, for any integer m ≥ 0, we have an m-term asymptotic expan-
sion A

(m)
k (x, y) =

∑m
j=0 Ak,j(x, y)k−j , and |R(m)

k (x, y)| ≤ k−m−1r(x, y) for some
r(x, y) ∈ C∞(M ×M).
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Finally, we unravel the periodization F̂k to evaluate the first term.∫
Rm

χ( t

(log k)2 )F̂k(t)e−
1
2 〈Hz�t,�t〉dt

=
∫
Rm

χ( t

(log k)2 )f̂(�t)e−
1
2 〈Hz�t,�t〉dt

+
∑


∈Zm\0

∫
R

χ(
�t

(log k)2 )f̂(�t + 2π
√
k�)e2πik〈
,μh(z)〉− 1

2 〈Hz�t,�t〉dt

=
∫
Rm

χ(
�t

(log k)2 )f̂(�t)e−
1
2 〈Hz�t,�t〉dt + O(k−

1
2 ‖f̂‖).

In the � �= 0 sum, we use that
∑


∈Zm\0 |f̂(�t + 2π
√
k�)| ≤ ∑


∈Zm\0 g(|�t + 2π
√
k�|)

≤ C
∫
|
|≥1 g(|�t + 2π

√
k�|)d�

= C√
k

∫
|y|≥

√
k g(|�t + 2πy|)dy

= Ck−
1
2 ‖g‖L1 ,

so that

∑

∈Zm\0

∫
R

χ(
�t

(log k)2 )f̂(�t + 2π
√
k�)e2πik〈
,μh(z)〉− 1

2 〈Hz�t,�t〉dt

is bounded by

[C ′k−
1
2 ‖g‖L1 ]

∫
R

χ(
�t

(log k)2 )e−
1
2 〈Hz�t,�t〉dt = O(k−

1
2 ‖g‖L1).

Finally, removing the cut-off χ(t/(log k)2) from the � = 0 term introduces
an error of order

∫∞
(log k)2 e

−ax2
dx = O(k−∞). We have

Ik,f (z) =
∫
Rm

f̂(t)e−
1
2 〈Hz�t,�t〉dt + Of (k−1/2)

= 1
(2π)m/2

√
det(Hz)

∫
Rm

f(x)e−
1
2 〈H

−1
z x,x〉dx + Of (k−1/2)

by the Plancherel theorem. This completes the proof of Theorem 1.3.
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Remark 1. The result can be generalized to indicator functions 1K of con-
vex sets K. It would suffice to smoothe 1K and to measure the error in the
smoothing. The terms contributing to the latter are sums of (19) over lattice
points close to ∂K. The size of the remainder thus depends on the position of
μh(z) relative to K.

5. Local limit law: Proof of Theorem 1.4

To prove Theorem 1.4 we need to review some further background on toric
Kähler manifolds.

Let h = e−ϕ be a toric Hermitian metric on L. Recall that the symplectic
potential uϕ associated to ϕ is its Legendre transform: for x ∈ P there is a
unique ρ(x) such that μϕ(eρ(x)/2) = dϕ(ρ(x)) = x. If z = eρ/2+iθ then we
write ρz = ρ = log |z|2. Then the Legendre transform is defined to be the
convex function

(37) uϕ(x) = 〈x, ρ(x)〉 − ϕ(ρ(x)).

Also define

(38) Iz(x) = uϕ(x) − 〈x, ρz〉 + ϕ(ρz).

Then Iz(x) is a convex function on P with a minimum of value 0 at x = μh(z)
and with Hessian that of uϕ.

The weights Phk(α, z) (19) of the dilate μz,1
k admit pointwise asymptotic

expansions.

Lemma 5.1. Phk(α, z) = km/2(2π)−m/2| det Hess(uϕ(μh(z))|
1
2 e−kIz(α

k
)(1 +

O(1/k)), where O(1/k) is uniform in z, α.

Proof. For the sake of completeness, we briefly review the elements of the
proof. In [SoZ07, SoZ10], the norming constants (11) were evaluated in terms
of the symplectic potential:

(39) Qhk(α) =
∫
P
ek(uϕ(x)+〈α

k
−x,∇uϕ(x)〉dVol(x).

By applying a steepest descent method, it was shown in [SoZ07, Proposition
3.1] that for interior α ∈ kP ,

(40) Qhk(α) = k−m/2 (2π)m/2

| det Hess uϕ|
1
2
ekuϕ(α/k)(1 + O(1/k)).
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Hence, in the coordinates z = eρ/2+iθ,

Phk(α, z) = e〈α,ρz〉e−kϕ(z)

Qhk(α)
∼ km/2(2π)−m/2| det Hess uϕ|

1
2 e−kuϕ(α)e〈α,ρz〉e−kϕ(z),

as stated in the Lemma.

We now assume that α
k = μh(z) + O(1/k) and have

Iz(α
k

) 
 Iz(μh(z)) + ∇xI
z(μh(z)) · (

α

k
− μh(z))

+ 〈HessIz(μh(z))(
α

k
− μh(z)),

α

k
− μh(z)〉 + O(k−3).

As mentioned above,

Iz(μh(z)) = 0, ∇xI
z|x=μh(z) = 0,

Hess Iz(μh(z)) = Hess uϕ(μh(z)) = [Hess ϕ(ρz)]−1 = H−1
z .

By Lemma 5.1, and by normalizing the weight,

(41) k−mPhk(α, z) = k−m/2| detHz|−
1
2 e−k〈H−1

z (α
k
−μh(z)),α

k
−μh(z)〉(1+O(1/k)),

where O(1/k) is uniform in z, α. Distributing the k in the exponent as
√
k in

each argument of the bilinear form completes the proof.
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