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Abstract
LetW (z1, . . . , zn) : (C∗)n → C be a Laurent polynomial in n variables, and letH be
a generic smooth fiber of W . Ruddat et al. (Geom Topol 18:1343–1395, 2014) give a
combinatorial recipe for a skeleton for H. In this paper, we show that for a suitable
exact symplectic structure on H, the RSTZ-skeleton can be realized as the Liouville
Lagrangian skeleton.

Mathematics Subject Classification 53D37

Let (M, ω = dλ) be an exact symplectic manifold, and let X = Xλ be the Liouville
vector field defined by ιXω = −λ. If (M, ω, λ, X) is a Liouville manifold (see [2,
Chapter 11] for definition), then X shrinksM to a compact isotropic (possibly singular)
submanifold�, called the Liouville skeleton. The Liouville skeleton is useful for sym-
pletic topology, since the tubular neighborhood of the skeleton is symplectomorphic
to the original manifold up to rescaling the symplectic form.

A large class of Liouville manifolds come from Stein manifolds, e.g. affine hyper-
surfaces H in (C∗)n . Given an exhausting pluri-subharmonic (psh) function ϕ on the
Stein manifold, we can define the Liouville structure by setting ω = −ddcϕ and
λ = −dcϕ. Ruddat et al. [22] give a combinatorial recipe for a topological skeleton in
affine hypersurfaces. The RSTZ-skeleton depends on the Newton polytope Q of the
defining polynomial for the hypersurface and a star triangulation of Q.

It is conjectured that the RSTZ-skeleton can be realized as a Liouville skeleton for
a suitable choice of Liouville structure on the hypersurface. Here we construct such
Liouville structure using tropicalization. The main idea is contained in the following
example:
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Fig. 1 RSTZ-skeleton (on the
left) and its embedding for the
pair-of-pants

pε

0.1 Example: the pair-of-pants
Consider the hypersurface

H = {x + y = 1}, x, y ∈ C
∗.

The hypersurface can be identified as C\{0, 1}, a ‘pair-of-pants’. A topological skele-
ton can be constructed as follows: fix an arbitrarily small positive number ε, and define
the skeleton as

� = ({|x | = ε} ∪ {|y| = ε} ∪ {x, y ∈ R, x ≥ ε, y ≥ ε})
⋂

{x + y = 1}.

Thus � has the shape of two circles connected by an interval. To realize it as a
Lagrangian skeleton, we need to choose an exact symplectic structure. Consider the
following function ϕ on (C∗)2

ϕ(x, y) := ϕε(x, y) = (log |x | − log ε)2 + (log |y| − log ε)2.

It is easy to check that ϕ is a psh function on (C∗)2, and ϕ restricts to be a psh function
on any complex submanifold of (C∗)2. Geometrically, ϕ is constructed by taking the
projection map

Log = log | · | : (C∗)2 → R
2

and then taking Euclidean distance on R2 to a point

ϕ(z) = |Log(z) − pε |2, pε = (log ε, log ε).

The hypersurface {x + y = 1} projects under log | · | to an ‘amoeba’ shaped region in
R
2, with three tentacles asymptotic to the following three rays (drawn as dashed lines

in Fig. 1)

{log |x | = 0, log |y| � 0}, {log |x | � 0, log |y| = 0}, {log |x | = log |y| � 0}.
The Liouville flow Xλ onH induced by λ = −dcϕ is the same as the negative gradient
flow −∇ω(ϕ) of ϕ with respect to the Kähler metric ω = −ddcϕ. The critical points
of ϕ on H can be identified with the critical points on the amoeba Log(H) with
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respect to the distance function to point pε . The unstable manifold of −∇ϕ on H is
homeomorphic to the union of two circles and an interval.

0.2 Set-up and Summary of results
To state our main result precisely, we need some notations. See Sect. 1.1 for the

background on triangulations.
Let M, N be dual lattices of rank n. Let T = R/2πZ. For any abelian group G,

e.g. G = C
∗,R, T , we define MG := M ⊗Z G and similarly for NG . If we fix a basis

of M , then M ∼= Z
n , and MC∗ ∼= (C∗)n, MR

∼= R
n, MT ∼= T n .

Let Q ⊂ NR be an integral convex polytope of full-dimension containing 0.1 Let
T be a coherent star triangulation of Q based at 0, and let ∂T be the subset of T
consisting of simplices that do not contain 0. Let 
T be the simplicical fan spanned
by the simplices in T . Let A denote the vertices of T , and ∂A that of ∂T , so that
A = ∂A ∪ {0}.

We fix two functions

h : A → R, � : A → T ,

such that h induces the coherent star triangulation T (see Sect. 1.1 for the definition
of “coherent star triangulation”). Without loss of generality, we let

h(0) = 0, �(0) = π.

We define a conical Lagrangian �T ,� ⊂ MT × NR
∼= T ∗MT by

�T ,� :=
⋃

τ∈∂T
{θ ∈ MT : 〈α, θ〉 = �(α) for all vertices α ∈ τ } × cone(τ ) (0.1)

where we used the pairing 〈−,−〉 : MT × NR → T induced by the canonical pairing
betweenM, N , and cone(τ ) = R≥0×τ .We also define the generalized RSTZ-skeleton
[22] by

�∞
T ,� :=

⋃

τ∈∂T
{θ ∈ MT : 〈α, θ〉 = �(α) for all vertices α ∈ τ } × τ (0.2)

Remark 0.1 If �|∂A = 0, �T ,� is the FLTZ skeleton [5] and �∞
T ,�

is the RSTZ-
skeleton.

Remark 0.2 We will sometimes identify |∂T | with its projection to N∞
R

:=
(NR\{0})/R>0, then �∞

T ,�
is homeomorphic to the boundary-at-infinity of �T ,�.

For all large enough β > 0, we define the tropical polynomial as

fβ,h,�(z) =
∑

α∈A
e−i�(α)e−βh(α)zα. (0.3)

1 The case where Q is not full-dimension can be reduced to this one, by defining N ′
R
= spanR(Q) ⊂ NR,

and MR � M ′
R
. The skeleton for (MR, NR, Q) would be that of (M ′

R
, N ′

R
, Q) times T d where d =

dim MR − dim M ′
R
.
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where zα is a monomial on MC∗ ∼= (C∗)n . Let

Hβ,h,� := {z ∈ MC∗ | fβ,h,�(z) = 0}

denote the complex hypersurface defined by fβ,h,�.

Theorem [22] If �|∂A = 0, then the skeleton �∞
T ,�

embeds into the hypersurface
Hβ,h,� as a strong deformation retract.

We prove the following theorem, for general �.

Main Theorem The hypersurface Hβ,h,� admits a Liouville structure such that its
Liouville skeleton is homeomorphic to �∞

T ,�
.

Remark 0.3 We explain the motivation for considering the general �. We know that
the Fukaya-Seidel categories FS(MC∗ , fβ,h,�) is locally constant as one varies the
coefficients in front of the monomials in the superpotential fβ,h,�. However, on the
constructible sheaf side, people usually only consider the category Sh(T n,�T ) with
the FLTZ skeleton�T whose boundary at infinity is the RSTZ skeleton. The point for
considering the family of skeleta parametrized by � is to translate the flexibility of
Fukaya category into the constructible/microlocal sheaf world. By a non-characteristic
deformation result in [11,26], we can show that Sh(T n,�T ,�) forms a local system of
category over the parameter space of �. And by Coherent-Constructible Correspon-
dence, the monodromy action of this local system corresponds to tensoring by line
bundle on Coh(X
(T )), where X
(T ) is the smooth DM toric stack. See the recent
result by Hanlon [13] about the effect of variation of� on the Fukaya-Seidel category.

0.3 Sketch of Proof
The idea of the proof is illustrated in the above example, that is, we project the

hypersurface Hβ,h,� to MR, then use a distance function to a point to induce the psh
function ϕ, which in turn induces a Liouville structure on H. However, there are two
technical modifications necessary.

(1) The first modification is “tropical localization”, as introduced by Mikhalkin and
Abouzaid [1,15]. In the defining equation of the hypersurface, 0 = fβ,h,�, we
want to keep only the leading terms and drop the irrelevant terms. See Picture 6 in
[1] for an illustration.

(2) The second modification is that we need a convex function ϕ on MR
∼= R

n more
general than a positive definite quadratic form. Concretely, let us consider the
polytope

P = {x ∈ MR | 〈x, a〉 ≤ h(a), for all vertices a of ∂T }.

The key property of ϕ is that, for each face F of P (not just the facet of P),
ϕ|Int(F) has a minimum, where Int(F) means the interior of F . See Definition 2.8
for precise definition of ‘Kähler potential adapted to a polytope’.
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Given this potential function, we can describe the combinatorial skeleton over the
boundary ∂P . For a dF -dimensional face F of P , we put (several copies of) dF -
dimensional tori TF over the minimum point xF of ϕ|Int(F). Then, we consider the
unstable manifold WF associated to xF of downward gradient flow ϕ|∂P , where the
metric is induced from Hessϕ on MR. Then, WF is n − dF dimensional. And the
collection {WF } forms a cell-complex, dual to the face-complex of ∂P , and coincide
with the complex ∂T . The combinatorial skeleton is of the form ∪FTF ×WF .

Since we are using a non-Euclidean metric on MR, the unstable manifold WF is
‘wiggly’. However, after the Legendre transformation from MC∗ to T ∗MT , the cone
over the skeleton agrees with the piecewise linear FLTZ skeleton from the toric variety.

Remark 0.4 The use of ‘non-standard’ Kähler potential ϕ on MC∗ (non-canonically
isomorphic to (C∗)n) may be unorthodox, but it is natural in some sense. (1) The often
used ‘standard’ Kähler potential

∑
i (log |zi |)2 onMC∗ is not standard in the first place,

since it depends on the choice of basis for M . (2) To identify the RSTZ-skeleton (0.2)
that lives in MT ×NR with the Liouville skeleton (3.1) that lives in MC∗ ∼= MT ×MR,
one needs to identify NR withMR. Here this is done using the Legendre transformation
induced by ϕ.

0.4 Related works
The study of skeleta for Liouville (or Weinstein) manifold was motivated largely

by Homological Mirror Symmetry (HMS). It was Kontsevich’s original proposal, to
compute the Fukaya category of aWeinsteinmanifoldW by taking global sections of a
(co)sheaf of categories living on the skeleton. Following this approach, the (complex)
1-dimensional case has been studied by [3,21,23]. In general, the category under con-
sideration has two versions, a microlocal sheaf version, and a Floer-theoretic version.
The twoversions are shown to agree by thework ofGanatra et al. [10–12]. Themicrolo-
cal sheaf version, originating from the seminal work of Nadler and Zaslow [16,20],
says the infinitesimally wrapped Fukaya category [12,20] on T ∗M with asymptotic
condition of non-compact Lagrangian given by a conical Lagrangian �, is equiva-
lent to constructible sheaves on M with singular support in �. The wrapped Fukaya
category also has a microlocal sheaf version, developed by Nadler [19].

The microlocal sheaf category for local Lagrangian singularities has been studied
by Nadler. In [17], Nadler defined a class of ‘simple’ singularities, termed ‘arboreal
singularities’, and proved that the microlocal sheaf category on arboreal singularity
is equivalent to the category of representation of quivers. In [18], Nadler showed that
one can deform an arbitrary Lagrangian singularity to an arboreal one, while keeping
the microlocal sheaf category invariant. It is also expected that such arborealization
can be induced by a perturbation of Weinstein structure [4,24]. The skeleta in this
paper are not arboreal. They are the boundary-at-infinity of the FLTZ skeleta, so they
should still be easy to work with.

The skeleta for n dimensional pair-of-pants Pn has been studied by Nadler[19],
where a higher dimensional analog of Fig. 1 is constructued. A 
n+2-symmetric
skeleton forPn is constructed by Gammage–Nadler [7], where
n+2 is the symmetric
group. With the technique of tropical phase variety of Kerr–Zharkov [14], we hope to
find other Lagrangian skeleta�k forPn−1, where k = 1, . . . , n indicating the number
of dominant terms in the defining equation of Pn−1.
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Fig. 2 a Tropical amoeba of
f = 1+ e−β(x + y + 1/xy), b
tropical amoeba of
f = 1+ e−β(x + xy + 1/xy2).
The function |x |2 on R2 is
adapted to the amoeba polytope
in a but not the one in b, since
the minimum of |x |2 on the top
edge lies on the endpoint

(a) (b)

In Gammage–Shende [8], as one ingredient in proving HMS for the toric boundary
of a toric variety, they constructed the Liouville skeleton for the same hypersurface as
considered here. However, their results [8, Theorem 3.4.2] depends on the following
hypothesis that, there exists some tropicalization function h : A → R and some
identification M ∼= Z

n , such that the tropical amoeba polytope P = {x ∈ MR :
〈x, α〉 ≤ h(α),∀α ∈ ∂A} contains 0 as an interior point, and |x |2 restricts to each
face F of P has a minimum in the interior of F . This hypothesis is true in two-
dimension, and can be verified in certain examples, e.g. mirror to weighted projective
spaces. But in general, one does not know if it is always true, it would be interesting to
find a proof or construct a counter-example.2 Our approach here does not rely on this
hypothesis, which is equivalent to “|x |2 is adapted to the tropical amoeba polytope
P” for some choice of h. We avoid this by considering more flexible choices of Kähler
potentials than |x |2, and our approach works for any choice of h compatible with T
(Fig. 2).

0.5 Outline
In Sect. 1, we review the tropical localization of Mikhalkin and Abouzaid. We are

careful in picking the cut-off functions such that the inner boundary of the amoeba
remains convex (Sect. 1.4). In Sect. 2, we review how to identify MC∗ with T ∗MT by
choosing a Kähler potential, and we introduce the key concept of Kähler potential
adapted to a polytope in Sect. 2.4. Then we state our main theorems in more detail
in Sect. 3. The rest of the paper is devoted to proofs of these theorems.

1 Tropical geometry

1.1 Triangulation and amoeba

We follow [9, Chapter 7] and [15] to give background on coherent triangulations and
tropical amoeba.

Let A ⊂ N ∼= Z
n be a finite subset. Let Q = conv(A) ⊂ NR be the convex hull of

A. Assume Q has dimension n. A coherent triangulation (T , h) for pair (Q, A) is a
triangulation T of Q with vertices in A and a piecewise linear (PL) convex function
h : Q → R, such that the maximal linear domains of h are exactly the maximal
simplices of T . Since h is determined by its restriction h|A on the vertices of the
simplices, we sometimes abuse notation and write h|A as h.

2 We thank Gammage and Shende for this clarification.
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Let (T , h) be a coherent triangulation of (Q, A). We define the Legendre transfor-
mation of h as

Lh : MR → R, Lh(y) = max
x∈A 〈x, y〉 − h(y),

where 〈−,−〉 is the dual pairing MR×NR → R. One can show that Lh is a PL convex
function on MR, inducing a cell-decomposition of MR dual to the triangulation of T
on Q. If τ ∈ T is a k-simplex, then we use Cτ or τ∨ to denote the dual cell of
dimension n− k in MR. In particular, Cα are the n-dimensional cells of MR. The cells
and simplices are closed subsets in our convention.

Definition 1.1 The tropical amoeba �h ⊂ MR is defined as the singular loci of Lh .

The tropical amoeba is the limit of amoeba, which we now define. Given a coher-
ent triangulation (T , h) of (Q, A), h : A → R, we may define the patchworking
polynomial

fβ,h(z) =
∑

α∈A
e−βh(α)zα : M∗

C
→ C.

More generally, given a function � : A → T , we have

fβ,h,�(z) =
∑

α∈A
e−βh(α)e−i�(α)zα : M∗

C
→ C.

Definition 1.2 The Log amoeba �β,h,� of f = fβ,h,� is defined as the image of
f −1(0) under the (rescaled) log map

Logβ : M ⊗Z C
∗ → M ⊗Z R, m ⊗ z �→ m ⊗ β−1 log |z|.

Mikhalkin proved the following convergence theorem:

Theorem [15] The tropical amoeba �h is the Hausdorff-limit of rescaled amoeba
�β,h,� as β → ∞.

1.2 Monomial cut-off functions

The complements of the tropical amoeba has a one-to-one correspondence with the
vertices of the triangulation T ,

MR\�h =
⊔

α∈A
Cα, MR\�β,h,� =

⊔

α∈A
Cα,β,h,�.

Cα are convex polyhedra, andCα,β,h,� are smooth strictly convex domains [9, Chapter
6, Cor 1.6]. To simplify notation, we write Cα,β,h,� as Cα,β .

The purpose of introducing a monomial cut-off function χα,β(z) is to turn off
the term e−βh(α)zα if it is much smaller than the other terms, thus straightening the
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Fig. 3 We modify exponential
function ex (dashed line) to
exχ(x) (solid line), such that
exχ(x) remains convex

hypersurface. The idea is first used in Abouzaid [1] to control the symplectic geometry
of the hypersurface. See Picture 6 in loc.cit for the effect on the hypersurface (and
amoeba) by cutting-off irrelevant monomials.

We fix a cut-off function χ(x) on R with the following properties

• χ(x) =

⎧
⎪⎨

⎪⎩

1 x ∈ [0,∞)

∈ (0, 1) x ∈ (−2, 0)

0 x ∈ (−∞,−2]
.

• χ(x) exp(x) is convex.

Example 1.3 One can check that the following specification of χ(x) on [−2, 0] gives
a C2 function on R with the desired convexity.

χ(x) = e−1/(x+2)+1/2−x/4+x2/8.

See Fig. 3 for a plot of χ(x)ex . We have

(exχ(x))′′

exχ(x)
= 256+ 608x + 576x2 + 288x3 + 85x4 + 14x5 + x6, x ∈ (−2, 0).

which can be verified to be positive on (−2, 0) The non-smooth point of χ(x) is at
x = 0, and can be mollified if needed.

We use log coordinates (ρ, θ) ∈ MR × MT for a point z ∈ MC∗ . We also use
β-rescaled log coordinates (u, θ) = (β−1ρ, θ), thus u = Logβ(z). For each α ∈ A,
we define the linear function on MR as follows

lα(u) := 〈u, α〉 − h(α).

Definition 1.4 For any vertex α ∈ A, we define the monomial cut-off function as

χα,β(u) =
∏

α′ adjacent to α in T
χα,α′,β(u)
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where

χα,α′,β(u) = χ(β(lα(u) − lα′(u)) + √
β).

We define a distance-like function to the region Cα ,

rα(u) := Lĥ(u) − lα(u) = max
α′∈A

(lα′(u) − lα(u)).

Thus, rα(u) is a non-negative PL convex function, vanishes only on Cα .

Proposition 1.5 For all large enough β, χα,β(u) satisfies the following property

χα,β(u) =
{
1 rα(u) < β−1/2

0 rα(u) > β−1/2 + 2β−1

Proof If rα(u) < β−1/2, then for all α′ adjacent to α, we have

lα′(u) − lα(u) < β−1/2 ⇒ β(lα(u) − lα′(u)) + √
β > 0

thus each factor in χα,β(u) equals 1. The other case is similar to check, where β large
enough means rα(u)−1(β−1/2 + 2β−1) intersects all the neighboring cells Cα′ for
Cα . ��
Definition 1.6 For each α ∈ A, we define the bad region as the open set

Bα,β = {u ∈ MR | β−1/2 + 2β−1 > rα(u) > β−1/2}.

The (total) bad region Bβ is defined as the union of all Bα,β . The good region is defined
as the closed set Gβ := MR\Bβ .

On the good regions, each χα,β is either 0 or 1. Hence, we have a partition labeled
by cells of T :

Gβ =
⊔

τ∈T
Gβ,τ ,

where Gβ,τ = {u ∈ Gβ | χα,β(u) = 1 ⇐⇒ α ∈ τ } is a closed convex polyhedron
with non-empty interior.

1.3 Tropical localized hypersurfaces

Following [1, Section 4], we define a family of hypersurfaces Hs as the zero-loci of
fs(z):

fs(z) :=
∑

α∈A
fα(z)χα,s(z), Hs = f −1

s (0),
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where

fα = e−βh(α)−i�(α)zα, χα,s(z) = sχα(z) + (1− s).

Here we have dropped the β, h, . . . subscripts from previous notations for clarity.
These hypersurfacesHs interpolates between the complex hypersurfaceH and tropical
localized hypersurface H̃, where

H := H0, H̃ := H1.

The following proposition is a modification of Proposition 4.2 in [1].

Proposition 1.7 Fix any identification MC∗ ∼= (C∗)n. Letω be any toric Kähler metric
on MC∗ , comparable with ω0 = i

∑
i d log zi ∧ dlog zi . 3 Then, for all large enough

β, the family of hypersurfaces Hs are symplectic with induced symplectic form from
ω.

Proof Weproceed as in Proposition 4.2 in [1]: to prove f −1(0) is symplectic, it suffices
to prove |∂̄ f (z)|ω < |∂ f (z)|ω for z ∈ f −1(0).

Assume s > 0 and z is in the ‘bad region’ (see Definition 1.6) of the hypersurface
Hs , since otherwise the hypersurface is holomorphic at z and there is nothing to prove.
Let I ′(z) = {α0, . . . , αk} ⊂ A be subset of vertices where rαi (z) ≤ β−1/2, thus I ′(z)
is vertex set for a simplex τ(z) of T . Since fα0(z)

−1 fs(z) is an equally good defining
equation for Hs , hence without loss of generality, we may assume that α0 = 0. Let
I (z) = I ′(z)\{α0}.

We claim that,

|∂̄ fs(z)|
|∂ fs(z)| = O(e−

√
β).

where | − | := | − |ω0 indicate the norm given by ω0. Given the claim, we have

|∂̄ fs(z)|ω
|∂ fs(z)|ω < C2 |∂̄ fs(z)|

|∂ fs(z)| = O(e−
√

β).

Thus for large enough β, Hs is symplectic near z.
Now we prove the above claim. Define

F(z) =
∑

α∈A
| fα(z)| =

∑

α∈A
eβlα(u) =: eβϕβ,h(u).

3 We say two Kähler metrics are comparable if the underlying Riemannian metric, denoted as g1, g2 ,
satisfy

C−1g1 < g2 < Cg1

for some positive constant C .
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Then we have ϕβ,h(u) ≥ Lh(u) for all u ∈ MR, and as β → ∞ we have ϕβ,h(u) →
Lh(u) in C0.

We first note that the derivatives for the cut-off functions χα(z) have a uniform
bound

|dχα(ρ)| =
∣∣∣∣∣d

(
∏

α′
χ(

√
β + lα(ρ) − lα′(ρ))

)∣∣∣∣∣

≤
∑

α′
|d(χ(

√
β + lα(ρ) − lα′(ρ)))|

≤ ‖χ ′‖∞
∑

α′
|α′ − α| < C

where the product or sum are over α′ adjacent to α in triangulation T , and we used
the bound χ ≤ 1.

We have for ∂̄ fs(z).

|F(z)−1∂̄ fs(z)| = |F(z)−1
∑

α

fα(z)∂̄χα,s(z)| ≤ s
∑

α

eβ(lα(u)−ϕβ,h(u))|∂̄χα(z)|

≤
∑

α

eβ(lα(u)−Lh(u))|∂̄χα(z)| ≤
∑

α

eβ(−β−1/2)|∂̄χα(z)|

≤ Ce−
√

β

where we used ϕβ,h(u) ≥ Lh(u) and on the support of dχα(z) we have rα(z) =
Lh(u) − lα(u) > 1/

√
β.

Next, we compute ∂ fs(z).

|F(z)−1∂ fs(z)| =
∣∣∣∣∣F(z)−1

∑

α

∂ fα(z)χα,s(z) + s fα(z)∂χα(z)

∣∣∣∣∣

= F(z)−1

∣∣∣∣∣

k∑

i=1

∂ fαi (z)

∣∣∣∣∣ + O(e−
√

β)

= F(z)−1

∣∣∣∣∣

k∑

i=1

fαi (z)〈αi , d(ρ + iθ)

∣∣∣∣∣ + O(e−
√

β)

= F(z)−1

⎡

⎣
k∑

i=1

k∑

j=1

fαi (z) fα j (z)〈αi , α j 〉
⎤

⎦
1/2

+ O(e−
√

β)

> C1F(z)−1

[
k∑

i=1

| fαi (z)|2
]1/2

+ O(e−
√

β)

> C2F(z)−1
k∑

i=1

| fαi (z)| + O(e−
√

β) = C2 + O(e−
√

β)
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where O(e−
√

β) represents a remainder bounded by e−
√

β , C1 is the smallest eigen-
value of the k × k matrix Mi j = 〈αi , α j 〉, which is non-degenerate since {α0 =
0, α1, . . .} are vertices of a k-simplex in T . We also used that all the l p (1 ≤ p ≤ ∞)
norm on R

k are equivalent. ��
Proposition 1.8 (Proposition 4.9 [1]). The family of hypersurfacesHs are symplecto-
morphic for all s ∈ [0, 1].

1.4 Tropical localization with convexity

For log amoeba �h,β and tropical amoeba �h , their connected components of com-
plement Cα,β and Cα are convex. Let �̃β,h = Logβ(H̃) be the amoeba of the tropical
localized hypersurface, and let C̃α denote the complements dual to vertex α ∈ A. We
would like to show that C̃α are close to convex as well.

Proposition 1.9 The defining equation for C̃α is

1 =
∑

α′ adjacent to α

eβ(lα′ (u)−lα(u))χα′,β(u) = Fα.

and Fα is convex in the good region, i.e., where all χα,β(u) are constant with value 0
or 1.

Proof The boundary of the complement C̃α is where the dominant term equals the
sum of the other non-dominant term. By the tropical localization, there are at most n
non-dominant terms for a point z on the boundary (thanks to T being a triangulation).
Hence the θi can be chosen, such that the argument of the dominant and non-dominant
terms are the same. For the second statement, we note that over the good region, Fα

is a sum of convex functions. ��
Definition 1.10 The convex model Ĉα for C̃α is defined by {u ∈ Cα | F̂α(u) = 1},
where

F̂α =
∑

α′ adjacent to α

eβ(lα′ (u)−lα(u))χα′,α,β(u)

The two defining functions, Fα and F̂α , differ by the cut-off functions: Fα uses
χα′,β which cuts along the boundary of Cα′ , whereas F̂α uses χα′,α,β which cuts along
the hyperplane separating Cα and Cα′ . However, on Cα the two functions and the
hypersurfaces are very close, as the following two propositions show.

Proposition 1.11 For all k ≥ 1, there are constant ck, c′k , such that

‖F‖Ck (Cα) + ‖F̂‖Ck (Cα) ≤ c′kβk

and

‖F − F̂‖Ck (Cα) < ckβ
ke−

√
β.
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Proof First, we note that since all χα1,α2,β ≤ 1, we have χα′(u) < χα′,α(u), thus

F̂α(u) > Fα(u), Ĉα ⊂ C̃α.

For u ∈ Cα and α′ adjacent to α, if χα′(u)−χα′,α(u) �= 0, then lα′(u)−lα(u)+√
β ∈

(−2, 0). Hence

F̂α(u) − Fα(u) =
∑

α′ adjacent to α

eβ(lα′ (u)−lα(u))(χα(u) − χα′,α(u)) < Ce−
√

β.

Similarly, taking k-th derivative, we have

|∂ku F̂α(u) − ∂ku Fα(u)| < Ckβ
ke−

√
β.

where the norm are taken with respect to Euclidean norm on R
n , after choosing an

identification MR
∼= R

n . This finishes the proof. ��
Fix MR

∼= R
n and equip R

n with Euclidean metric. Let S∗Rn denote the unit
cosphere bundle. If C is a domain with smooth boundary, we define

�C = {(p, ξ) ∈ S∗Rn | p ∈ ∂C, ξ ∈ (Tp∂C)⊥ and points outward }

Proposition 1.12 We have the following convergence results:

(1) In the good region in Cα , ∂C̃α = ∂Ĉα .
(2) The Hausdorff distance between ∂C̃α and ∂Ĉα is O(β−1e−

√
β).

(3) The Hausdorff distance between �C̃α
and �Ĉα

is O(βe−
√

β).

Proof We will write F = Fα, F̂ = F̂α and so on, omitting the α subscript when it is
not confusing.

(1) Since in the good region in Cα , all the cut-off functions χα′ and χα′,α are equal.
(2) Since F̂ ≤ F , hence the domain Ĉ ⊂ C̃ ⊂ C . If u ∈ ∂Ĉ\∂C̃ , we take gradient

flow of F , starting from u and ending on u′ ∈ ∂C̃ . Let γ : [0, t] → Cα denote this
integral curve. Since around ∂C̃ and ∂Ĉ , we have uniform lower bound for |dF | and
|d F̂ | by some constant cβ, hence

cβ dist(u, u′) ≤ cβt <

∫ t

0
|∇F(γ (s))|ds

and

∫ t

0
|∇F(γ (s))|ds = F(γ (t)) − F(γ (0)) = 1− F(u) = F̂(u) − F(u) < Ce−

√
β

hence

dist(u, u′) = O(β−1e−
√

β) (1.1)
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Similarly, if we start from u′ ∈ ∂C̃\∂Ĉ we may find u ∈ Ĉ using gradient flow of F̂ ,
with the same bound as above. This establishes the bound on Hausdorff distance

(3) Let u ∈ ∂Ĉ\∂C̃ , and u′ ∈ ∂C̃ constructed as in (2). We have

|dF(u′) − d F̂(u)| ≤ |dF(u′) − dF(u)| + |dF(u) − d F̂(u)|
≤ ‖F‖C2 dist(u, u′) + O(βe−

√
β) = O(βe−

√
β)

where we used the C2 bound of F in Proposition 1.11 and the distance bound in
(1.1). ��

Let �Cα denote the Legendrian of the unit exterior conormal to Cα .

Proposition 1.13 Let α ∈ A, Ĉα be the tropical localized amoeba’s complement. We
have the following convergence of the boundary of Ĉα , and its Legendrian lifts:

(1) The Hausdorff distance between ∂Ĉα and ∂Cα is O(1/
√

β).
(2) The Hausdorff distance between �Ĉα

and �Cα is O(1/
√

β).

Proof Consider the simplices around vertex α in T . Let τ be such a k-dimensional
simplex, with vertices α, α1, . . . , αk . Denote the dual face by τ∨ on the polytope
Cα . We also define a locally closed subset Uτ ⊂ ∂Ĉα , such that z ∈ Uτ iff the set
Iα(z) = {α1, . . . , αk}.

Iα(z) := {α′ adjacent to α, χα′,α,β(z) > 0}.

Define the orthogonal projection map

πτ : Uτ → τ∨.

If u ∈ Uτ , u′ = πτ (u), then since

−1/
√

β − 2/β < lαi (u) − lα(u) < 0, and lαi (u
′) − lα(u′) = 0

we have then

dist(u, u′) < O

(
k∑

i=1

|lαi (u) − lα(u)|
)
= O(1/

√
β).

Also τ∨ is in O(1/
√

β) neighborhood of Im(πτ ), thus theHausdorff distance between
τ∨ and Uτ is O(1/

√
β). Considering all faces τ∨ of Cα proves the first statement.

For the second statement, we further note that, for any u ∈ Uτ , the exterior unit
conormal ξ of Ĉα at u is contained in cone(α1 − α, . . . , αk − α) = R+τ . Define

�τ∨ := τ∨ × (R+ · τ) ∩ S∗Rn .

Then the projection map πτ , lifts to

π̃τ : �C̃α
|Uτ → �τ∨ , (u, ξ) �→ (πτ (u), ξ)
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Since the fiber direction has distance zero, a similar argument as (1) proves the second
statement. ��

2 Legendre transformation and toric Kähler potential

In this section we use Legendre transform to define a diffeomorphism between (C∗)n
and T ∗T n , and define a Kähler structure on (C∗)n .

2.1 Legendre transformation

Let V be a real vector space of dimension n, and V∨ be its dual space. There is a
natural identification of symplectic space

T ∗V ∼= V × V∨ ∼= T ∗V∨.

Let πV and πV∨ denote the projection of V × V∨ to its first and second factor,
respectively.

Let ϕ be a smooth strictly convex function on V . The Legendre transformation for
ϕ is defined as

�ϕ : V → V∨, x �→ dϕ(x).

We will always assume ϕ satisfies some growth condition such that the Legendre
transformation is surjective. The Legendre dual ψ of ϕ is also a convex function
defined as

ψ : V∨ → R, y �→ sup
x∈V

〈x, y〉 − ϕ(x) = 〈�−1
ϕ (y), y〉 − ϕ(�−1

ϕ (y)).

If we fix a linear coordinate ρ = (ρ1, . . . , ρn) on V and dual coordinate p =
(p1, . . . , pn) on V∨, then the Legendre transformation can be written as

pi = ∂ρi ϕ(ρ).

If p = dϕ(p), then Legendre dual function

ψ(p) =
∑

i

ρi pi − ϕ(ρ).

And the two matrices Hessϕ(ρ) = ∂i jϕ(ρ) and Hessψ(p) = ∂i jψ(p) are inverse of
each other. There is a metric on V induced by ϕ:

gϕ = ∂i jϕ(ρ)dρi ⊗ dρ j .
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The above construction can be interpreted symplectically. Consider the graph
Lagrangian �dϕ in T ∗V

�dϕ = {(x, y) ∈ V × V∨ | y = dϕ(x)}.

Let L = �dϕ . Then the Legendre transform is �ϕ = πV∨|L ◦ πV |−1
L

L

V V∨

πV πV∨
.

L as a section in T ∗V∨ is the graph of �dψ for the Legendre dual function ψ of ϕ.
The following lemma says, gradient vector field on V and differential one form are

related by Legendre transformation.

Lemma 2.1 Let ϕ be any smooth convex function on V , and let f : V → R be any
smooth function. For any ρ ∈ V , and p = �ϕ(ρ) ∈ V∨, then (�ϕ)∗(∇ f |ρ) ∈
TpV∨ ∼= V∨ and d f (ρ) ∈ T ∗

ρ V ∼= V∨ are equal.

Proof We work with linear coordinates (ρ1, . . . , ρn) on V and dual coordinate (p1,
. . . , pn) on V∨. Let gi j = (gϕ)i j = ∂i jϕ and gi j be the matrix inverse of gi j .

(�ϕ)∗∇ f (ρ) =
∑

i, j,k

∂ρk f · g jk · ∂ pi (ρ)

∂ρ j
· ∂pi

=
∑

i, j,k

∂ρk f · g jk · gi j · ∂pi

=
∑

i,k

∂ρk f · δik · ∂pi = d f .

��

2.2 Identification betweenMC∗ and T∗MT

There is a canonical complex structure on MC∗ ∼= MR × MT , coming from

C
∗ ∼= R× T , z = eρ+iθ �→ (ρ, θ).

And there is a canonical symplectic structure on T ∗MT ∼= NR × MT . We will use
notation θ ∈ MT , ρ ∈ MR and p ∈ NR. If we fix a Z-basis for M , then we have
MC∗ ∼= (C∗)n = {(eρi+iθi )i } and T ∗MT ∼= T ∗T n = {(θi , pi )i }.

Let ϕ : MR → R be a smooth strictly convex function such that the Legendre
transformation �ϕ : MR → NR is surjective. We abuse notation and also denote by
ϕ the pullback via MC∗ → MR, and call ϕ a Kähler potential on MC∗ . Then we may
define Liouville one-form and symplectic two-form on MC∗
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λ = −dcϕ, ω = −ddcϕ.

In coordinate form, we have

λϕ =
∑

i

∂iϕ(ρ)dθi , ωϕ =
∑

i, j

∂i jϕ(ρ) dρi ∧ dθ j .

The Riemannian metric can also be obtained by gϕ(X ,Y ) = ωϕ(X , JY ), where
J∂ρi = ∂θi , J∂θi = −∂ρi , or in coordinate form

g =
∑

i, j

∂i jϕ(ρ)(dρi ⊗ dρ j + dθi ⊗ dθ j ).

If we equip T ∗MT with the standard exact symplectic structure (ω, λ):

λstd =
∑

i

pi dθi , ωstd =
∑

i

dpi ∧ dθi ,

then by Legendre transformation�ϕ×id : MC∗ = MR×MT → NR×MT = T ∗MT ,
we have

(�ϕ × id)∗(λstd) = λϕ, (�ϕ × id)∗(ωstd) = ωϕ.

2.3 Homogeneous Kähler potential

Next we will restrict ourselves to homogeneous convex functions as Kähler potential.

Definition 2.2 A convex function ϕ on MR is said to be homogeneous of degree d for
some d ≥ 1, if for any 0 �= x ∈ MR and any λ > 0, we have

ϕ(λx) = λdϕ(x), (2.1)

and� = {x : ϕ(x) ≤ 1} is a bounded strictly convex closed set with smooth boundary.

Remark 2.3 Any positive definite quadratic form on MR is a homogeneous degree two
convex function. Moreover, for any d ≥ 1, and for any bounded strictly convex subset
� ⊂ MR with smooth boundary and with 0 as an interior point, there exists an unique
a homogeneous degree d convex function ϕ�,d such that � = {x : ϕ(x) ≤ 1}.
Proposition 2.4 For any homogeneous convex function ϕ of degree d with d ∈ [0,∞),
we have

(1) ϕ is smooth on MR\{0}.
(2) ϕ is Ck at 0 where k is the largest integer less than d.
(3) If d > 1, then ϕ is strictly convex.
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Proof (1) and (3) are easy to verify. We only prove (2). Fix a linear coordinate
x1, . . . , xn on MR. For multi-index α = (α1, . . . , αn), any point 0 �= x ∈ MR and
λ > 0, we have ∂α

x ϕ(λx) = λd−|α|∂α
x ϕ(x). Hence if in addition |α| ≤ k < d, then

limλ→0 ∂α
x ϕ(λx) = 0. Hence all k-th derivative can be continuated to x = 0. ��

Lemma 2.5 If ϕ is a homogeneous degree d convex function, then for λ > 0

�ϕ(λρ) = λd−1�ϕ(ρ).

Definition 2.6 Let M∞
R

:= (MR\0)/R>0 and N∞
R

:= (NR\0)/R>0. Then we define
the projective Legendre transformation

�∞
ϕ : M∞

R
→ N∞

R
.

It is easy to check that �∞
ϕ is an orientation preserving diffeomorphism from Sn−1

to itself. Geometrically, if we take the level set S = ϕ−1(1), then each element in M∞
R

corresponds to a point on S, and the outward conormal of S at the point is the element
in N∞

R
obtained by �∞

ϕ .

Proposition 2.7 Let ϕ be any homogeneous convex function on MR of degree k > 1,
and equip MR with metric gϕ induced from Hessian of ϕ. Then the integral curves in
MR\{0} of the gradient of ϕ are rays. Equivalently,

∇ϕ(ρ) = C(ρ)
∑

i

ρi∂ρi , C(ρ) > 0.

Proof For any nonzero ρ ∈ MR, we have�ϕ(ρ) = dϕ(ρ), also by Proposition 2.1 we
have (�ϕ)∗(∇ρ) = dϕ(ρ), hence the gradient vector field ∇ϕ on MR when pushed-
forward to NR is exactly the radial vector field p∂p whose integral curves are rays.
Since ϕ is homogeneous, hence �ϕ takes ray to ray, hence the integral curve of ∇ϕ is
the pull-back of integral curve of p∂p, i.e. rays. ��

2.4 Kähler potentials adapted to a polytope

This is one of the key construction in this paper.We replace the Kähler potential
∑

i u
2
i

on (C∗)n where ui = log |zi | by any homogeneous degree two Kähler potential ϕ(u).
Let P be a convex polytope (possibly unbounded) in MR containing 0 as an interior

point. We define a notion of convexity with respect to P .

Definition 2.8 A homogeneous convex function ϕ on MR is convex with respect to P ,
if for each face F of P of positive dimension, the restrictionϕ|F has a uniqueminimum
point in the interior of F . A Kähler potential adapted to P is a homogeneous degree
two convex function ϕ : MR → R that is convex with respect to P .

Remark 2.9 As noted in [13] and pointed out by a referee, the “degree two” condition
can be relaxed to degree d > 1. The results in this section still holds, but proofs needs
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modification, e.g., �dϕ is homogeneous under R+ rescaling of MR × NR, where the
weights on the two factors are 1 and d−1.We leave the generalization for the interested
reader.

Remark 2.10 A homogeneous convex function ϕ on MR is convex with respect to P ,
if the increasing sequence of level sets {ϕ(ρ) < c} meet the faces of P in the interior
first.

Proposition 2.11 For any convex polytope P in MR containing 0 as an interior point,
there exists a non-empty contractible set of Kähler potential adapted to P.

Proof First, we show the existence of such potential ϕ. We will build the level set
S = {ϕ = 1}, and show that as we rescale S to λS, for λ from 0 to∞, S will meet the
interior of each face F first. We will proceed by first build a polyhedral approximation
of S, then smooth it.

For each face F of P , we pick a point xF in the interior of F if dim F > 0, or
xF = F if F is a point. Let T be the simplicial triangulation of P with vertices of
F , then T is also a barycentric subdivision of P . Let φT : P → R a piecewise linear
convex function on P , with maximal convex domain the top-dimensional simplices of
T , and such that for any 0 ≤ d ≤ n−1, and any face xF of dimension d, φT (xF ) = cd
are the same for all such F . Such φT can be constructed inductively from xF with
dim F from 0 to n − 1. Let φT be extended to MR by linearity. Thus φT has a unique
minium point in each face F .

Let η ∈ C∞
c (Rn) be a bump function with

∫
η = 1, and let ηε(x) = η(x/ε)/εn .

Let φT ,ε = ηε�φT + ε|x |2, where |x | is taken with respect to any fixed inner product
on Rn , then φT ,ε is a linear combination of convex function hence still convex. Since
φT ,ε → φT as ε → 0, for ε small enough, φT ,ε still has a unique minimum point
in each face F . And ST ,ε = {φT ,ε = 1} is a convex smooth boundary, such that
ST ,ε → ST = {φT = 1} as ε → 0. Then, for small enough ε, we can use ST ,ε as the
contour of the homogeneous degree two convex function {ϕ(x) = 1}.

(2) LetK be the set of homogeneous degree two potential adapted to P . Then there
is a surjective continuous map π : K → ∏

F,dim F>0 Int(F), defined by sending ϕ to
its critical points on each face. Since if two convex functions ϕ1, ϕ2 have the same
critical points, then their convex linear combination tϕ1 + (1− t)ϕ2 for t ∈ [0, 1] are
still homogeneous degree two and with the same critical points, we see the fiber of
map π is convex hence contractible. Since the base of the fibration Cr is contractible
as well, we see K is contractible. ��

Let P be a convex polytope in MR containing 0 as an interior point. Recall the
definition of the dual polytope P∨ ⊂ NR

P∨ = {p ∈ NR | 〈p, x〉 ≤ 1 ∀x ∈ P}. (2.2)

For any face F ⊂ P , there is dual face F∨ ⊂ P∨, and dimR F + dimR F∨ = n − 1.
We define three subsets of MR × NR
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LP =
⋃

F

cone(F) × F∨, LP∨ =
⋃

F

F × cone(F∨), �P =
⋃

F

F × F∨,

(2.3)

where F runs over the faces of P , and cone(F) = R>0 · F .
Remark 2.12 LP and LP∨ are piecewise Lagrangians, and �P = LP ∩ LP∨ is piece-
wise isotropic. LP is the exterior conormal of P∨ in T ∗NR, and L∨

P is the exterior
conormal of P in T ∗MR. If we let ϕP,1 be the piecewise linear function on MR, such
that P = {x : ϕP,1(x) ≤ 1}, then LP morally is �dϕP,1 .

Lemma 2.13 Let ϕ be a homogeneous degree two convex function on MR. P, P∨ be
dual convex polytopes in MR and NR as above. Let F be a face of P. Then there is a
natural bijection

cone(F) × F∨ ∩ �dϕ ↔ F × cone(F∨) ∩ �dϕ. (2.4)

Proof If (λx, p) ∈ cone(F) × F∨ ∩ �dϕ , where λ > 0 and x ∈ F, p ∈ F∨, then by
conic invariance of �dϕ , we have

(x, p/λ) = 1

λ
(λx, p) ∈ F × cone(F∨) ∩ �dϕ. (2.5)

Sending (λx, p) to (x, p/λ) is the desired bijection. ��
Next, we give some equivalent characterization for convexity with respect to a

polytope.

Proposition 2.14 Let P be a convex polytope in MR containing 0 as an interior point.
Let ϕ be a homogeneous degree two convex function on MR. The following conditions
are equivalent:

(1) ϕ is adapted to P.
(2) For each face F of P, the smooth component Int(F × cone(F∨)) of L∨

P has a
unique intersection with �dϕ .

(3) For each face F of P, the smooth component Int(cone(F) × F∨) of L P has a
unique intersection with �dϕ .

Proof (2) is equivalent to (3) by Lemma 2.13.
(2) ⇒ (1): since ϕ|F is still convex, hence as at most one minimum point in the

interior, and any interior critical point is a minimum. Since

∅ �= F × cone(F∨) ∩ �dϕ ⊂ T ∗
FMR ∩ �dϕ (2.6)

we see ϕ|F has a critical point.
(1)⇒ (2): for each face F of P , let xF be the critical point of ϕ|F , and let HF ⊂ MR

be the affine hyperplane tangent to the contour of ϕ at xF . We claim that HF is a
supporting hyperplane for P , and P ∩ HF = F . Then p = dϕ|xF ∈ T ∗

xF MR
∼= NR

is in the exterior conormal of HF (exterior with respect to P), hence p ∈ cone(F∨).
Thus, (x, p) ∈ F × cone(F∨). ��
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A consequence of the proposition is the compatibility of the ‘adaptedness’ with
Legendre transformation.

Corollary 2.15 Let P be a convex polytope in MR containing 0 as an interior point
and P∨ the dual polytope. Let ϕ be homogeneous degree two convex function, and ψ

the Legendrian dual of ϕ. Then ϕ is adapted to P if and only if ψ is adapted to P∨.

3 Main results

Let Q be a convex lattice polytope in NR containing 0 = α0. Let T be a coherent star
triangulation of Q based at 0 with integral vertices, and ∂T be the subset of simplices
not containing 0. Let A be the set of vertices of T , and let h : A → R induce T with
h(0) = 0. Fix a � : A → T with �(α0) = π .

Let �h ⊂ MR be the tropical amoeba of (T , h), and P = Cα0 be the connected
component in MR\�h corresponding to α0.

Let ϕ : MR → R be a homogeneous degree two convex function (i.e. ϕ(λx) =
λ2ϕ(x) for all λ > 0). 4 We assume ϕ is adapted to P , i.e, every face of P contains a
minimum of ϕ in its interior.

Then the tropical localized polynomial is

f̃ (z) :=
∑

α∈A
e−βh(α)−i�(α)χα,β(z)zα

where the monomial cut-off function χα,β defined as in Definition 1.4. Denote the
localized hypersurface and amoeba as H̃ := f̃ −1(0) and �̃ := Logβ(H̃) respectively.
We use C̃ = C̃α0 to denote the complement labeled by α0.

Theorem 1 The critical points for ϕ|∂C̃ on the boundary of amoeba ∂C̃ are indexed
by simplices τ ∈ ∂T . The critical point ρ̃τ for τ in ∂T has Morse index dim |τ |. The
unstable manifold (downward flowing) W̃τ of ρ̃τ contains ρ̃τ ′ in its closure, if and only
if τ ⊃ τ ′.

The Liouville structure of H̃ are induced from (MC∗ , ω, λ) (see Sect. 2.2), where
in coordinates

ω = ∂i jϕ(ρ)dρi ∧ dθ j , λ = ∂iϕ(ρ)dθi .

The (candidate for) Liouville skeleton is defined as

Sβ,h,� =
⋃

τ∈T
(β · W̃τ ) × Tτ,� ⊂ MR × MT ∼= MC∗ , (3.1)

4 We may smooth ϕ at a small neighborhood around 0 ∈ MR, but this is irrelevant since we will use ϕ only
as ϕ(βu) for β � 1 and u in a neighborhood of ∂P .
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where W̃τ is the unstable manifold from ρ̃τ and Tτ,� is the subtorus of MT defined
by

Tτ,� = {θ ∈ MT : 〈θ, α〉 = �(α), for each vertex α in τ.} (3.2)

Theorem 2 Sβ,h,� is the Lagrangian Liouville skeleton for (H̃, ω|H̃, λ|H̃)

The Lagrangian skeleton defined here can be related with the RSTZ skeleton via
the ‘projective’ Legendre transformation �∞

ϕ : M∞
R

∼−→ N∞
R
, which is induced by

homogeneous Legendre transformation �ϕ : MR → NR. Let qM : MR\{0} → M∞
R

and qN : NR\{0} → N∞
R

be quotient by R+. Recall the RSTZ-skeleton �∞
T ,�

is
defined in the introduction (0.2). Let id denote the identity map on MT , then we have:

Theorem 3

�∞
ϕ × id : M∞

R
× MT → N∞

R
× MT

induces a homeomorphism between Sβ,h,� identified as (qM × id)(Sβ,h,�) and�∞
T ,�

identified as (qN × id)(�∞
T ,�

).

Recall from introduction that our main theorem is as follows.

Main Theorem The hypersurface Hβ,h,� admits a Liouville structure such that its
Liouville skeleton is homeomorphic to �∞

T ,�
.

The main theorem then follows from Theorems 2 and 3, and the diffeomorphism
of H with H̃ from Proposition 1.8.

4 Gradient flow: Proof of Theorem 1

Notation: we will index the critical points by simplices in ∂T = T ∩ ∂Q, e.g. ρτ , ρ̃τ .
For a given simplex τ ∈ ∂T , we denote the simplex conv({0} ∪ τ) by τ0.

We will sometimes omit β from the subscript to unclutter the notation.

4.1 Convergence of smooth convex domain and critical points

We fix an identification of V ∼= R
n and take Euclidean metric on V and the induced

metric on T ∗V and S∗V . We identify the sphere compactification boundary T∞V =
(T ∗V − V )/R>0 with the unit cosphere bundle S∗V . If U ⊂ V is an open subset
with smooth boundary, then S∗UV is the one-sided unit conormal bundle of ∂U with
covectors pointing outward. The generalization to open convex set U with piecewise
smooth boundary is also straightforward.

Proposition 4.1 Let V ∼= R
n be a real vector space of dimension n, P ⊂ V a convex

polytope containing the origin, ϕ : V → R a potential adapted to P. Let {Pj } be a
sequence of convex bounded domains with smooth boundaries, such that the exterior
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conormal L j := S∗Pj
V converges to L := S∗PV in the cosphere bundle S∗V in the

Hausdorff metric. Then for all large enough j , there is a one-to-one correspondence
between faces F of P and critical points of ϕ on ∂Pj , denoted as ρ̃F , such that

(1) ρ̃F has Morse index n − 1− dim F.
(2) As β → ∞, ρ̃F tends to the ρF , the minimum of ϕ on the face F of P.

Proof (1) We express the critical point condition in terms of Legendrian intersection.
Define the projection image of �dϕ in T∞V as

�∞
dϕ = (R>0 · �dϕ)/R>0 ⊂ T∞V . (4.1)

Then �∞
dϕ is also the union of unit conormal for level sets of ϕ:

�∞
dϕ =

⋃

c∈R
S∗{ϕ(ρ)≤c}V . (4.2)

The Legendrian L = S∗PV is a piecewise smooth C1 manifold, where the smooth
components LF are labeled by faces F of P . If ρF is a critical point of ϕ on F , then
there is a unique unit covector pF ∈ LF , such that xF = (ρF , pF ) ∈ L � �∞

dϕ , and
the intersection is transversal.

(2) Consider the unit speed geodesic flow �t
R on the unit cosphere bundle S∗V .

Fix any small flow time 1 � ε > 0, since �ε
R : S∗V → S∗V is a diffeomorphism,

�ε
R(L j ) still converges to �ε

R(L) in Hausdorff metric. For any subset A ⊂ V , define

Aε := {x : dist(x, A) < ε}

to be the ε-fattening of A. If A is a convex set, we have �ε
R(S∗AV ) = S∗AεV . Hence

∂Pε is a C1 hypersurface, and ∂Pε
j → ∂Pε in Hausdorff metric as j → ∞. Define

Lt = �t
R(L), Lt

j = �t
R(L j ).

The geodesic flow applied to �∞
dϕ can be understood as follows

�ε
R(�∞

dϕ) =
⋃

c∈R
�ε

R(S∗{ϕ(ρ)≤c}V ) =
⋃

c∈R
S∗{ϕ(ρ)≤c}εV .

Define function ϕ̃ε , such that {ϕ̃ε(ρ) < c} = {ϕ(ρ) ≤ c}ε , then ϕ̃ε is a levelset convex
function. By Lemma 2.7 of [2], there exists a strictly increasing function f : R → R,
such that ϕε = f ◦ ϕ̃ε is a convex function. Thus, we have

�ε
R(�∞

dϕ) = �∞
dϕε ϕε is convex .

Let xε
F = �ε

R(xF ), ρε
F = π(xε

F ) in the expanded face Fε = π(�ε
R(LF )). Then xε

F
is still the intersection of �∞

dϕε and S∗PεV , and ρε
F is the unique Morse critical points
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of ϕε restricted on Fε , and ρε
F is in the interior of Fε . One may easily check that the

Morse index of ρε
F is n − 1− dim F .

(3) We now prove that for large enough j , for each F , there is a unique critical
points ρε

F, j of ϕε on ∂Pε
j approaching ρε

F .

Fix a small neighborhood WF ⊂ ∂Pε near ρε
F , and for small enough δ, let W̃F ∼=

WF × (−δ, δ) be the flow-out of WF under the Reeb flow for time in (−δ, δ), with
projection map πW : W̃F → WF . We claim that for large enough j , ∂Pε

j ∩ W̃F

projects bijectively to WF , since otherwise this contradicts with Pε
j being convex

and the fiber of πW being straight-line segments Reeb trajectories. Thus, we have
a sequence of smooth sections ι j : WF → W̃F for large enough j , such that ι j
converges to the zero section in C1.

Let f j = ι∗jϕε |W̃F
∈ C∞(WF ,R), and a smooth function f∞ = ι∗∞ϕε |W̃F

, where

ι∞ : WF ↪→ W̃F is the identity map of zero section. Since ι j → ι∞ in C1, f j → f∞
inC1. Since f∞ has a non-degenerate critical point, by stability of critical points under
C1-perturbation, f j has a unique critical point of the same index as f∞.

(4) Finally, we show that there are no other critical points. LetUF be the preimage
of W̃F under S∗V → V . LetU be the union of all such ŨF . Take δ > 0 small enough
such that

dist(�∞
dϕε\U , Lε) > 3δ.

By the assumption that Lε
j converges to Lε in Hausdorff metric, there exists j0 large

enough, such that

∀ j > j0, and x ∈ Lε
j , we have dist(x, Lε) < δ.

This shows

dist(�∞
dϕε\U , Lε

j ) ≥ dist(�∞
dϕε\U , Lε) − dist(Lε

j , L
ε) > 2δ,

hence there is no intersection between Lε
j and �∞

dϕε away from U .
(5) Since �ε

R is a diffeomorphism, the result about Lε
j ∩ �∞

dϕε implies the same
result about L j ∩ �∞

dϕ , and we finish the proof of the proposition. ��

4.2 Proof of Theorem 1: critical points and unstable manifolds

Proposition 4.2 For large enough β, there is a one-to-one correspondence between
simplices τ ∈ ∂T and critical points of ϕ on ∂C̃, denoted as ρ̃τ , such that

(1) The Morse index of ρ̃τ equals dim τ .
(2) As β → ∞, ρ̃τ tends to the ρτ , which is the minimum of ϕ on the face τ∨0 of P.

Proof First we approximate ∂C̃ by its convex model Ĉ (see Definition 1.10). Then
by Proposition 4.1, we have critical points {ρ̂τ } on Ĉ indexed by τ ∈ ∂T . Then, a
perturbation argument shows ϕ has critical points on ∂C̃ as {ρ̃τ = ρ̂τ }. ��
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Next, we prove that the unstable manifold W̃τ for critical point ρ̃τ are cells of a dual
polyhedral decomposition of ∂P . This is true not only in the combinatorial sense, but
in a more refined geometrical sense.

Proposition 4.3 For large enough β, and for any τ ∈ ∂T , the unstable manifold W̃τ

is a smooth manifold of dimension dim τ . Furthermore, another critical point ρ̃τ ′ is
contained in the boundary of the closure of W̃τ if and only if τ ′ ⊂ τ .

Proof The statement of dim W̃τ follows from the Morse index of ρ̃τ . For any critical
point ρτ , take a small enough ball B of radius ε around it, then B can be stratified by
the limit of gradient flow. For each facet σ∨ of the polytope P adjacent to τ∨, there
is an open ball Uσ in ∂B whose points flow to critical point ρσ . If a face τ ′∨ adjacent
to τ∨ can be written as τ ′∨ = σ∨

1 ∩ · · · ∩ σ∨
k for facets σ∨

i , then points in the relative
interior of ∩k

i=1Uσi will flow to ρτ ′ . ��
Now we give an explicit description of the unstable manifold. Let �∞

ϕ , qN and qM
be as in the statement of Theorem 3.

Proposition 4.4 For all large enough β, and τ ∈ ∂T ,�∞
ϕ induces a homeomorphism

�∞
ϕ : qM (W̃τ )

∼−→ qN (τ ).

Proof Without loss of generality, we set h(0) = 0. We will first do the computation
on the convex model Ĉ , then state the necessary modifications for C̃ .

The defining function for Ĉ is

1 =
∑

α∈A\{0}
eβlα(u)χ(βlα(u) + √

β) =: F̂(u).

For any point u ∈ Ĉ , we define the simplex

τ(u) = conv{α ∈ A\{0} : χ(βlα(u) + √
β) > 0}.

Then the gradient of ϕ on Ĉ can be expressed as

∇(ϕ|Ĉ ) = ∇ϕ − c1∇ F̂

where c1 = 〈∇ϕ,d F̂〉
〈∇ F̂,d F̂〉 . Since by Proposition 2.7, ∇ϕ is in the outward radial direc-

tion, and F̂ is a convex function with bounded sub-level set, hence 〈∇ϕ, d F̂〉 > 0.
Combining 〈∇ F̂, d F̂〉 > 0, we have c1 > 0.

For u in the unstable manifold Ŵτ , we have τ(u) ⊂ τ . The defining function F̂ for
a neighborhood of u can be written as

F̂τ (u) =
∑

α∈τ

eβlα(u)χ(βlα(u) + √
β)



26 Page 26 of 33 P. Zhou

thus

d F̂τ =
∑

α∈τ

(exχ(x + √
β))′|x=βlα(u) · α ∈ Int cone(τ ).

And at the critical point

dϕ(ρ̂τ ) = c1d F̂τ ∈ Int cone(τ ).

If γ : (−∞,+∞) → Ĉ is an integral curve for −∇(ϕ|C̃ ) with limt→−∞ γ (t) =
ρ̂τ , then under Legendre transformation we have a curve η(t), such that

lim
t→−∞ η(t) = dϕ(ρ̃τ ) ∈ Int cone(τ )

and using Lemma 2.1 and Proposition 2.7

d

dt
η(t) = (�ϕ)∗(−∇(ϕ|C̃ )) = (�ϕ)∗(−∇ϕ + c1∇F) ∈ R(p∂p) + Int cone(τ ),

where p∂p is the radial vector field on NR. Thus η(t) is within the cone Int cone(τ )

for all t ∈ R. This shows that

�∞
ϕ (qM (Ŵτ )) ⊂ qN (τ ).

Using induction on dimension of τ from 0 to n − 1, we can show the image is onto.
Now consider C̃ . One need to replace χ(βlα(u) +√

β) by χα,0(u) in defining F̃ .
And one can still show that d F̃τ (u) ∈ Int cone(τ ), the rest is the same as Ĉ . ��

5 Liouville flow: Proof of Theorem 2 and 3

First we find all the critical points (manifolds) of the Liouville vector field on H̃. We
show that they are exactly the preimage of critical points of ϕ|∂C̃ under Logβ , which
are tori of various dimensions. The more difficult part is to show there are no other
critical points.

Then, we study the Liouville flow trajectory from these critical manifolds. There
are two key points:

(1) Wewrite the fiberwise Liouville vector field as the ambient Liouville vector field in
MC∗ subtract its symplectic orthogonal component, then show that on the ‘positive
loci’ (Definition 5.1), the symplectic orthogonal component is proportional to the
Hamiltonian vector field XIm f̃ .

(2) We show that the unstable manifold correponding to the critical manifold indexed
by τ ∈ ∂T , is geometrically identified with the simplex τ under the projective
Legendre transformation �∞

ϕ : M∞
R

→ N∞
R
. This determines the unstable mani-

folds.
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Recall our notations:

• The complex hypersurface H defined by f (z) = 0:

f (z) =
∑

α∈A
fα(z) =

∑

α∈A
zαe−βh(α)−i�(α).

• The tropical localized hypersurface H̃, defined by f̃ (z) = 0:

f̃ (z) =
∑

α∈A
f̃α(z) =

∑

α∈A
fα(z)χα(u),

• The real-valued functions, Fα(z) = | fα(z)| and

F̃(z) = −1+
∑

0 �=α∈A
Fα(u)χα(u).

The proof of Theorem 2 follows from Propositions 5.7, 5.8 and 5.9. The proof of
Theorem 3 follows from Propositions 4.4 and 5.7.

5.1 Liouville vector field

Recall that λ is the Liouville 1-form on MC∗ , and λH̃ is the restriction of λ on the
(tropicalized) hypersurface H̃.

Take any point z ∈ H̃, we have

Xλ(z) = X‖
λ(z) + X⊥

λ (z).

where X⊥
λ (z) is symplectically orthogonal to TzH̃. We note that X‖

λ(z) = XλH̃(z),
since for any v ∈ TzH̃,

ωH̃(X‖
λ(z), v) = ω(Xλ(z) − X⊥

λ (z), v) = ω(Xλ(z) − X⊥
λ (z), v) = λ(v) = λH(v).

And X⊥
λ (z) is the symplectic horizontal lift of f̃∗(Xλ(z)) ∈ T0C.

Definition 5.1 The positive loci H̃+ is the subset of H̃ where f̃0 = −1 and f̃α ≥ 0
for all α �= 0.

Remark 5.2 An equivalent definition is that H̃+ = Log−1
β (∂C̃).

Proposition 5.3 For all z ∈ H̃+, we have XIm f̃ (z) positively proportional to X⊥
λ (z).

Proof Since both vectors are symplectic orthogonal to H̃, we only need to check their
image under f̃∗ are positively proportional to each other.
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First we study XIm f̃ (z). On H̃+, we have f̃ = F̃ . We also have

d f̃ =
∑

α∈A
F̃α(u)〈α, d(ρ + iθ)〉 +

∑

α∈A
fα(z)dχα(u)

= d F̃(u) + i
∑

α∈A
F̃α(z)〈α, dθ〉

Hence

d(Im f ) = Imd f =
∑

α∈A
F̃α(u)〈α, dθ〉

Thus

XIm f =
∑

α∈∂A

F̃α(u)
∑

i, j

αi g
i j (ρ)∂ρ j (5.1)

compare with

∇(F̃) = g−1(d F̃) = g−1

(
∑

α∈∂A

Fα(u)χα(u)〈α, dρ〉 + Fαdχα

)
= XIm f + O(e−

√
β).

We thus have

〈d f̃ , XIm f̃ 〉 = 〈d F̃, XIm f̃ 〉 = ‖∇ F̃‖2 + O(e−
√

β) > 0.

Next, we study X⊥
λ (z). We have

〈d f̃ , X⊥
λ (z)〉 = 〈d f̃ , Xλ(z)〉 = 〈d f̃ ,∇ϕ〉 = 〈d F̃,∇ϕ〉

Since ∇ϕ is positively proportional to the radial vector field u∂u by Proposition 2.7,
and 〈d F̃, u∂u〉 > 0. We have also 〈d f̃ , X⊥

λ (z)〉 > 0.
Since f̃∗(X⊥

λ (z)) and f̃∗(XIm f ) are both in the positive direction of T0C, X⊥
λ (z) is

positively proportional to XIm f̃ (z). ��

5.2 Critical manifolds

Recall from the previous section, that on the boundary of the amoeba ∂C̃ , the critical
points of ϕ are indexed by τ ∈ ∂T as ρ̃τ .

Proposition 5.4 The preimages Critτ := Logβ |−1
H̃ (ρ̃τ ) are critical manifolds.

Proof Since the critical points ρ̃τ are in the ‘good’ region H̃good ⊂ H̃, where the
monomial cut-off functions χα are either zero or one, hence the hypersurface H̃good

is holomorphic. Thus, zero of dϕ|H̃ is also zero of dcϕ|H̃. ��
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Proposition 5.5 For each τ ∈ ∂T , Logβ |−1
H̃ (ρ̃τ ) = {βρ̃τ } × Tτ,�, where Tτ,� is

defined in (3.2).

Proof Since ρ̃τ is on the boundary ∂C̃ , we have 1 = ∑
α∈τ Fα(z). Comparing with the

defining equation of H̃ in a neighborhood of Logβ |−1
H̃ (ρ̃τ ), we have 1 = ∑

α∈τ fα(z).
Hence 0 = arg( fα(z)) = 〈α, θ〉 − �(α) for each vertex α in τ . Thus the fiber is the
torus Tτ,�. ��

5.3 Unstable manifolds

Proposition 5.6 TheLiouville vector field XλH̃ on the positive loci H̃+ does not change

the θ coordinate. In particular, the positive loci H̃+ is preserved under the Liouville
flow.

Proof Since XλH = X‖
λ = Xλ−X⊥

λ , suffice to check that Xλ and X⊥
λ does not change

θ coordinates. We have Xλ ∝ ρ∂ρ , and X⊥
λ ∝ XIm f̃ . From Eq. (5.1), we see XIm f̃

has no θ -component. Hence 〈XλH , dθ〉 = 0. ��
Proposition 5.7 For any τ ∈ ∂T , the unstable manifold for Critτ is W̃τ × Tτ,�.

Proof From Proposition 5.6, we see the flowout of Critτ by the Liouville flow does
not affect the MT component. Thus Liouville flow Xλ,H̃ on H̃ induces a flow on H̃+,
and it descends to ∂C̃ , for which we denote as Xλ,∂C̃ .

On ∂C̃good , Xλ,∂C̃ agrees with∇(ϕ|∂C̃ ). And they have the same critical points set.
On ∂C̃bad , we have

‖Xλ,∂C̃ −∇(ϕ|∂C̃ )‖ = O(e−
√

β).

Despite individual flowlines for the two vector fields with the same starting point in
the good region may be split after flow through a bad region, we claim that for each
critical point ρ̃τ , the unstable manifolds W̃ Xλ

τ and W̃∇ϕ
τ for the two flows are the same.

Let τ ∈ ∂T have vertices {α1, . . . , αk}. Then

∇(ϕ|C̃ ) = ∇ϕ − c1∇ F̃ ∈ R · ρ∂ρ + (�ϕ)−1∗ (Int cone τ)

and

Xλ,∂C̃ = Xλ − X⊥
λ = Xλ − c(u)XIm f̃ ∈ R · ρ∂ρ + (�ϕ)−1∗ (Int cone τ)

where we used X⊥
λ positively proportional to XIm f̃ , and XIm f̃ is given by Eq. (5.1).

By similar argument in Proposition 4.4 that W∇ϕ
τ is dual to τ via �∞

ϕ , we have WXλ
τ

is dual to τ via�∞
ϕ . Thus W̃∇ϕ

τ and W̃∇ϕ
τ has to be the same. We drop the superscripts

and denote both as W̃τ . ��
Proposition 5.8 For each τ ∈ ∂T , the unstable manifold W̃τ × Tτ,� is a Lagrangian
in H̃.
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Proof One can use the property of the Liouville flow to show the unstable manifold
is isotropic, and then counting dimension

dimR W̃τ × Tτ,� = (dim τ) + n − (dim τ + 1) = n − 1 = 1

2
dimR H̃.

We give an alternative proof. By Proposition 4.4, we have

�ϕ(cone W̃τ ) × Tτ,� = cone τ × Tτ,�.

However, cone τ × Tτ,� is part of the conormal Lagrangian T ∗
Tτ,�

MT for the subman-
ifold Tτ,� in MT . Since �ϕ × id is a symplectomorphism between MC∗ and T ∗MT ,
we get cone W̃τ × Tτ,� is a conical Lagrangian in M∗

C∗ . Finally, a Lagrangian restricts
to a symplectic submanifold is isotropic. Thus by dimension counting,

W̃τ × Tτ,� = (
cone W̃τ × Tτ,�

) ⋂
H̃

is a Lagrangian in H̃. ��

5.4 No other critical points

Proposition 5.9 There are noother zeros of theLiouville vector field away from {Critτ }.
Proof It suffices to prove that there are no zeros of the Liouville vector field outside
of the positive loci H̃+. Here we only give the sketch the proof. We look at the good
region first. Then dcϕ|H = 0 is equivalent to dϕ|H = 0. Hence, we only need to
check that there are no critical points for ϕ.

Suppose there is a critical point of ϕ at z ∈ H̃good , the terms labeled by α1, . . . , αk

are non-zero, i.e., near z, H̃ is defined by

k∑

i=1

fαi (z) = 0.

Let τ ∈ T be the simplex with vertices {α1, . . . , αk}. Let τ∨ be the cell in the tropical
amoeba�, andUτ ⊂ H̃good where the defining equation is as above.We split into two
cases below. Recall P is the polytope corresponding to vertex 0 ∈ T . Let g0 denote
the Euclidean metric on MR after identification MR

∼= R
n .

(1) The case 0 /∈ τ . Then τ∨ is a non-compact cell in �, and intersects the amoeba
polytope P at face Fτ = P ∩ τ∨.

Let u = Logβ(z), and let u′ denote the orthogonal projection to the cell τ∨0 with
respect to g0. Then distg0(u, u′) = O(1/

√
β). Let u′′ denote the minimum of ϕ on

Fτ . We claim that

ϕ(u′′) < ϕ(u′),
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since the family of increasing level sets of ϕ meet the convex cell τ∨ first at u′′.
Let v = u′′ −u′ ∈ MR. If we view v as a tangent vector at u′′, then 〈dϕ(u′), v〉 < 0.

Since u and u′ are O(1/
√

β) close, we also have 〈dϕ(u′), v〉 < 0. Finally, one can
check v can be lifted as a tangent vector to TzH̃, hence dϕ �= 0 at z.

(2) The case 0 ∈ τ .Without loss of generality, we may assume �(0) = π, h(0) =
0, and αk = 0. Thus, the defining equation of H̃ near z can be written as

1 =
k−1∑

i=1

fαi =
k−1∑

i=1

e−i�(αi )−βh(αi )eβ〈αi ,u〉+i〈αi ,θ〉 =: F(u, θ)

Suppose z is a critical point of ϕ|{F=1}, then there exists c1, c2, such that

dϕ(ρ) = c1dReF(ρ, θ) + c2dImF(ρ, θ).

However, since dϕ(ρ) has no dθ component, hence the coefficients of dθ on the RHS
need to cancel out. Since all the αi s are linearly independent, we see this is possible
only if all arg( fαi ) are equal or differ by π . Since

∑
i fαi = 1, we get all fαi ∈ R,

and at least one is positive.
If all of fαi (z) are positive, then there is nothing to show, since our goal is to show

that all the critical points lie on the positive loci.
If not all of fαi (z) are positive, say for i = 1, . . . ,m, fαi (z) < 0, then u lies on the

real hypersurface

1 = −eβlα1 (u) − · · · − eβlαm (u) + · · · + eβlαk+1 (u) =: H(u).

near the face τ∨ on P . If we further require dϕ to be in the R-span of α1, . . . , αk−1,
then u has to be near the critical point of ϕ on face τ∨. One can show that dϕ has
to be in the R+-span of α1, . . . , αk−1. Hence, there does not exist c ∈ R, such that
dϕ(u) = cdH(u).

This concludes the discussion for z in the good region. If z is in the bad region,
where at least one 0 < χα(z) < 1, we will approximate the bad region using good
region in the following way. Define a different set of cut-off functions, by changing
the cut-off threshold from −√

β to −2
√

β, ie. redefine

χα,α′,β(u) = χ(β(lα(u) − lα′(u)) + 10
√

β)

in Definition 1.4. Denote the new tropical localized hypersurface H̃10. We claim the
Hausdorff distance between H̃ and H̃10 in MC∗ is O(e−c

√
β) for some c > 0. Fur-

thermore, their unit conormal bundles S∗̃HMC∗ and S∗̃H10
MC∗ should have distance

O(e−c
√

β) aswell. A zero of dc(ϕ|H̃) corresponds to an intersection of�∞
dcϕ ⊂ S∗MC∗

with S∗̃HMC∗ , where

�∞
dcϕ = (�dcϕ ∩ Ṫ ∗(MC∗))/R+ ⊂ T∞(MC∗) ∼= S∗(MC∗).
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[cf Definition (4.1) and (4.2)]. Thus the bad region of H̃ can be approximately by part
of good regions in H̃10, where we know there does not exist critical points of ϕ away
from the positive loci, hence there are no critical points in the bad region of H̃ away
from the positive loci. ��
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