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We revisit the gravitational production of massive Dirac fermions in inflationary cosmology with a fo-
cus on clarifying the analytic computation of the particle number density in both the large and the small
mass regimes. For the case in which the masses of the gravitationally produced fermions are small com-
pared to the Hubble expansion rate at the end of inflation, we obtain a universal result for the number
density that is nearly independent of the details of the inflationary model. The result is identical to the
case of conformally coupled scalars up to an overall multiplicative factor of order unity for reasons other
than just counting the fermionic degrees of freedom.
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1. Introduction

Gravitational particle production (as reviewed e.g. in [1,2]) and
string production (see e.g. [3–10]) are generic phenomena for
quantum fields in a curved spacetime background and are analogs
of particle creation in strong electric fields (see e.g. [11,12]). In
the case of Friedmann–Robertson–Walker (FRW) cosmology with-
out inflation, it was found [13–17] that the production of fermion
and conformally coupled scalar fields near the radiation dominated
(RD) universe singularity occurs when the particle masses m are
comparable to the Hubble expansion rate H , with a number den-
sity n ∼ m3 that dilutes as a−3 due to expansion. The fractional
relic density of these particles at the time of radiation–matter
equality is ΩX ∼ (mX/109 GeV)5/2 [18]. Hence, the requirement
of ΩX < 1 puts an upper bound of 109 GeV on the stable particle
mass.1

In contrast, in inflationary cosmology the previously unbounded
rapid growth of H as one moves backward in time towards the
RD singularity is replaced by a nearly constant He during the
quasi-de Sitter (dS) era. In such cases, the possibility of super-
heavy dark matter in a wide range of masses including m > He

was emphasized in [21,22]. In fact, natural superheavy dark matter
candidates existed in the context of string phenomenology before
the gravitational production mechanism was appreciated [23,24].
Furthermore, many extensions of the Standard Model also possess
superheavy dark matter candidates (see e.g. [25–34]), which can
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1 Physics quite similar to this is reported in [19,20].
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have interesting astrophysical implications (see e.g. [29,35–39]). In
such contexts, analytic relic density formulae have been computed
in the heavy and the light mass regimes for conformally coupled
scalars [40,41].

In this work, we turn our attention to the gravitational particle
production of long-lived Dirac fermions in inflationary cosmology.
Gravitational particle production of Dirac fermions has been stud-
ied numerically within the context of specific chaotic inflationary
models [22]. Our purpose is to clarify the analytic computation
and to derive a universal result for the light mass scenario that
is nearly independent of the details of the inflationary model. Our
result is identical up to an overall O (1) multiplicative factor to
that obtained for conformally coupled light scalar fields in [41], de-
spite the fact that the Dirac structure naively imposes a different
spectral (momentum scaling) property on the equations governing
the particle production.2 In comparison to the conformally coupled
scalar case, no special non-renormalizable coupling to gravity nor
possibility of tadpole instabilities concern the fermionic scenario
in the light mass limit because the fermion kinetic operator is
conformally invariant and fermions cannot obtain a non-vanishing
vacuum expectation value.

We also derive the particle production spectrum for the heavy
mass scenario and find it to be identical to the result of [40]
(again up to an O (1) multiplicative constant) despite a different
momentum dependence of the starting point of the equations.

2 Although the aim of [41] is to consider a hybrid inflationary scenario, it also
contains a universal result, Eq. (44), applicable to generic inflationary scenarios.
There is also a misprint in [41] in stating that the situation is for minimal cou-
pling rather than for conformal coupling.
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As expected, the heavy mass number density falls off exponen-
tially. In contrast with the light mass limit, this case is sensitive
to the details of the transition out of the inflationary era. To em-
phasize the simplicity and the novel analytic arguments of the
light mass scenario, we relegate the heavy mass results to Appen-
dices A–C.

It should be noted that the production of fermions in infla-
tionary cosmology has been extensively considered during the re-
cent past, but most analyses have focused on the non-gravitational
interactions. For example, [42–49] focused on both numerical
and analytic analyses of fermion production during preheating.
[50] considered the production effects when the fermion mass
passes through a zero during the quasi-dS phase. The effects of
radiative corrections that modify the fermion dispersion relation-
ship and its connection to particle production were considered in
[51]. Gravitino production has also been considered by many au-
thors (see e.g. [52–57]). The main thrust of this Letter differs in
that it focuses on the minimal gravitational coupling and derives
a simple bound analogous to Eq. (44) of [41]. Indeed, our results
will aid in future investigations similar to [32] which would benefit
from a more accurate simple analytic estimate of the dark matter
abundance.

The outline of this work is as follows. In Section 2, we dis-
cuss the intuition behind the general formalism for the gravita-
tional production of massive Dirac fermions in curved spacetime.
In Section 3, we discuss the generic features of the spectrum
and derive the main result, which is that for a given mode with
comoving wave number k, the Bogoliubov coefficient magnitude
|βk|2 ∼ O (1/2) if H(η) > m when k/a(η) ∼ m. We test this analytic
result within a toy inflationary model in Section 4, and discuss
the dependence on reheating and the implications for the relic
density in Section 5. Finally, in Section 6 we summarize our re-
sults and present our conclusions. Appendix A contains a collection
of useful results for fermionic Bogoliubov transformation compu-
tations. Appendix B contains a complementary argument (which
relies more on the spinorial picture of the fermions) for the uni-
versality of the Bogoliubov coefficient in the light mass region.
Appendix C contains the particle density spectrum for the heavy
mass limit.

2. Fermion particle production: Background and intuition

To compute the particle production of Dirac fermions in curved
spacetime, we follow the standard procedure as outlined for exam-
ple in [1,2] to calculate the Bogoliubov coefficient βk between the
in-vacuum corresponding to the inflationary adiabatic vacuum and
the out-vacuum corresponding to the adiabatic vacuum defined at
post-inflationary times. The details of this formalism and our con-
ventions are presented in Appendix A, with the expression for βk
given in Eq. (A.28).

However, to obtain a better intuitive picture of the particle pro-
duction mechanism, here we present general physical arguments
regarding the expected features of the spectrum. We begin by con-
sidering a Dirac fermion field Ψ described by

L = iΨ̄ γ μ∇μΨ − mΨ̄ Ψ (1)

minimally coupled to gravity. As the action S = ∫
d4x

√
gL is con-

formally invariant in the {m → 0, h̄ → 0} limit (with δgμν(x) =
−2σ(x)gμν(x)), physical quantities are necessarily independent of
the FRW scale factor a to leading order in h̄. Hence, the leading
h̄ order Bogoliubov coefficient βk is zero in the ma/k → 0 limit,
since it is the metric that drives the particle production (i.e., it
plays the role of the electric field in the analogy of particle creation
by strong electric fields). This implies that particle production can
only occur in significant quantities for non-relativistic modes.3

We next point out that the Dirac equation with a time-
dependent mass term results in mixing between positive and
negative frequency modes, similar to the case of the conformally
coupled Klein–Gordon system with a time-dependent mass. To see
this explicitly, consider the Dirac equation for the spinor mode
functions u A,B that follows from Eq. (1):

i∂η

(
u A

uB

)
=

(
am k
k −am

)(
u A

uB

)
, (2)

which is our Eq. (A.25) from Appendix A. Here u A,B span the com-
plete solution space (they contain both approximate positive and
negative frequency solutions in the adiabatic regime). Here we are
working in conformal time, which is related to the comoving ob-
server’s proper time via dt ≡ a(η)dη. From Eq. (2), we see that the
rotation matrix that diagonalizes the right-hand side is a function
of the time-dependent quantity am. Hence, the Dirac equation as a
function of time mixes approximate positive and negative frequency
solutions leading to non-vanishing particle production.

To estimate the Bogoliubov coefficient, we can compute the ef-
fects of the time-dependent mixing matrix U ∈ O (2) as follows.
We begin by inserting 1 = U TU into Eq. (2) to obtain

iU∂η

[
U T U

(
u A

uB

)] = U
(

am k
k −am

)
U T U

(
u A

uB

)
⇒ (3)

iU∂ηU T
(

u′
A

u′
B

)
+ i∂η

(
u′

A

u′
B

)

=
(√

k2 + m2a2 0
0 −√

k2 + m2a2

)(
u′

A

u′
B

)
, (4)

in which the primed basis is defined to be(
u′

A

u′
B

)
≡ U

(
u A

uB

)
. (5)

The Dirac equation is diagonal in the primed basis except for the
appearance of the mixing term

U∂ηU T = a

2

⎛
⎝ 0 mHkp

k2
p+m2

− mHkp

k2
p+m2 0

⎞
⎠ , (6)

with kp ≡ k/a. From this result, we see that during inflation the
mixing term approximately vanishes for a fixed comoving wave
number k as a → 0, while after inflation it is the largest when H is
the largest. Using this result, it is straightforward to show that the
Bogoliubov coefficients due to mixing take the following form:

βmix
k ∼

∫
dt

mkp

k2
p + m2

He−2i
∫

dt ωk , (7)

in which ωk =
√

k2
p + m2. One may still ask whether there are any

other sources of positive and negative frequency mixing since the
diagonal terms of Eq. (4) are time dependent, just as conformally
coupled scalar fields contain ω2 = k2 + m2a2 in their mode equa-
tions. The answer is no if the fermionic particles are defined as
modes that exactly satisfy the condition

i∂η

(
u′

A

u′
B

)
=

(√
k2 + m2a2 0

0 −√
k2 + m2a2

)(
u′

A

u′
B

)
. (8)

3 We neglect possible conformal symmetry breaking effects associated with pre-
heating [44]. In that sense, there is a mild implicit model dependence here.
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For example, the adiabatic vacuum positive frequency modes are
defined to be

(
u′

A

u′
B

)
∝

(
1
0

)
e
−i

∫
dt

√
k2

a2 +m2

. (9)

Eq. (9) corresponds to a zeroth order adiabatic vacuum in which
the adiabaticity parameter εA is defined as

εA ≡ mHkp

(k2
p + m2)3/2

, (10)

in accordance with the usual conventions [1,17,21,58]. This pa-
rameter vanishes in the asymptotically far past (near when the
in-vacuum is defined) and in the far future (near when the out-
vacuum is defined). Eq. (9) coincides with

(
u A

uB

)
→

⎛
⎝

√
ω+am

2ω√
ω−am

2ω

⎞
⎠ e−i

∫ η dη′ ω (11)

in the basis of Eq. (2).
To summarize, the zeroth adiabatic order vacuum Bogoliubov

coefficient is approximately given by Eq. (7). Compared to the con-
formally coupled bosonic case (see e.g. [40]), the long wavelength
fermionic particle production is suppressed due to the appearance
of kp in the numerator.

3. Light mass case and generic features of the spectrum

In this section, we present a universal result for the spectrum
in the light mass scenario that is nearly independent of the details
of the inflationary model. We will show that under a specific set
of conditions, the Bogoliubov spectral amplitude (evaluated with
observable particle state basis defined at time t) takes the approx-
imate form

∣∣βk(t)
∣∣2 ∼ O (1/2). (12)

An alternate argument emphasizing more of the spinorial nature
of the fermions is presented in Appendix B.

For Eq. (12) to hold generically, the following conditions must
simultaneously be satisfied. The fermions that are produced must
be light (to be made precise below). After the end of inflation, the
modes that are produced must become non-relativistic during the
time when the expansion rate is the dominant mass scale. Finally,
t must be a time when particles with kp = k/a are non-relativistic.

The evolution of the relevant physical scales is shown for clarity
in Fig. 1. Here te denotes the time of the end of inflation, tm is
defined by H(tm) = m, and tk stands for the time when kp(t) = m.
The two conditions under which Eq. (12) holds are tm > tk > ti and
t > tk , in which ti marks the beginning of inflation (not shown in
the figure).

To show this more explicitly, we begin by noting that the
modes that can be significantly produced by the FRW expansion
satisfy kp � m, since relativistic modes are approximately confor-
mally invariant. Furthermore, during the time that kp � m, Eq. (7)
takes the form

βk(t) ∼
t∫

dt′ kp(t′)
m

H
(
t′)e−2i

∫ t′ dt′′ ωk(t
′′). (13)

Let us consider Eq. (13) for the time period with H(t′) > m, such
that H2 > ω2

k . Here we take k to be consistent with kp � m; more
precisely, ma(t) > k > ma(ti), where ti is the time when the initial
Fig. 1. The evolution of the physical scales H(t), kp(t) and the corresponding time
points. Modes with comoving wave number k make the transition from relativistic
to non-relativistic at time tk . The Hubble rate drops below m at tm , and the end of
inflation is at te .

vacuum is defined, which is typically at the beginning of infla-
tion.4 In this regime, the largest contribution to βk arises from
the time tk when kp = k/a is at its largest while remaining non-
relativistic: i.e., k/a(tk) = m. When these conditions are satisfied,
Eq. (13) results in

βk(t) ∼ O

(
k/a(tk)

m

)
, (14)

which we see is indeed of O (1).
Our result indicates that the fermion creation saturates the

Pauli exclusion principle, since |βk|2 represents the phase space
density of the fermions created. The conditions leading to this
result can be intuitively explained as follows. To have such a
maximal production, we cannot excite kp � m modes because
of conformal symmetry. Furthermore, we cannot excite kp  m
modes because the violation of energy conservation is of order
Fx ∼ (Hkp)kp/(mH) ∼ (kp/m)kp , where F is the force due to
the expansion of the universe and x is the distance over which
the particle travels under this force. In addition, the force can act
on the virtual particle only on a time scale shorter than the life-
time of the virtual state, which is of order 1/m. This is equivalent
to the condition that H > m for this picture of particle produc-
tion.

As Eq. (14) is independent of H , the result is insensitive to the
details of the inflationary model. This insensitivity holds as long
as the dominant contribution to βk(t) arises from the time period
with H(t′)/m > 1. However, H(t′)/m > 1 clearly fails if t′ > tm .
Thus, there is a mild inflationary model dependence, although it
is largely insensitive. This is clear because the fermion mass can
be made arbitrarily small compared to the expansion rate for any
inflationary model. As we will see in Section 5, a stronger inflation-
ary model dependence arises from the dilution factor a(tm)/a(t),
which typically is a function of the reheating temperature.

Given that there is a general restriction that |βk|2 < 1 from
quantization conditions, here O (1) must mean a number less than

4 The condition k > ma(ti) comes from the requirement of setting the adiabatic
vacuum condition, which only applies for modes with subhorizon wavelengths.
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unity.5 To remind ourselves of this fact, we will refer to this
O (1) < 1 number as O (1/

√
2 ). Putting all the conditions together

with Eq. (14), we find

∣∣βk(t)
∣∣2 ∼ O (1/2) for tm > tk > ti and t > tk. (15)

A more explicit restriction on k that is consistent with the require-
ments of Eq. (15) can be written as follows:

ma(tm) � k > ma(ti) and ma(t)� k. (16)

Eqs. (15) and (16) are the main results of this section.
For modes with k > ma(tm), |βk|2 is smaller since Eq. (13) is

suppressed by an additional factor of H/m. The exact high k behav-
ior of βk is sensitive to the adiabatic order of the vacuum boundary
condition as well as the details of the scale factor during the tran-
sition out of the quasi-dS era. However, what is generic is that
the spectral contribution to the particle density no longer grows
appreciably when k > ma(tm). Hence, we can define the critical
momentum k∗ ≡ ma(tm), which satisfies

k∗/ae = (He/m)2/nam, (17)

where we have parameterized the energy density after the end
of inflation as ρ ∝ a−na . Integrating over d3k/(2πa)3 to obtain the
energy density of the fermions, for an order of magnitude estimate
we can introduce a step function Θ(k∗ − k) as follows:

ρΨ (t) ∼ 4 × m

4π2

1

a3

∫
dk k2Θ(k∗ − k), tma(ti)  tm < t, (18)

in which tmai is the time at which k = ma(ti). Assuming that the
lower limit of Eq. (18) contributes negligibly to the integral, we
obtain

ρΨ (t) ∼ 4 × m4

12π2

(
a(tm)

a(t)

)3

, (19)

which contains the mild inflationary scenario dependence dis-
cussed previously.

4. Example of fermion production in a toy inflationary model

To test the analytic estimation of Section 3, we now numerically
compute the particle production in a toy inflationary model with
instantaneous reheating occurs (i.e., in which the quasi-dS phase
connects instantaneously to the RD phase). As is well known, such
non-analytic models have unphysical large momentum behavior
[1], which for our purposes can be dealt with simply by cutting off
the integration of the spectrum. We find there is an upper bound
on the fermion mass if m < He during inflation, similar to the case
of fermion production in pure RD cosmology [18]. We will turn
to the more realistic case in which the inflationary era exits to a
transient pressureless era during reheating in Section 5.

Let us consider a background spacetime which is initially dS
with a Hubble constant He that is followed by RD spacetime. Al-
though the junction between the dS and RD eras is instantaneous,
the scale factor a(t) and the Hubble rate H(t) are continuous
across the junction. In particular, if we set the junction time at
the conformal time η = 0 and we set the scale factor at the junc-
tion time to be ae , the scale factor and Hubble rates can be written
as

5 The Bogoliubov coefficients satisfy |α�k,s|2 + |β−�k,s|2 = 1, while Eq. (14) effec-
tively neglects this constraint.
Fig. 2. The Bogoliubov coefficient amplitude |βk|2 as a function of k/(ae He) for var-
ious ratios of the fermion mass to the Hubble expansion rate during the dS era.

a(η) =
{

(( 1
ae He

− η)He)
−1 η � 0 (dS),

a2
e He(η + 1

ae He
) η > 0 (RD),

H(η) =
{

He η � 0 (dS),

He(
ae

a(η)
)2 η > 0 (RD),

(20)

indicating that the leading discontinuity in a occurs at second or-
der in the conformal time derivative.

To compute βk using Eq. (A.28), it is necessary to fix the bound-
ary conditions for the in-modes and the out-modes. For the in-
modes, we require that in the infinite past, when a certain given
mode’s wavelength is within the horizon radius, its mode function
must agree with the flat space positive frequency mode function.
In other words, as a(η) → 0,

(
u A

uB

)in

k,η

→
⎛
⎝

√
ω+a(η)m

2ω√
ω−a(η)m

2ω

⎞
⎠ e−i

∫ η
ω(η′)dη′

. (21)

The in-modes’ analytic expressions during the dS era thus take the
form

(
u A

uB

)in

k,η

=
⎛
⎝

√
π
4 ( k

aHe
)ei π

2 (1−i m
He

)H (1)
1
2 −i m

He

( k
aHe

)√
π
4 ( k

aHe
)ei π

2 (1+i m
H )H (1)

1
2 +i m

He

( k
aHe

)

⎞
⎠ (22)

where H(1)
ν are Hankel functions of the first kind. Similarly, for

the out-modes, as k/a > H(η) in the RD era, we require the mode
functions to agree with the flat space positive frequency mode
functions, i.e., as a(η) → +∞,

(
u A

uB

)out

k,η

→
⎛
⎝

√
ω+a(η)m

2ω√
ω−a(η)m

2ω

⎞
⎠ e−i

∫ η
ω(η′)dη′

. (23)

The out-mode analytic expressions during the RD era are given by

(
u A

uB

)out

k,η

=
⎛
⎝ e− π

4 C D−iC (eiπ/4
√

2m
H(η)

)
√

Ce− π
4 C+i π

4 D−iC−1(eiπ/4
√

2m
H(η)

)

⎞
⎠ , (24)

in which C ≡ (k2/a2
e )/(2mHe) characterizes the ratio of the mo-

mentum to the dynamical mass scale and the D v (x) are parabolic
cylinder functions.

The numerical results for |βk|2 are shown as a function of
k/(ae He) for various choices of the fermion masses in Fig. 2. From
these results, we first note that it can be determined that for heavy
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masses m > He , e.g. m/He = 1 or 3, the infrared end of the spec-
trum behaves as |βk|2 ∼ (1 + exp(2πm/He))

−1. Further details of
the heavy mass case are given in Appendix C. As the heavy mass
situation is likely to be more sensitive to the abrupt transition ap-
proximation made in this section, we restrict our attention here to
the light mass case in which m < He .

For the light mass case (e.g. m/He = 10−5 in Fig. 2), we can
see there are three ranges of k that each have qualitatively differ-
ent behavior. For k/ae > He , the modes are still inside the horizon
at the end of inflation, and the spectrum falls off as |βk|2 ∝ k−6.
In contrast, for

√
mHe < k/ae < He , the modes are outside of the

horizon at the end of inflation and remain relativistic at the time
when m = H(η) during RD. In this case, the spectrum falls off as
|βk|2 ∝ k−4. Finally, for k/ae <

√
mHe , the modes are outside the

horizon at the end of inflation and have become non-relativistic
before m = H(η) during RD. This results in a constant spectrum
of |βk|2 ≈ 1

2 , in agreement with the results of Section 3. Generi-
cally, if the scale factor a(η) is sufficiently continuous [16,58], the
spectrum will fall off in the ultraviolet region faster than k−3, such
that the total number density n ∼ ∫

d3k |βk|2 is finite. The majority
of the contribution arises from the region in which k/ae <

√
mHe

where |βk|2 ≈ 1
2 , as anticipated in Section 3. The number density

for particle masses in the range of m < 0.1He is numerically deter-
mined to be (recall that ηm is defined by H(ηm) = m)

n(η) = 4 × 0.005m3
(

a(ηm)

a(η)

)3

, (25)

which again agrees with the analytic estimate of Eq. (19).

5. Inflationary reheating dependence

We now consider the more realistic situation in which there is
a smooth transition region between the dS and RD phases. When
inflation ends, there is typically a period of coherent oscillations
(ae < a < arh) during which the equation of state is close to zero
(see e.g. [59–61]). During that period, the expansion rate behaves
as H ∝ a−3/2 and not a−2 as during RD. This difference will lead
to an effective dilution of the dark matter particles by the time
RD is reached. More precisely, the fermion number density will be
diluted as 1/a3 as long as the fermion plus anti-fermion number
is approximately conserved. As we will see below, the integrated
dilution is typically a function of the reheating temperature during
inflation.

Accounting for the dilution, in this section we estimate the relic
abundance of fermionic particles (fermions plus anti-fermions).6

The dilution consideration breaks up naturally into two cases:
arh > a(tm) and arh < a(tm). The former case corresponds to the
situation in which the dominant particle production occurs dur-
ing the reheating period, while the latter case corresponds to the
complementary situation, which we will see below is unlikely to
be physically important.

Let us begin with the case of arh > am , which corresponds to

He � m > Hrh ∼
√

g∗
3

T 2
rh

Mp
=

(
Trh

109 GeV

)2( g∗
100

)1/2

GeV, (26)

where Hrh is the expansion rate at the time radiation domination
is achieved. In this case, we have

6 This requires the fermion self-annihilation cross section rate to be smaller than
the expansion rate throughout its history. Such weak interactions generically can be
achieved for sufficiently large particle masses [21], which are allowed as long as the
inflationary scale is sufficiently large.
ρΨ (teq) ∼ 0.03m4
(

Hrh

m

)2( arh

aeq

)3

, (27)

in which we have used the fact that H ∝ a−3/2 during reheating.
We thus find the relic abundance today of fermionic particles to
be

Ωψh2 ∼ 3

(
m

1011 GeV

)2( Trh

109 GeV

)
. (28)

This matches Eq. (44) of [41] (up to a factor of order of a few,
part of which is expected from counting fermionic degrees of free-
dom), which was computed in the context of conformally coupled
scalar fields. The match is interesting because the analog of Eq. (7)
for the conformally coupled scalar field case has a different k/a
dependence that converts into an effective m dependence due to
the conformal invariance of the fermionic kinetic term. Eq. (28)
also agrees with the model-dependent numerical results of [22]
up to a factor of 10. The related ratio of the fermion energy den-
sity to the radiation energy density at matter–radiation equality,
ρΨ (teq)/ρR(teq), is the same as Eq. (28) up to a factor of 10.

For the case with arh < am , we have

ρΨ (teq) ∼ 0.03m4
(

am
aeq

)3

, (29)

which leads to

ρΨ (teq)

ρR(teq)
∼

(
m

108 GeV

)5/2( g∗(tm)

100

)−1/4

(30)

which up to an order of magnitude is Ωψ . However, since this
applies only for

m <

(
Trh

109 GeV

)2( g∗
100

)1/2

GeV, (31)

the relic abundance is negligible in this case. For example, an m ∼
1 GeV benchmark point will render ΩΨ ∼ 10−20.

6. Conclusions

In this Letter, we revisited the gravitational production of mas-
sive Dirac fermions in inflationary cosmology. For the situation in
which the fermions are light compared to the Hubble expansion
rate at the end of inflation, we obtained the analytic result that
the Bogoliubov coefficient amplitude |βk(t)|2 ∼ 1/2 if H > m when
k/a ∼ m, as summarized in Eqs. (15) and (16). We used this re-
sult to compute the relic density assuming that the gravitationally
produced fermions are superheavy dark matter particles. In cases
of phenomenological interest, the dark matter relic abundance de-
pends on the reheating temperature, as given in Eq. (28). Up to a
multiplicative overall factor of O (1), this result is identical to that
obtained for conformally coupled scalars in [41]. In the case that
the fermions are heavy compared to the Hubble expansion rate at
the end of inflation, the relic abundance is given by Eq. (C.7).

It is also of interest to consider the isocurvature behavior of the
gravitationally produced fermions in the case that they have suit-
able long-range non-gravitational interactions. Work along these
lines is currently in progress [62].
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Appendix A. Formalism and conventions

Here we follow the strategy outlined in the classical review pa-
per of DeWitt [2]. Consider the action of a four-component Dirac
spinor in curved spacetime:

S =
∫

d4x
√∣∣g(x)

∣∣Ψ̄ (
iγ a∇ea − m

)
Ψ (A.1)

in which the gamma matrices γ a are chosen to be in the Dirac
basis

γ 0 =
(

I 0
0 −I

)
, γ i =

(
0 σ i

−σ i 0

)
(A.2)

to simplify the derivation of the second order differential equation
of the spinor mode functions. Extremizing the action with respect
to δΨ̄ and δΨ yields the equations of motion:(
iγ α∇eα − m

)
Ψ = 0, ∇ea Ψ̄

(−iγ a) − Ψ̄ m = 0. (A.3)

The solution space can be endowed with a scalar product as

(Ψ1,Ψ2)Σ =
∫

dΣ nμeμ
a Ψ̄1γ

aΨ2 (A.4)

in which Σ is an arbitrary space-like hypersurface, dΣ is the
volume 3-form on this hypersurface computed with the induced
metric, and nμ is the future-pointing time-like unit vector normal
to Σ . The current conservation condition

∇ea

(
Ψ̄1γ

aΨ2
) = 0 (A.5)

implies the integral in the scalar product is independent of the
choice of Σ . The conjugation map can also be defined in the so-
lution space as Ψ �→ −iγ 2Ψ ∗ , which induces a pairing in the
solution space.

Based on the scalar product and the conjugation map, one can
construct an orthonormal basis for the solution space. It can be
written as {Ui, V i ≡ −iγ 2U∗

i } (i labels different solutions), with

(Ui, U j) = δi j, (Ui, V j) = 0. (A.6)

The Heisenberg picture field operator Ψ (x) can then be expanded
in this basis as follows:

Ψ (x) =
∑

i

ai Ui + b†
i V i, (A.7)

in which the canonical anticommutation relations imposed on
equal-time surfaces and the orthonormality of the mode functions
ensures that{

ai,a†
j

} = δi j,
{

bi,b†
j

} = δi j. (A.8)

The vacuum state is defined by ai |vac〉 = bi |vac〉 = 0. The full
Hilbert space can then be constructed as usual by applying the
creation operators a†

i and b†
i to the vacuum state.

However, the choice of the orthonormal basis {Ui, V i} is not
unique. Consider a different orthonormal basis {Ũ i, Ṽ i}, which is
related to the original basis as follows:

Ũ i =
∑

j

αi j U j + βi j V j, Ṽ i =
∑

j

α∗
i j V j + β∗

i j U j . (A.9)

The Bogoliubov coefficients αi j and βi j can be extracted as

βi j = (V j, Ũ i), αi j = (U j, Ũ i) (A.10)

Note that the orthonormality relation on {Ui, V i} and {Ũ i, Ṽ i} im-
plies the following relation:
(
α β

β∗ α∗
)∗ (

α β

β∗ α∗
)T

=
(

I 0
0 I

)
. (A.11)

Using Ψ = ∑
i ai Ui + b†

i V i = ∑
i ãi Ũ i + b̃†

i Ṽ i , the following relation
is obtained:(

ã

b̃†

)
=

(
α∗ β∗
β α

)(
a
b†

)
. (A.12)

Hence, the two mode functions result in inequivalent vacua. To see
this more explicitly, consider the expectation value of the occu-
pation number operator ãi

†ãi with respect to the vacuum defined
using the ai,bi operators:〈
vac

∣∣ãi
†ãi

∣∣vac
〉 = ∑

j

|βi j|2. (A.13)

The vacuum state corresponding to one definition thus is an ex-
cited state in the other definition.

We turn now to FRW spacetime, in which the metric is confor-
mally flat:

ds2 = gμν dxμ dxν = a(x0)
2ημν dxμ dxν . (A.14)

Since the action of Eq. (A.1) is covariant under Weyl transforma-
tions:

gμν = Ω2(x)g̃μν, Ψ = Ω(x)−3/2ψ̃, ea
μ = Ω(x)−1ẽa

μ,

(A.15)

a Weyl transformation with Ω(x) = a(x0) can be used to rewrite
the action as follows:

S =
∫

d4x ψ̄
(
iγ μ∂μ − a(η)m

)
ψ, (A.16)

where η is the conformal time and ψ is the rescaled spinor field.
The equation of motion now takes the form(
iγ μ∂μ − a(η)m

)
ψ = 0. (A.17)

The solution space is spanned by the orthonormal basis {U�k,r, V �k,r},
which can be written as follows:

U�k,r(η, �x) = ei�k·�x

(2π)3/2

(
u A,k,ηhk̂,r
ruB,k,ηhk̂,r

)
(A.18)

≡ ei�k·�x

(2π)3/2

(
u A,k,η

ruB,k,η

)
⊗ hk̂,r, (A.19)

in which k̂ is the unit vector in the �k direction (k̂ = êz if �k = 0), and
hk̂,r is a 2-component complex column vector (called the helicity
2-spinor) that satisfies

k̂ · �σhk̂,r = rhk̂,r, r = ±1. (A.20)

More concretely, if k̂ = (θ,φ) in spherical coordinates, then the
normalization factor can be chosen such that

hk̂,+1 ≡
(

cos θ
2 e−iφ

sin θ
2

)
, hk̂,−1 ≡

(
sin θ

2 e−iφ

− cos θ
2

)
. (A.21)

One can easily check that due to this phase convention

−iσ 2(hk̂,r)
∗ = −re−irφhk̂,−r, h−k̂,r = −hk̂,−r . (A.22)

Using the above relations, one obtains

V �k,r(η, �x) = e−i�k·�x
3/2

(−u∗
B,k,η

ru∗
)

⊗ h−k̂,r · (e−irφ)
. (A.23)
(2π) A,k,η
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The normalization of the mode functions implies

h†

k̂,r
hk̂,s = δrs, |u A,k,η|2 + |uB,k,η|2 = 1. (A.24)

With this ansatz, Eq. (A.17) simplifies as follows:

i∂η

(
u A

uB

)
=

(
am k
k −am

)(
u A

uB

)
. (A.25)

Let Ũ�k,s be another basis in the form of Eq. (A.19). Due to the or-

thogonality of hk̂,r and ei�k·x , Ũ�k,s can only be a linear combination
of U�k,s, V−�k,s:

Ũ�k,s = α
(�k,s)(�k,s)U�k,s + β

(�k,s)(−�k,s)V−�k,s. (A.26)

The Bogoliubov coefficients are extracted using the scalar product
of the mode functions evaluated at time η as follows:

α
(�k,s)(�k,s) = u∗

A,k,ηũ A,k,η + u∗
B,k,ηũB,k,η, (A.27)

β
(�k,s)(−�k,s) = e−isφ(k̂)(u A,k,ηũB,k,η − uB,k,ηũ A,k,η). (A.28)

Since we will only consider |βk|2 in this work, we can drop the

e−isφ(k̂) factor in the βk definition without loss of generality. Here
one of the bases (corresponding to the Heisenberg state of the
universe) is specified by asymptotic conditions such as the Bunch–
Davies boundary condition as the in-vacuum (see e.g. Eq. (21).)
Similarly, the other basis is the observable operator basis as speci-
fied by asymptotic conditions at late times, which is referred to as
the out-vacuum.

Appendix B. Demonstration that |βk|2 ∼ 1
2 for small k

We begin with the determination of βk from Eq. (A.28) eval-
uated at very late times when the out-modes can be directly re-
placed by their asymptotic values. In the limit in which am/k →
∞, we see that we then only need to find the asymptotic values
of the in-modes:

|βk| =
∣∣uout

A,k,ηuin
B,k,η − uout

B,k,ηuin
A,k,η

∣∣
=

∣∣∣∣
√

ω + am

2ω
uin

B,k,η −
√

ω − am

2ω
uin

A,k,η

∣∣∣∣
= lim

η→∞
∣∣uin

B,k,η

∣∣. (B.1)

Let us consider the evolution equations as given in Eq. (A.25) with
boundary conditions as given in Eq. (21). For concreteness, we
choose a time ηi that is early enough such that u A(ηi) ≈ uB(ηi) ≈

1√
2

. The system can be formally solved to obtain

(
u A

uB

)
f
= T exp

{
−i

∫
dΦ σ(θ)

}(
u A

uB

)
i

(B.2)

in which ω cos θ = k, ω sin θ = am, ωdη = dΦ , and σ(θ) =
σ1 cos θ + σ3 sin θ (0 � θ � π/2). The time evolution is thus ex-
pressed as a series of infinitesimal SU(2) rotations that act succes-
sively on the complex vector u ≡ (u A uB).

For fixed θ , the evolution corresponds to precession about the
axis defined by σ(θ). However, throughout the evolution of the
universe, σ(θ) evolves from its initial direction along σ1 (am  k)
to its final direction along σ3 (am � k). If the switching of the axis
is much faster than the precession time scale, u remains in the xy-
plane and rotates around the new axis σ3, while if the switching is
much slower compared with the precession time scale, u adheres
closely to the rotation axis and thus ends up in the σ3 direction.
The time scale of the axis switching is given by the Hubble expan-
sion rate, since the universe needs to expand several e-folds for
am to overtake k, while the time scale of the precession is given
by the physical frequency ω/a, which is on the order of m dur-
ing the transition. Hence, fast transitions occur when m  H , for
which |uB |2 stabilizes at 1

2 and |βk|2 = 1
2 . After H(η) drops be-

low m, only slow transitions occur and |βk|2 is small.

Appendix C. Heavy mass case (m > He)

As we expect the particle production spectrum |βk|2 to be ex-
ponentially suppressed by m/H , we can adopt a similar approach
as the heavy mass scalar case [40] to look for a one-pole approxi-
mation to the time integral that determines βk . We shall consider
the time-dependent Bogoliubov coefficients between the in-modes
and the zeroth adiabatic modes with boundary conditions such
that

(
u A

uB

)(η1)

k,η=η1

=
⎛
⎝

√
ω+am

2ω√
ω−am

2ω

⎞
⎠ . (C.1)

In the above, the superscript (η1) indicates the time that the
boundary conditions are imposed. The in-modes can be decom-
posed into the zeroth adiabatic mode basis as follows:(

u A

uB

)in

k,η1

= α
in−(η1)

k

(
u A

uB

)(η1)

k,η1

+ β
in−(η1)

k

(−u∗
B

u∗
A

)(η1)

k,η1

. (C.2)

For η1 → ∞, the instantaneous-modes will coincide with the out-
modes up to an overall phase, and hence

|βk| = lim
η1→∞

∣∣β in−(η1)

k

∣∣. (C.3)

Inserting this decomposition into Eq. (A.25) (and writing α
in−(η1)

k
as αk(η1), etc., for notational simplicity) results in

α̇k(η1) = − mk

2ω2
ȧe2i

∫ η1 dηω(η)βk(η1),

β̇k(η1) = mk

2ω2
ȧe−2i

∫ η1 dηω(η)αk(η1), (C.4)

with the initial conditions αk(ηi) = 1, βk(ηi) = 0 for the time ηi
early enough that the mode is inside the dS event horizon. Since
we expect |βk|  1 and ak ≈ 1, we can replace α = 1 in Eq. (C.4)
and formally write the solution as

βk(η f ) =
η f∫

ηi

dτ
mk

2ω2
ȧ(τ )e−2i

∫ τ dηω(η). (C.5)

The steepest descent method can be applied to evaluate this inte-
gral in a similar fashion as was done for the scalar case in [40].
Despite the different k dependence in Eq. (C.5), the result is the
same as Eq. (41) of [40]:

|βk|2 ≈ exp

{
−4

[ [k/a(r)]2

m
√

H2(r) + R(r)/6
+ m√

H2(r) + R(r)/6

]}
,

(C.6)

in which r is the real part of the complexified conformal time η̃
at which ω(η̃) = 0 and R is the Ricci scalar. This is approximately
due to the fact that the branch point occurs when ω = 0, such that
the dominant contribution occurs when |k/a| ∼ m. Eq. (C.6) leads
to the particle number density (fermion plus anti-fermion) as



154 D.J.H. Chung et al. / Physics Letters B 712 (2012) 147–154
ρψ(t) ≈ 1

2π3/2

(
a(r)

a(t)

)3

m

[
m

4

√
H2(r) + R(r)/6

]3/2

× exp

( −4m√
H2(r) + R(r)/6

)
. (C.7)

To estimate the relic abundance from this equation, one can use
the formula

Ωψh2 ∼ 100

(
Trh

109 GeV

)(
H(te)

1013 GeV

)−2
ρψ(te)

(1012 GeV)4
, (C.8)

where one is only formally evaluating ρψ(te) at the end of inflation
time te even though the particle densities are well defined at times
far later than time. Unlike the formulae presented in the body of
the text, the exponential sensitivity and the approximations made
in obtaining the saddle-point does not allow one to guarantee an
order of magnitude numerical accuracy, especially for large m/H(r)
[40]. However, the spectral and mass cutoffs can be well estimated
by Eqs. (C.6) and (C.7).
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