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Abstract This article is a continuation of a series by the authors on partial Bergman
kernels and their asymptotic expasions. We prove a 2-term pointwise Weyl law
for semi-classical spectral projections onto sums of eigenspaces of spectral width
! = k−1 of Toeplitz quantizations Ĥk of Hamiltonians on powers Lk of a positive
Hermitian holomorphic line bundle L → M over a Kähler manifold. The first result
is a complete asymptotic expansion for smoothed spectral projections in terms of
periodic orbit data. When the orbit is ‘strongly hyperbolic’ the leading coefficient
defines a uniformly continuousmeasure onR and a semi-classical Tauberian theorem
implies the 2-term expansion. As in previous works in the series, we use scaling
asymptotics of the Boutet-de-Monvel–Sjostrand parametrix and Taylor expansions
to reduce the proof to the Bargmann–Fock case.

This article is part of a series [18, 19] devoted to partial Bergman kernels on polarized
(mainly compact) Kähler manifolds (L , h) → (Mm,ω, J ), i.e. Kähler manifolds of
(complex) dimension m equipped with a Hermitian holomorphic line bundle whose
curvature form is ωh = ω. Partial Bergman kernels

!k,<E : H 0(M, Lk) → Hk,<E (1)

are orthogonal projections onto proper subspacesHk,<E ⊂ H 0(M, Lk) of the space
of holomorphic sections of Lk . Let H ∈ C∞(M,R) denote a classical Hamiltonian,
let ξ = ξH denote the Hamilton vector field of H , let ∇ be the Chern connection.
The quantization of H is the Toeplitz Hamiltonian

Ĥk := !hk

(
i
k
∇ξ + H

)
!hk : H 0(M, Lk) → H 0(M, Lk). (2)
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Here, !hk : L2(M, Lk) → H 0(M, Lk) is the orthogonal (Szegö or Bergman) pro-
jection. Let {µk, j }dkj=1 denote the eigenvalues of Ĥk on the dk-dimensional space
H 0(M, Lk) and denote the eigenspaces by

Vk(µk, j ) := {s ∈ H 0(M, Lk) : Ĥks = µk, j s}.

Also, denote the eigenspace projections by

!k, j := !µk, j : H 0(M, Lk) → Vk(µk, j ).

Then the partial Bergman kernels (1) are the projections onto the spectral subspaces

Hk,<E := {Ĥk < E} := {s ∈ H 0(M, Lk) : 〈Ĥks, s〉 < E〈s, s〉}

of (2).
In this article,we study the pointwise semi-classicalWeyl asymptotics of!k,<E (z)

(1) in the conventional semi-classical scaling by h = 1
k . Themain results give asymp-

totics for the scaled pointwise Weyl sums,

!E
k, f (z) =

∑

j

f (k(µk, j − E))!k, j (z, z)

for various types of test functions f . Equivalently, we consider a sequence of mea-
sures on R,

dµz,1,E
k (λ) =

∑

j

!k, j (z)δk(µk, j−E) (λ). (3)

then!E
k, f (z) =

∫
R f (λ)dµz,1,E

k (λ).When f ∈ S(R)with f̂ ∈ C∞
c (R), Theorem 2.2

gives a complete asymptotic expansion.When f = 1[a,b] (the indicator function) one
has sharp Weyl sums, and Theorem 1.7 gives a pointwise Weyl formula with 2 term
asymptotics.

The 1
k scaling originates in the Gutzwiller trace formula and has been studied in

numerous articles in diverse settings. Two-term pointwise Weyl laws is a standard
topic in spectral asymptotics. The pointwise asymptotics in the Kähler setting are
quite analogous to Safarov’s asymptotic results for spectral projections of the Lapla-
cian of a compact Riemannian manifold [14, 15] and we use Safarov’s notations to
emphasize the similarity. For general Kähler manifolds, integrated Weyl laws and
dual Gutzwiller trace expansions were studied in [17] using the Toeplitz calculus of
[3]. Pointwise Weyl laws of the type studied in this article are given in Borthwick-
Paul-Uribe [2], based on theBoutet-de-Monvel–GuilleminHermite Toeplitz calculus
[3].

The main purpose of this paper is to prove pointwise Weyl asymptotics using
the techniques developed in [18, 19]. Existence of an asymptotic expansion for
smoothed Weyl sums is a straightforward consequence of a parametrix construction
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and of the method of stationary phase, replacing the elaborate symplectic spinor
symbol calculus of [3]. However, the coefficients are complicated to compute. In
the Toeplitz theory of [2, 3] they are calculated using the symplectic spinor symbol
calculus of Toeplitz operators, while we use scaling asymptotics of the quantized
flow in the sense of [13, 16, 19]. It is shown that the leading coefficients depend only
on the quadratic part of the Taylor expansions. Hence, the coefficients are the same as
in the linear model of [5] once the flow is linearized at a period. Our approach gives
a somewhat simpler formula for the leading term than in [2] and it is not completely
obvious that the formulae agree; in Sect. 8 we show that the formulae do agree with
those of [2]. Related calculations using the scaling approach of this article are also
given in articles of Paoletti [10, 11].

In the previous articles, we studied the scaling asymptotics of !k,<E (z) :=
!k,<E (z, z) in a 1√

k
-tube around the interface ∂A between the allowed and forbidden

regions,
A := {z : H(z) < E}, F = {z : H(z) > E}.

This 1√
k
scaling was the new feature of the Weyl asymptotics of [19] and is reminis-

cent of the scaling of the central limit theorem. The 1
k -scalingwas also studied in [19],

but it was sufficient for the purposes of that article to obtain the crude asymptotics

corresponding to the singularity of the Fourier transform d̂µz,1,E
k (t) at t = 0. Techni-

cally speaking, the main difference with respect to [19] is that the asymptotics of the
1√
k
scaling only involve ‘Heisenberg translations’ while those of dµz,1,E

k involve the
metaplectic representation. Although the notation and approach of this article have
considerable overlap with [19] we give a rather detailed exposition for the sake of
completeness.

1 Statement of Results

To state the results, we need some further notation. Given a Hermitian metric h on L ,
we denote by Xh = ∂D∗

h ⊂ L∗ the unit S1 bundle π : Xh → M over M defined as
the boundary of the unit co-disc bundle in the dual line bundle L∗ to L . As reviewed
in Sect. 3.5, Xh is a strictly pseudo-convex CR-manifold, and we denote the CR
sub-bundle by HX ⊂ T Xh . As reviewed in Sect. 3.8, the Hamilton flow gt : M →
M lifts to a contact flow ĝt : Xh → Xh (Lemma 3.5) with respect to the contact
structure α associated to the Kähler potential of ω. Then HX = ker α and therefore
Dĝt : HX → HX . Moreover, HX inherits a complex structure J from that of M
under the identification π∗ : Hx X → Tπ(x)M , for all x ∈ X . Its complexification
has a splitting Hx XC = Hx X ⊗ C = H 1,0

x X ⊕ H 0,1
x X into subspaces of types (1, 0)

resp. (0, 1). In the generic case where ĝt is non-holomorphic, it does not preserve
this splitting.

At each point x ∈ X , the complexified CR subspace HXC equipped with Jx
together with the Hermitian metric hx determines an osculating Bargmann–Fock
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space HJx (see Sects. 3.5 and 4.6 for background). Thus, HJx is the space of entire
holomorphic functions on H 1,0

x X which are square integrable with respect to the
ground state "Jx (defined in (19)). Symplectic transformations T : Hx X → Hx X
resp. T : TzM → TzM may be quantized by the metaplectic representation as com-
plex linear symplectic maps (see (29) and Sect. 4.4) on the osculating Bargmann–
Fock space,

WJx (T ) : HJx → HJx . (4)

The asymptotics of µz,1,E
k ( f ) depend on whether or not z ∈ M is a periodic point

for gt .

Definition 1.1 Define periodic points of gt , as follows:

PE := {z ∈ H−1(E) : ∃T > 0 : gT z = z}.

For z ∈ PE , let Tz denote the minimal period T > 0 of z.

It may occur that z ∈ PE but the orbit gth(x) with π(x) = z is not periodic, where
gth is the flow generated by the horizontal lift ξhH of the Hamiltonian vector field ξH .
This is due to holonomy effects: parallel translation of sections of Lk around the
closed curve t .→ gt (z)may have non-trivial holonomy.We denote the holonomy by

einθhz := the unique element eiθ ∈ S1 : gnTzh x = rθx .

Let z ∈ PE , T = nTz be a period for n ∈ Z. Then DgTz induces linear symplectic
map

S := DgTz : TzM → TzM, (5)

When working in the Kähler context it is better to conjugate to the complexifications,

TzM ⊗ C = T 1,0
z M ⊕ T 0,1

z M.

We denote the projection to the ‘holomorphic component’ by

π1,0 : TzM ⊗ C → T 1,0M.

The spaces T 1,0M, T 0,1M are paired complex Lagrangian subspaces.
Relative to a symplectic basis {e j , Jek} of TzM in which J assumes the standard

form J0, the matrix of DgnTz has the form,

DgnTzz := Sn :=




An Bn

Cn Dn



 ∈ Sp(m,R). (6)

If we conjugate to the complexification TzM ⊗ C by the natural map W defined in
(27), then (6) conjugates to
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(
Pn Qn

Q̄n P̄n

)
∈ Spc(m).

The holomorphic block

Pn = (An + Dn + i(−Bn + Cn)) = π1,0 WSnW−1 π1,0 : T 1,0
z M → T 1,0

z M (7)

plays a particularly important role.
The symplectic map (5) is quantized by the metaplectic representation WJz (4)

(see Sect. 4.4) on the osculating Bargmann–Fock space HJz of square integrable
holomorphic functions on T 1,0

z M , that is, the metaplectic representation defines a
unitary operator

WJz (DgnTzz ) : HJz (T
1,0
z M) → HJz (T

1,0
z M). (8)

The two-term Weyl law is stated in terms of certain data associated to DgnTz and
WJz (DgnTz ) (8). First, we let WξH be the image of the Hamilton vector field ξH in
TzM ⊗ C. Let α = π1,0WξH , let ᾱ ∈ π0,1WξH , and let Pn be as in (7). Set,

Gn(z) := (det Pn)−
1
2 · (ᾱ · P−1

n α)−
1
2 . (9)

The factor (det P)−
1
2 has an interpretation,

(det Pn)−1/2 = 〈WJx (DgnT (x)x ) "Jz ,"Jz 〉 (10)

as the matrix element of (8) relative to the ground state "Jz in HJz . This relation is
essentially proved by Bargmann and by Daubechies [5]. It can be proved by com-
paring the Bargmann–Fock metaplectic representation of Sect. 4.4 with Daubechies’
Toeplitz construction of metaplectic representation in Sect.4.5. Daubechies did not
explicitly use the conjugationW to the complexification, and therefore did not record
the identity (10).

Also let einθhx denote the holonomy of the horizontal lift of the orbit t → gt (z) at
t = nTz . We define the function QE

z,k(s) by:

Definition 1.2

QE
z,k(s) =






G0(z) z /∈ PE

∑
n∈Z(2π)

−1e−inTzse−inkθhz Gn(z) z ∈ PE .

(11)

Definition 1.3 For z ∈ PE , define the distributions dνz
k on f ∈ S(R) by

∫

R
f (λ)dνz

k (λ) =
∑

n∈Z
f̂ (nTz) Gn(z)e−inkθhz =

∫

R
f (s)QE

z,k(s)ds
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The nature of Qz,k(s) and νz
k depends on the type of periodic orbit of z ∈ PE .

In this article we confine ourselves to the case where the orbit of z is ‘real positive
definite symmetric’ in the following sense:

Definition 1.4 Let z ∈ PE , with Tz = T , and let (TzM, Jz,ωz) be the tangent space
equipped with its complex structure and symplectic structure. Let {e j , fk}mj,k=1 be a
symplectic basis of TzM in which J = J0 and ω = ω0 take the standard forms. We
say that DGT

z is positive definite symmetric symplectic if its matrix S ∈ Sp(m,R) in
the basis {e j , fk}mj,k=1 is a symmetric positive definite symplectic matrix.

Positive definite symplectic matrices are discussed in Sects. 3.1 and 3.2 and in
Sect. 6.1. They are diagonalizable by orthogonal matrices in O(2n) and by unitary
matrices in U (n). In invariant terms, O(2n) is the orthogonal group of (TzM, gJz )
where gJz (X, Y ) = ωz(X, JzY ). Unitary matrices commute with Jz . The eigenvalues
of DGT

z are real and to come in inverse pairs. The eigenvalue 1 corresponds to the
Hamilton vector field ξH of H and there is a second eigenvector of eigenvalue 1
coming from the fact that periodic orbits come in 1-parameter families (symplectic
cylinders) as the energy level E is varied (see [1]). The eigenvalues in the symplectic
orthogonal complement of the eigenspace V (1) of eigenvalue 1 come in unequal real
inverse pairs λ,λ−1. For expository simplicity, we omit the case where eigenvalues
are complex of modulus /= 1 and arise in 4-tuples λ,λ−1, λ̄, λ̄−1 (sometimes called
loxodromic). We do discuss the elliptic case where S ∈ U (n), and thus all of the
eigenvalues have modulus 1 and come in complex conjugate pairs.

We refer to [6] for background on positive definite symmetric symplectic matrices
and to [8] for types of periodic orbits of Hamiltonian flows.

Definition 1.5 We say that z satisfies the strong hyperbolicity hypothesis if DgTz :
(TzM, Jz) → (TzM, Jz) is a positive symplectic map, with a 2-dimensional sym-
plectic eigenspace V (1) for the eigenvalue 1.

The main motivation for this hypothesis is that we can explicitly compute (9)
in this case (see Proposition 6.1). Almost the same computation works if DgTz is
unitary (the elliptic case) However, in the strong hyperbolic case, we can prove that
the infinite series defining (11) converges absolutely and uniformly, and therefore:

Proposition 1.6 If z satisfies the strong hyperbolicity hypothesis, then νz
k is an abso-

lutely continuous measure.

The main result is a sharp 2-term Weyl law in this case:

Theorem 1.7 Assume that z ∈ H−1(E) and that z satisfies the strong hyperbolicity
hypothesis. Then,

∫ b

a
dµz,1,E

k =






( k
2π

)m−1/2 G0(z)(b − a)(1+ o(1))., z ∈ H−1(E), z /∈ PE

( k
2π

)m−1/2
νz
k (a, b)(1+ o(1)), z ∈ H−1(E), z ∈ PE ,

.
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Theorem 1.7 is a Kähler Toeplitz analogue of [15, Theorem 1.8.14] (originally
proved in [14]). The difference between z /∈ PE and z ∈ PE is that in the former
case, there is a contribution only from the t = 0 times of gt (the identity map) and
in the latter case there are contributions from all iterates of gTz .

It may be expected that Theorem 1.7 extends in some suitable way to any type
of periodic orbit. In the somewhat analogous Riemannian setting studied in [15], the
pointwise Weyl law involves first return maps on the set of geodesic loop directions
ξ ∈ S∗x M at a point x ∈ M rather than closed orbits. In some cases (such as where x
is a focus of an ellipsoid), the corresponding measures or Q-functions are calculated
in [15, Example 1.8.20]. Otherwise, the authors say simply that it is difficult to
determinewhen the “Q” function of [15, (1.8.11)] is uniformly continuous. It is likely
that Theorem 1.7 can be extended to any orbit for which none of the eigenvalues on
the symplectic orthogonal complement of the V (1)-eigenspace of S have modulus
one. This is certainly the case, by the same proof as in Proposition 1.6, if S is
diagonalizable by a unitary matrix.

2 Outline of the Proof

The proof is a continuation of that in [19], adding information on the remainder
term and its relation to periodic orbits of periods T > 0. Given a function f ∈ S(R)
(Schwartz space) one defines

f (k Ĥk) =
∫

R
f̂ (τ )eikτ Ĥk dτ =

∫

R
f̂ (t)Uk(t)dt, (12)

where
Uk(t) = exp i tk Ĥk . (13)

is the unitary groupon H 0(M, Lk)generated by k Ĥk .Note that f (k Ĥk) is the operator
on H 0(M, Lk) with the same eigensections as Ĥk and with eigenvalues f (kµk, j ).
The metric contraction of the Schwarz kernel on the diagonal is given by,

!E
k, f (z) =

∫

R
f̂ (t)e−ikt Eeikt Ĥk (z, z)dt =

∫

R
f̂ (t)e−ikt EUk(t, z)dt. (14)

Here, and henceforth, themetric contraction of a kernel Kk(z, w) is denoted by K (z).

Definition 2.1 The metric contraction of a kernel Mk(z, w) :=∑dk
j=1 µk, j sk, j (z)

sk, j (w) expressed in an orthonormal basis {sk, j }dkj=1 of H
0(M, Lk) is defined by

Mk(z) :=
dk∑

j=1

µk, j |sk, j (z)|2hk , (dk = dim H 0(M, Lk))
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In Sect. 3.8 below, we lift sections and kernels to the associatedU (1) frame bundle
of L∗; then metric contractions are the same as values of the lifts along the diagonal.

In [19] it is shown thatUk(t) is a semi-classical Toeplitz Fourier integral operator
of a type defined in [17]. As in [19] we construct a parametrix of the form,

!̂hkσk,t (ĝ
−t )∗!̂hk (15)

where (ĝ−t )∗ is the pullback of functions on Xh by ĝt andwhereσk,t is a semi-classical
symbol originally calculated in [17, Unitarization Lemma 1 (2b.5) and (3.10)]. In
fact, to leading order in k, and up to a phase factor,

σkt (z) = 〈"DgTz Jz ,"Jgt z 〉−
1
2 . (16)

Here, DgT Jz is the image of the complex structure at z and Jgt z is the complex
structure of Tgt zM and "J denotes the ground state in the Bargmann–Fock Hilbert
space with complex structure J . It was proved in [5, 17] that (16) equals (det P)−

1
2

by calculating the inner product of the two Gaussians.
Combining (3) and (14) shows that

µz,1,E
k ( f ) :=

∫

R
f (x)dµz,1,E

k =
∫

R
f̂ (t)e−i Ekt!̂hkσkt (ĝ

t )∗!̂hk (z)dt, (17)

or equivalently

µ̂z,1,E
k (t) = e−i EktUk(t, z, z). (18)

Using a semi-classical Tauberian theorem, it is proved in Sect. 7 that the singularities
of (18) determine the 2-term asymptotics of µz,1,E

k [a, b] for any interval. Proposi-
tion 1.6 follows because the singularities are of a different type depending on the
convergence of Qz(k).

To prove the two-term Weyl law, we begin by obtaining asymptotics for the
smoothed partial density of states (17). In the first case where z /∈ PE , the only
singularity occurs at t = 0 and so the expansion is the same as in [19, Theorem 3]
(recalled here as Theorem7.1). The time interval [−ε, ε] is assumed to be so short that
it contains no non-zero periods of periodic orbits. When z /∈ H−1(E) the expansion
is rapidly decaying. Thus, the new aspect is the second case where z ∈ PE .

Theorem 2.2 For f ∈ S(R)with f̂ ∈ C∞
c (R), we have (seeDefinitions 1.4 and 2.1)

!k, f (z) :=
∫

R
f dµz,1,Ek =






(
k
2π

)m−1/2
f̂ (0)G0(z)(1+ O(k−1))., z ∈ H−1(E), z /∈ PE

(
k
2π

)m−1/2∑
n∈Z f̂ (nTz ) Gn (z)e−iknθhz + O(km−3/2), z ∈ H−1(E), z ∈ PE ,

O(k−∞), z /∈ H−1(E)
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To prove Theorem 2.2 we use the Boutet de Monvel–Sjöstrand parametrix for
!̂hk . This gives a parametrix for (12) and (17) as semi-classical oscillatory integrals
with complex phases. The phase has no critical points when the orbit does not lie
in H−1(E) and no critical points for t /= 0 when z /∈ PE . The main difficulty is to
evaluate or interpret the phases and the Hessian determinant (and other invariants
that arise) dynamically, and to determine whether or not they are invariants of DĝT

or invariants of the full orbit. One phase factor is a holonomy integral around the
periodic orbit ĝt (x). In Proposition 5.6 it is shown that although the holonomy is
apriori a ‘global invariant’ of the orbit rather than an invariant of the first return map,
in fact the Hessian of the holonomy can be expressed as an invariant of the first return
map.

To evaluate the Hessian determinants, we first do so in the linear Bargmann–Fock
setting, where H is a quadratic Hamiltonian on the Kähler manifold Cm , equipped
with a general complex structure J and a Hermitian metric h.

Proposition 2.3 Let H be a quadratic Hamiltonian in the Bargmann–Fock setting.
Assume that H has compact level sets and non-degenerate periodic orbits on level
E. Then, in the notation of Definition 2.1,

∫

R
f̂ (t)Uk(t, z)e

−i t Ekdt 0
(

k
2π

)m− 1
2 ∑

n∈Z
f̂ (nTz)e−ikθznTz (ᾱP−1

n α)−1/2(det Pn)−1/2,

where Pn is the holomorphic block of DgnTz (7) and π1,0WξH = α.

We give a detailed proof in Sect. 5.4 because the general case is reduced to the
Bargmann–Fock case. It is shown in this article that the linearized calculation is the
principal symbol of non-linear problem (17), hence that Theorem 1.7 can be reduced
to Proposition 2.3. The proof consists of nothing more than Taylor expansions of the
phase in suitable Kähler normal coordinates and stationary phase.

3 Background

The background to this article is largely the same as in [19], and we refer there
for many details. Here we give a quick review to setup the notation. First we intro-
duce co-circle bundle X ⊂ L∗ for a positive Hermitian line bundle (L , h), so that
holomorphic sections of Lk for different k can all be represented in the same space
of CR-holomorphic functions on X , H(X) = ⊕kHk(X). The Hamiltonian flow gt

generated by ξH on (M,ω) will be lifted to a contact flow ĝt generated by ξ̂H on X .
Then we review the Toeplitz quantization for a contact flow on X following [13, 17].
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3.1 Symplectic Linear Algebra

Let (V,σ) be a real symplectic vector space of dimension 2n and let J be a compat-
ible complex structure on V . There exists a symplectic basis in which V 0 R2m ,
σ takes the standard form ω = 2

∑m
j=1 dx j ∧ dy j and J has the standard form,

J0 =




0 −I

I 0



 . Let H 1,0
J resp. H 0,1

J , denote the ±i eigenspaces of J in V ⊗ C.

The projections onto these subspaces are denoted by

PJ = 1
2
(I − i J ) : V ⊗ C → H 1,0

J , P̄J = 1
2
(I + i J ) : V ⊗ C → H 0,1

J .

Let S ∈ Sp(m,R) be a real symplectic matrix. Then its transpose St = J S−1 J−1

also lies in Sp(m,R) and SJ = J (St )−1.

3.2 Symmetric Symplectic Matrices

Amatrix S is called a symmetric symplectic matrix if S ∈ Sp(n,R) and St = S. For
such S it follows that SJ = J S−1. A good reference for positive definite symplectic
matrices is [8, p. 6] and [8, p. 52]. For the following see [6, Proposition 22]. Let
U (n) = Sp(n) ∩ O(2n,R). Then U J = JU and

U =




A −B

B A



 , ABt = Bt A, AAt + BBt = I, U−1 =




At Bt

−Bt At



 = Ut .

Proposition 3.1 If S is a positive definite symmetric symplectic matrix and # =
diag(λ1, . . . ,λn;λ−1

1 , . . . ,λ−1
n ) is the given diagonal matrix, then there exists U ∈

U (n) so that S = Ut#U.

The following is [6, Proposition 26].

Proposition 3.2 A symplectic matrix S is symmetric positive definite if and only
if S = eX with X ∈ sp(n) and X = Xt . The map exp : sp(n) ∩ Sym(2n,R) →
Sp(n) ∩ Sym+(2n,R) is a diffeomorphism.

If e1, . . . , en are orthonormal eigenvectors of S corresponding to the eigenvalues
λ1, . . . ,λn then since SJ = J S−1,

SJek = J S−1ek =
1
λ j

J ek .
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Hence±Je1, . . . ,±Jen are orthonormal eigenvectors ofU corresponding to eigen-

values λ−1
1 , . . . ,λ−1

n and
(
A
B

)
= [e1, . . . , en].

3.3 The Bargmann–Fock Space of a Complex Hermitian
Vector Space

TheBargmann–Fock spaces can be definedmore generally for any complex structure
J on R2n and any Hermitian metric on Cn .

Let (V,ω) be a real symplectic vector space. Define

J = {J : R2n → R2n, J 2 = −I, ω(J X, JY ) = ω(X, Y ), ω(X, J X) >> 0}

to be the space of complex structures onRn compatible with ω. The Bargmann–Fock
space of a symplectic vector space (V,σ)with compatible complex structure J ∈ J
is the Hilbert space,

HJ = { f e− 1
2 σ(v,Jv) ∈ L2(V, dL), f is entire J-holomorphic}.

Here,
"J (v) := e−

1
2 σ(v,Jv) (19)

is the ‘vacuum state’ and dL is normalized Lebesgue measure (normalized so that
square of the symplectic Fourier transform is the identity). The orthogonal projection
onto HJ is denoted by PJ in [5] but we denote it by !J in this article. Its Schwartz
kernel relative to dL(w) is denoted by !J (z, w).

Remark: The Bargmann–Fock space with J = i the standard complex structure is
often defined instead as the weighted Hilbert space of entire holomorphic functions
with Gaussian weight Cne−|z|2dL(z) where Cn is a dimensional constant. In this
definition the vacuum state is 1. There is a natural isometric ‘ground states’ iso-
morphism to HJ defined by multiplying by

√
"J . With the Gaussian measure, the

Bergman kernel is B(z, w) = ez·w̄. When V = Cn we write v = Z , J Z = i Z , and
σ(Z ,W ) = ImZ ·W . Then "J (Z) = e−

1
2 |Z |2 .

3.4 Bargmann–Fock Bergman Kernels

For BF model, we have !k : L2(M, Lk) → H 0(M, Lk) the Bergman projection
operator. And !̂k : L2(X) → Hk(X), the Szego projection operator on X to Hardy
space’s Fourier component. Let H also denote its pull back on X .
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The semi-classical Bargmann–Fock Bergman kernels (23) on Cn are given by

!Cm

k,h0,i (z, w) =
(

k
2π

)m

ek(zw̄−|z|2/2−|w|2/2).

Their lifts to X are given by

!̂Cm

k,h0,i (ẑ, ŵ) =
(

k
2π

)m

ekψ(ẑ,ŵ)

where

ψ̂(ẑ, ŵ) = i(θz − θw)+ ψ(z, w) = i(θz − θw)+ z · w̄ − |z|2/2− |w|2/2.

where ẑ = (θz, z) ∈ S1 × M ∼= X denotes a lift of z.1

In the general case, by (3.1) of [5], one has

!Jψ(z) = 〈"z
J ,ψ〉 =

∫

Cn
ψ(v)"z

J (v)dv,

i.e.
!J (z, w) = "z

J (w) = eiσ(z,w)e−
1
2 σ(z−w,J (z−w)) (20)

which reduces to eiImzw̄e−
1
2 (|z−w|2) = ezw̄e−

1
2 (|z|2+|w|2) in the case J = i, h = h0.

3.5 Holomorphic Sections in Lk and CR-Holomorphic
Functions on X

Let (L , h) → (M,ω) be a positive Hermitian line bundle, L∗ the dual line bundle.
Let

X := {p ∈ L∗ | ‖p‖h = 1}, π : X → M

be the unit circle bundle over M .
Let eL ∈ $(U, L) be a non-vanishing holomorphic section of L over U , ϕ =

− log ‖eL‖2 and ω = i∂∂̄ϕ. We also have the following trivialization of X :

U × S1 ∼= X |U , (z; θ) .→ eiθ
e∗L |z
‖e∗L |z‖

. (21)

1We also use the notation x = (z, θz), y = (w, θw).
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X has a structure of a contact manifold. Let ρ be a smooth function in a neighbor-
hood of X in L∗, such that ρ > 0 in the open unit disk bundle, ρ|X = 0 and dρ|X /= 0.
Then we have a contact one-form on X

α = −Re(i ∂̄ρ)|X ,

well defined up to multiplication by a positive smooth function. We fix a choice of
ρ by

ρ(x) = − log ‖x‖2h, x ∈ L∗,

then in local trivialization of X (21), we have

α = dθ − 1
2
dcϕ(z). (22)

X is also a strictly pseudoconvex CR manifold. The CR structure on X is defined
as follows: The kernel of α defines a horizontal hyperplane bundle

HX := ker α ⊂ T X,

invariant under J since ker α = ker dρ ∩ ker dcρ. Thus we have a splitting

T X ⊗ C ∼= H 1,0X ⊕ H 0,1X ⊕ CR.

A function f : X → C is CR-holomorphic, if d f |H 0,1X = 0.
A holomorphic section sk of Lk determines a CR-function ŝk on X by

ŝk(x) := 〈x⊗k, sk〉, x ∈ X ⊂ L∗.

Furthermore ŝk is of degree k under the canonical S1 action rθ on X , ŝk(rθx) =
eikθ ŝk(x). The inner product on L2(M, Lk) is given by

〈s1, s2〉 :=
∫

M
hk(s1(z), s2(z))d VolM(z), d VolM = ωm

m! ,

and inner product on L2(X) is given by

〈 f1, f2〉 :=
∫

X
f1(x) f2(x)d VolX (x), d VolX = α

2π
∧ (dα)m

m! .

Thus, sending sk .→ ŝk is an isometry.
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3.6 Szegö Kernel on X

On the circle bundle X over M , we define the orthogonal projection from L2(X) to
the CR-holomorphic subspaceH(X) = ⊕̂k≥0Hk(X), and degree-k subspaceHk(X):

!̂ : L2(X) → H(X), !̂k : L2(X) → Hk(X), !̂ =
∑

k≥0
!̂k .

The Schwarz kernels !̂k(x, y) of !̂k is called the degree-k Szegö kernel, i.e.

(!̂k F)(x) =
∫

X
!̂k(x, y)F(y)d VolX (y), ∀F ∈ L2(X).

If we have an orthonormal basis {ŝk, j } j of Hk(X), then

!̂k(x, y) =
∑

j

ŝk, j (x)ŝk, j (y).

The degree-k kernel can be extracted as the Fourier coefficient of !̂(x, y)

!̂k(x, y) =
1
2π

∫ 2π

0
!̂(rθx, y)e−ikθdθ. (23)

We refer to (23) as the semi-classical Bergman kernels.

3.7 Boutet de Monvel–Sjöstrand Parametrix for the Szegö
Kernel

Near the diagonal in X × X , there exists a parametrix due to Boutet de Monvel–
Sjöstrand [4] for the Szegö kernel of the form,

!̂(x, y) =
∫

R+
eσψ̂(x,y)s(x, y,σ)dσ + R̂(x, y). (24)

where ψ̂(x, y) is the almost-CR-analytic extension of ψ̂(x, x) = −ρ(x) = log ‖x‖2,
and s(x, y,σ) = σmsm(x, y)+ σm−1sm−1(x, y)+ · · · has a complete asymptotic
expansion. In local trivialization (21),

ψ̂(x, y) = i(θx − θy)+ ψ(z, w)− 1
2
ϕ(z)− 1

2
ϕ(w),

where ψ(z, w) is the almost analytic extension of ϕ(z).
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3.8 Lifting the Hamiltonian Flow to a Contact Flow on Xh

In this sectionwe review the definition of the lifting of aHamiltonian flow to a contact
flow, following [19, Section 3.1]. Let H : M → R be a Hamiltonian function on
(M,ω). Let ξH be theHamiltonian vector field associated to H , such thatdH = ιξH ω.
The purpose of this section is to lift ξH to a contact vector field ξ̂H on X . Letα denote
the contact 1-form (22) on X , and R the corresponding Reeb vector field determined
by 〈α, R〉 = 1 and ιRdα = 0. One can check that R = ∂θ.

Definition 3.3 (1) The horizontal lift of ξH is a vector field on X denoted by ξhH . It
is determined by

π∗ξ
h
H = ξH , 〈α, ξhH 〉 = 0.

(2) The contact lift of ξH is a vector field on X denoted by ξ̂H . It is determined by

π∗ξ̂H = ξH , Lξ̂H
α = 0.

Lemma 3.4 The contact lift ξ̂H is given by

ξ̂H = ξhH − HR.

The Hamiltonian flow on M generated by ξH is denoted by gt

gt : M → M, gt = exp(tξH ).

The contact flow on X generated by ξ̂H is denoted by ĝt

ĝt : X → X, ĝt = exp(t ξ̂H ).

Lemma 3.5 In local trivialization (21), we have a useful formula for the flow, ĝt

has the form (see [19, Lemma 3.2]):

ĝt (z, θ) =
(
gt (z), θ +

∫ t

0

1
2
〈dcϕ, ξH 〉(gs(z))ds − t H(z)

)
.

Since ĝt preserves α it preserves the horizontal distribution H(Xh) = ker α, i.e.

Dĝt : H(X)x → H(X)ĝt (x).

It also preserves the vertical (fiber) direction and therefore preserves the splitting
V ⊕ H of T X . Its action in the vertical direction is determined by Lemma 3.5.
When gt is non-holomorphic, ĝt is not CR holomorphic, i.e. does not preserve the
horizontal complex structure J or the splitting of H(X)⊗ C into its±i eigenspaces.
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3.9 Toeplitz Quantum Dynamics

Here we consider quantization for the Hamiltonian flow gt on holomorphic sections
of Lk , or CR-functions of degree k on X . An operator T : C∞(X) → C∞(X) is
called a Toeplitz operator of order k, denoted as T ∈ T k , if it can be written as
T = !̂ ◦ Q ◦ !̂, where Q is a pseudo-differential operator on X . Its principal symbol
σ(T ) is the restriction of the principal symbol of Q to the symplectic cone

% = {(x, rα(x)) | r > 0} ∼= X × R+ ⊂ T ∗X.

The symbol satisfies the following properties






σ(T1T2) = σ(T1)σ(T2);
σ([T1, T2]) = {σ(T1),σ(T2)};
If T ∈ T k, andσ(T ) = 0, then T ∈ T k−1.

The choice of the pseudodifferential operator Q in the definition of T = !̂ Q !̂ is
not unique. However, there exists some particularly nice choices.

Lemma 3.6 ([3] Proposition 2.13) Let T be aToeplitz operator on% of order p, then
there exists a pseudodifferential operator Q of order p on X, such that [Q, !̂] = 0
and T = !̂ Q !̂.

Now we specialize to the setup here, following closely [13]. Consider an order
one self-adjoint Toeplitz operator

T = !̂ ◦ (H · D) ◦ !̂,

where D = (−i∂θ) and ∂θ is the fiberwise rotation vector field on X , and H is
multiplication by π−1(H), where we abuse notation and identify H downstairs with
its pullback upstairs π−1(H). We note that D decompose L2(X) into eigenspaces
⊕k∈ZL2(X)k with eigenvalue k ∈ Z. The symbol of T is a function on% ∼= X × R+,
given by

σ(T )(x, r) = (σ(H)σ(D)|%)(x, r) = H(x)r, ∀(x, r) ∈ %.

Definition 3.7 ([13], Definition 5.1) Let Û (t) denote the one-parameter subgroup
of unitary operators on L2(X), given by

Û (t) := !̂ eit!̂(DH)!̂ !̂ : H(X) → H(X),

and let Ûk(t) (13) denote the Fourier component acting on L2(X)k :
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Ûk(t) := !̂k eit!̂(kH)!̂ !̂k : Hk(X) → Hk(X) (25)

We use Uk(t) to denote the corresponding operator on H 0(M, Lk).

Proposition 3.8 ([13], Proposition 5.2) Û (t) is a group of Toeplitz Fourier integral
operators on L2(X), whose underlying canonical relation is the graph of the time t
Hamiltonian flow of r H on the symplectic cone % of the contact manifold (X,α).

Proposition 3.9 ([17]) There exists a semi-classical symbolσk(t) so that the unitary
group (25) has the form

Ûk(t) = !̂k(ĝ
−t )∗σk(t)!̂k

modulo smooth kernels of order k−∞.

It follows from the above proposition and the Boutet de Monvel–Sjöstand
parametrix construction that Ûk(t, x, x) admits an oscillatory integral representa-
tion of the form,

Ûk (t, x, x) 0
∫

X

∫ ∞

0

∫ ∞

0

∫

S1

∫

S1
eσ1ψ̂(rθ1 x,ĝ

t y)+σ2ψ̂(rθ2 y,x)−ikθ1−ikθ2 Skdθ1dθ2dσ1dσ2dy

where Sk is a semi-classical symbol, and the asymptotic symbol 0 means that the
difference of the two sides is rapidly decaying in k.

4 Bargmann–Fock Space

In this section, we illustrate the various definition of the background section using
the example of Bargmann–Fock (BF) space. We also define the osculating BF space
for at the tangent space TzM for a general Kähler manifold, and show that in the
semi-classical limit as k →∞ the Bergman kernel near the diagonal reduces to the
BF model at leading order.

4.1 Set-Up

Let M = Cm with coordinate zi = xi +
√−1yi , L → M be the trivial line bundle.

Wefix a trivialization and identify L ∼= Cm × C.We useKähler formω = i
∑

i dzi ∧
dz̄i and Kähler potential ϕ(z) = |z|2 :=∑i |zi |2.2 The Bargmann–Fock space of
degree k on Cm is defined by

Hk =
{
f (z)e−k|z|2/2 | f (z) holomorphic function onCm,

∫

Cm
| f |2e−k|z|2 < ∞

}
.

The volume form on Cm is d VolCm = ωm/m!.

2Our choice of ω may differ from other conventions by factors of 2 or π.
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More generally, fix (V,ω) be a real 2m dimensional symplectic vector space. Let
J : V → V be a ω compatible linear complex structure, that is g(v,w) := ω(v, Jw)

is a positive-definite bilinear form and ω(v,w) = ω(Jv, Jw). There exists a canon-
ical identification of V ∼= Cm up toU (m) action, identifying ω and J . We denote the
BF space for (V,ω, J ) by Hk,J .

The circle bundle π : X → M can be trivialized as X ∼= Cm × S1. The contact
form on X is

α = dθ + (i/2)
∑

j

(z jd z̄ j − z̄ j dz j ).

If s(z) is a holomorphic function (section of Lk) on Cm , then its CR-holomorphic
lift to X is

ŝ(z, θ) = ek(iθ−
1
2 |z|2)s(z).

Indeed, the horizontal lift of ∂z̄ j is ∂h
z̄ j = ∂z̄ j − i

2 z j∂θ, and ∂h
z̄ j ŝ(z, θ) = 0. The vol-

ume form on X = Cm × S1 is d VolX = (dθ/2π) ∧ ωm/m!.

4.2 Bergman Kernel on Bargmann–Fock Space

The degree k Bergman kernel downstairs on Cm is given by

!k(z, w) =
(

k
2π

)m

ezw̄.

Given any function f ∈ L2(Cm, e−k|z|2/2dVolCm ), its orthogonal projection to holo-
morphic function is given by

(!k f )(z) =
∫

Cm
!k(z, w) f (w)e−k|w|2d VolCm (w).

The degree k Bergman (Szegö) kernel !̂k(ẑ, ŵ) upstairs for X = Cm × S1 is
given by

!̂k(ẑ, ŵ) =
(

k
2π

)m

ekψ̂(ẑ,ŵ),

where ẑ = (z, θz), ŵ = (w, θw) and the phase function is

ψ(ẑ, ŵ) = i(θz − θw)+ zw̄ − 1
2
|z|2 − 1

2
|w|2. (26)



Pointwise Weyl Law for Partial Bergman Kernels 607

4.3 Heisenberg Representation

The spaceCm × S1 can be identified with the reduced Heisenberg groupHm
red , where

the group multiplication is given by

(z, θ) ◦ (z′, θ′) = (z + z′, θ + θ′ + Im(zz̄′)).

Lemma 4.1 The contact formα = dθ + i
2

∑
j (z j d z̄ j − z̄ j dz j ) onHm

red is invariant
under the left multiplication

L(z0,θ0) : (z, θ) .→ (z0, θ0) ◦ (z, θ) =
(
z + z0, θ + θ0 +

z0 z̄ − z̄0z
2i

)
.

Proof

(L∗(z0,θ0)α)|(z,θ) = d
(

θ + θ0 +
z̄z0 − z̄0z

2i

)
+ i

2

∑

j

((z j + z0 j )dz̄ j − (z̄ j + z̄0 j )dz j ) = α|(z,θ).

!

In particular,Hm
red preserves the volume form α ∧ (dα)m/m! on X , hence defines

a unitary operator acting on the degree k CR functions on X .
The infinitesimal Heisenberg group action on X can be identified with contact

vector field generated by a linear Hamiltonian function H : Cm → R.

Lemma 4.2 ([19, Section 3.2]) For any β ∈ Cm, we define a linear Hamiltonian
function on Cm by

H(z) = zβ̄ + β z̄.

The Hamiltonian vector field on Cm is

ξH = −iβ∂z + i β̄∂z̄,

and its contact lift is

ξ̂H = −iβ∂z + i β̄∂z̄ −
1
2
(zβ̄ + β z̄)∂θ.

The time t flow ĝt on X is given by left multiplication

ĝt (z, θ) = (−iβt, 0) ◦ (z, θ) = (z − iβt, θ − tRe(β z̄)).
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4.4 Metaplectic Representation

Let R2m,ω = 2
∑m

j=1 dx j ∧ dy j be a symplectic vector space. The space Sp(m,R)
consists of linear transformation S : R2m → R2m , such that S∗ω = ω. In coordinates,
we write (

x ′

y′

)
= S
(
x
y

)
=
(
A B
C D

)(
x
y

)
.

In complex coordinates zi = xi + iyi , we have then

(
z′

z̄′

)
=
(
P Q
Q̄ P̄

)(
z
z̄

)
=: A

(
z
z̄

)
,

where (
P Q
Q̄ P̄

)
= W−1

(
A B
C D

)
W, W = 1√

2

(
I I

−i I i I

)
. (27)

The choice of normalization ofW is such that W−1 = W ∗. Thus,

P = 1
2
(A + D + i(C − B)).

We say suchA ∈ Spc(m,R) ⊂ M(2n,C). The following identities are often useful.

Proposition 4.3 ([7] Prop 4.17) Let A =
(
P Q
Q̄ P̄

)
∈ Spc, then

(1)
(
P Q
Q̄ P̄

)−1

=
(

P∗ −Qt

−Q∗ Pt

)
= KA∗K, where K =

(
I 0
0 −I

)
.

(2) P P∗ − QQ∗ = I and PQt = QPt .
(3) P∗P − Qt Q̄ = I and Pt Q̄ = Q∗P.

The (double cover) of Sp(m,R) acts on the (downstairs) BF spaceHk via kernel:

given M =
(
P Q
Q̄ P̄

)
∈ Spc, we have

Kk,M(z, w) =
(

k
2π

)m

(det P)−1/2 exp
{
k
1
2

(
z Q̄P−1z + 2w̄P−1z − w̄P−1Qw̄

)}

where the ambiguity of the sign the square root (det P)−1/2 is determined by the lift
to the double cover.WhenA = I d, thenKk,A(z, w̄) = !k(z, w̄). Similarly, we have
the kernel upstairs on X as

K̂k,A(ẑ, ŵ) = Kk,M(z, w̄)ek(iθz−|z|2/2)+k(−iθw−|w|2/2). (28)
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A quadratic Hamiltonian function H : Cm → R will generates a one-parameter
family of symplectic linear transformations At = gt : Cm → Cm . However, At is
onlyR-linear but notC-linear, i.e. Mt does not preserve the complex structure ofCm .
Hence, one need to orthogonal project back to holomorphic sections. To compensate
for the loss of norm due to the projection, one need to multiply a factor ηAt . This is
in the spirit of Proposition 3.9.

Proposition 4.4 LetA : Cm → Cm be a linear symplectic map,A =
(
P Q
Q̄ P̄

)
, and

let Â : X → X be the contact lift that fixes the fiber over 0, then

K̂k,A(ẑ, ŵ) = (det P∗)1/2
∫

X
!̂k(ẑ, Âû)!̂k(û, ŵ)d VolX (û)

Proof The contact lift Â : Cm × S1 → Cm × S1 is given by A acting on the first
factor:

Â : (z, θ) .→ (Pz + Qz̄, θ),

one can check that Â∗α = α. The integral over X is a standard complex Gaussian
integral, analogous to [7, Prop 4.31], and with determinant Hessian 1/| det P|, hence
we have (det P∗)1/2/| det P| = (det P)−1/2. !

4.5 Toeplitz Construction of the Metaplectic Representation

As in [5], the metaplectic representation WJ (S) of S ∈ Mp(n,R) on HJ can also
be constructed by the Toeplitz approach. First, let US be the unitary translation
operator on L2(R2n, dL) defined by USF(x, ξ) := F(S−1(x, ξ)). The metaplectic
representation of S onHJ is given by ([5], (5.5) and (6.3 b))

WJ (S) = ηJ,S!JUS!J , (29)

where we define (see [5] (6.1) and (6.3a)),

ηJ,S = 2−n det(I − i J )+ S(I + i J )
1
2 (30)

and !J is the Bargmann–Fock Szegö projector (20).
Also define βJ,SJ S−1 = 2−n/2[det(SJ + J S)]1/4. Then, |ηJ,S| = βJ,SJ S−1 . In fact

(see [5], above (6.3a), and (B6))

|2−n det(I − i J )+ S(I + i J )
1
2 | = [det(SJ + J S)]1/2 = 2nβ2

J,SJ S−1 .
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We further record the identities,

det(SJ + J S) = det(I + J−1S−1 J S) = det(I + S∗S).

The following identity gives another explanation of the presence of (det Pn)−
1
2

in (9).

Lemma 4.5 (see [5], p. 1388)

ηJ Sβ
−2
J,SJ S−1 = (ηJ S)

∗−1 = ηJ S 2n(det(I + S∗S))−
1
2

and (cf. [5], p. 1388),

(η∗J,S)
−1 = det((I + i J )+ S(I − i J )) = 2n det(A + D + i(B − C)) = det P∗.

Proof The first equality is proved on p. 1388 of [5]. The second asserts that

βJ,SJ S−1 = 2−n/2(det(I + S∗S))
1
4 ,

which follows from (30) and identity (ii) above. !

Corollary 4.6 ηJ,USU−1 = ηJ,S where U ∈ U (m).

Proof This follows from replacing S by USU−1 and using that U J = JU . !

4.6 Osculating Bargmann–Fock Space

In this subsection, we first define the osculation Bargmann–Fock space for any fixed
point z ∈ M , using the triple (TzM,ωz, Jz). Then, we define the preferred local
coordinates in a neighborhood U of z and a preferred frame section eL of L over
U , which together determines a coordinate system of the circle bundle X |U over U .
In these special coordinate, the Boutet–Sjöstrand phase can be approximated by the
Bargmann–Fock–Heisenberg phase function modulo cubic order terms.

Definition 4.7 Given a point x ∈ Xh (resp. z ∈ M), we define the osculating
Bargmann–Fock space at x (resp. z) to be theBargmann–Fock space of (Hx X, Jx ,ωx )

resp. (TzM, Jz,ωz). We denote it by HJx ,ωx (resp.HJz ,ωz ).

If z is a periodic point for gt , let γ =⋃0≤s≤t g
s z be the corresponding closed

geodesic, and we may apply the metaplectic representation to define WJz (Dgt |z) as
a unitary operator onHJz ,ωz . There is a square root ambiguity which can be resolved
as in [5] but for our purposes it is not very important and for brevity we omit it from
the discussion.
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Definition 4.8 Let p ∈ M . A coordinate system (z1, . . . , zm) on a neighborhood U
of p is called K-coordinates at p if

i
m∑

j=1

dz j ∧ dz̄ j = ω|p .

Let eL be a local frame and let φ(z) = − log ||eL(z)||2h , if in a K-coordinates

φ(z) = |z|2 +
∑

J K

aJK z J z̄K , with |J | ≥ 2, |K | ≥ 2. (31)

then eL is called a K-frame.

K-coordinates are defined byLu–Shiffman inDefinition 2.6 of [9]. Existence ofK-
coordinates and K-frames are proved in [9] (Lemma 2.7). Further, in K-coordinates,

ω = ω0 +
∑

i jk&

Ri jk&zi z̄ j dzk ∧ dz̄& + · · · , ω0 =
∑

j

dz j ∧ dz j .

The K-frame and K-coordinates together give us ‘Heisenberg coordinates’:

Definition 4.9 A Heisenberg coordinate chart at a point x0 in the principal bundle
X is a coordinate chart ρ : U → V with 0 ∈ U ⊂ Cm × S1 and ρ(0) = x0 ∈ V ⊂ X
of the form

ρ(z1, . . . , zm, θ) = eiθ
e∗L(z)

||e∗L(z)||hk
,

where eL is a preferred local frame for L → M at P0 = π(x0), and (z1, . . . , zm) are
K-coordinates centered at P0. (Note that P0 has coordinates (0, . . . , 0) and e∗L(P0) =
x0.)

In these coordinates, the Boutet–Sjöstrand phase ψ(x, y) may be approximated
modulo cubic remainder terms by the Bargmann–Fock–Heisenberg phase (26).

The lifted Szegö kernel is shown in [16] and in Theorem 2.3 of [9] to have the
scaling asymptotics,

Theorem 4.10 Let P0 ∈ M and choose a Heisenberg coordinate chart about P0.

k−m!̂hk

(
u√
k
,
θ1
k
,

v√
k
,
θ2
k

)
= !̂

TzM
hz ,Jz

(u, θ1, v, θ2)
(
1+ k−1A1(u, v, θ1, θ2)+ · · ·

)
,

where !
TzM
hz ,Jz is the osculating Bargmann–Fock Szegö kernel for k = 1 and for the

tangent space TzM 0 Cm equipped with the complex structure Jz and Hermitian
metric hz.

Here we identify the coordinates (u, θ1, v, θ2) with linear coordinates on TzM ×
S1 × TzM × S1.
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5 Proof of Theorem 2.2

In this section we study the rescaled Weyl sum

!E
k, f (z, z) :=

∑

j

f (k(µk, j − E))!k, j (z, z).

Our purpose is to prove Theorem 2.2. By comparison with interface asymptotics
[19], we now need to consider the Hamiltonian flow for long times.

The main idea of the proof is that aside from the holonomy factor (the value of
the phase at the critical point), the data of the principal term in Theorem 2.2 localizes
at the periodic point. That is, the data come from the derivative of the first return
map and do not involve data along the orbit. Too see this, we use the quadratic
Taylor approximation of the phase ψ(x, ĝt y)+ ψ(y, x) in (t, y) around a periodic
point (T, x). First, we approximate the phase ψ by its osculating Bargmann–Fock
approximation ψ0 at x . Further we approximate ĝt by its linear approximation Dĝt .
We also need to determine the quadratic approximation to the holonomy term of the
phase coming from the θ variable. This part of the calculation is apriori non-local. But
we show in Proposition 5.6 that the Hessian of the holonomy term θ̂w(T ) vanishes at
the periodic point. After these Taylor approximations, the calculation is essentially
reduced to the linear Bargmann–Fock case of Sect. 4.

5.1 Stationary Phase Integral Expression

Let z ∈ M and x ∈ X such that π(x) = z. Let f ∈ S(R) with Fourier transform
f̂ (t) =

∫
f (x)eitx dx

2π compactly supported. We combine the definition (15) with
two compositions of the Boutet de Monvel–Sjoestrand parametrix (24) to get

!E
k, f (z) =

∫

R
f̂ (t)e−i tkE Ûk (t, x, x)dt

=
∫

R

∫

X

∫

S1

∫

S1

∫

R+

∫

R+
f̂ (t)ek'(t,x,y,σ1,σ2,θ1,θ2)Akdσ1dσ2dθ1dθ2dydt + O(k−∞).

where the phase function is given by,

'(t, x, y,σ1,σ2, θ1, θ2) = −i t E + σ1ψ̂(rθ1x, ĝ
t y)+ σ2ψ̂(rθ2 y, x)− iθ1 − iθ2

(32)
and Ak is a semi-classical symbol.We consider the critical points and the determinant
of the Hessian matrix of the phase.

We will work with a K-coordinate and K-frame in a neighborhood U of z. In this
coordinate, z = (0, . . . , 0) ∈ Cm , x = (0, . . . , 0; 0) ∈ Cm × S1, and y = (w; θw) ∈
Cm × S1. We denote ĝt y = (w(t); θw(t)). Since θw(t)− θw only depends on w, t
but independent of θw, then we define the holonomy phase for flow ĝt :
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θ̂w(t) := θw(t)− θw.

Similarly, the holonomy phase θhw(t) for the horizontal flow exp(tξhH ) is denoted by

exp(tξhH )(w; θw) = (gtw; θw + θhw(t)). (33)

Note that θ̂w(t) depends on H , where as θw(t) only depend on H modulo constant,or
dH .

Proposition 5.1 Fix a K-coordinate and K-frame in a neighborhood U at z. Let
χ : M → R be a smooth cut-off function supported in U and constant equals to one
near z. Then we have

!E
k, f (z)

=
∫

R

∫

M

∫

S1

∫

S1

∫

R+

∫

R+
f̂ (t)ek'

′(t,w,σ1,σ2,θ1,θ2)χ(gtw)χ(w)Skdσ1dσ2dθ1dθ2dwdt + O(k−∞).

where

' ′(t, w,σ1,σ2, θ1, θ2) = −i t E + σ1(iθ1 − i θ̂w(t)− ϕ(w(t))+ σ2(iθ2 − ϕ(w))− iθ1 − iθ2.
(34)

Proof Introducing the cut-off functionχ in the integral (32) only changes the integral
byO(k−∞).Within the support of the cut-off function,wemayuse theK-coordinates.

Then phase function ' can be written as (within the coordinate patch):

' = −i t E + σ1(iθ1 − i θ̂w(t)− iθw + ψ(0, w(t))− ϕ(w(t))

+σ2(iθ2 + iθw + ψ(w, 0)− ϕ(w))− iθ1 − iθ2
= −i t E + σ1(i θ̃1 − i θ̂w(t)− ϕ(w(t))+ σ2(i θ̃2 − ϕ(w))− i θ̃1 − i θ̃2

where θ̃1 = θ1 − θw and θ̃2 = θ2 + θw. We note ψ(0, w) = 0 due to the choice of
K-frame (31). After the change of variables, we see the phase ' does not depend on
θw. Hence we may perform the θw integral, and rewrite θ̃i as θi , to get the reduced
phase function ' ′. !

Proposition 5.2 The critical points for ' ′ (34) are as following:
(1) If z /∈ H−1(E), there is no critical points.
(2) If z ∈ H−1(E) but z /∈ PE , then the only critical point corresponds to t = 0.
(3) If z ∈ H−1(E) and z ∈ PE , then for each n ∈ Z, there is a critical point with
t = nTz, where Tz is the primitive period of gt at z.

Proof We will prove that the critical points for ' ′ (32) are given by

w = 0, w(t) = 0, σ1 = σ2 = 1, θ1 = θ̂0(t), θ2 = 0.
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Taking derivatives of σ1 and σ2, we need to have

iθ1 − i θ̂w(t)− ϕ(w(t) = 0, iθ2 − ϕ(w) = 0.

Hence
θ1 = θ̂0(t), θ2 = 0,

Thus, we may work in a neighborhood of x from now on.
Taking derivatives in θ1 and θ2 and setting them to zero, we get

σ1 = 1, σ2 = 1.

Taking derivative in t and setting it to zero, we have

∂' ′

∂t
= −i E + iσ1

d θ̂w(t)
dt

= −i(E − σ1H(0)).

Thus, using σ1 = 1, we have E = H(0).
Finally, taking derivatives in w, we have

∂' ′

∂w
= −iσ1∂w θ̂w(t) = −i∂wθw(T )

where T is a period. Since ĝT preserves horizontal space, and ∂w is in the horizontal
space at x = (0; 0), hence

∂wθw(T ) = 〈α|x , (ĝT |x )∗∂w〉 = 〈α|x , ∂w〉 = 〈dθ, ∂w〉 = 0.

!

5.2 Determinant of Hessian of ! ′

Let T be a period of gt at z (possibly zero). To compute the contribution at t = T ,
we will do a slight change of variables.

Lemma 5.3 Define new integration variables

t = T + t ′, w = g−t ′w′, θ1 = θ′1 − θ̂w′(−t ′), θ2 = θ′2 + θ̂w′(−t ′).

Then the Jacobian factor is 1, and the phase function 'T in the new variables is

'T (t
′, w′,σi , θ′i ) = −i(T + t ′)E + σ1(iθ

′
1 − i θ̂w′(T )− ϕ(w′(T ))+ σ2(iθ

′
2 + θ̂w′(−t ′)

− ϕ(w′(−t ′)))− iθ′1 − iθ′2.

(We will drop the prime from now on.)
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Proof The Jacobian matrix is block-upper-triangular, with the w − w′ block having
determinant 1, since gt preserves the volume form.

The holonomy for flow ĝt can be written as

θ̂w(t) = θw(t)− θw(0) = θw′(T )− θw′(−t ′) = θ̂w′(T )− θ̂w′(−t ′).

!

Lemma 5.4 The Hessian matrix for 'T (t, w,σi , θi ) at t = 0, w = 0,σi = 1, θ1 =
θ̂0(T ), θ2 = 0 is as

Hess'T =





σ1 θ1 σ2 θ2 t w

σ1 0 i 0 0 0 0
θ1 i 0 0 0 0 0
σ2 0 0 0 i 0 0
θ2 0 0 i 0 0 0
t 0 0 0 0 ∂t t'T ∂tw'T

w 0 0 0 0 ∂wt'T ∂ww'T




.

In particular, at this critical point, we have

det Hess'T = det
(

∂t t'T ∂tw'T

∂wt'T ∂ww'T

)
.

Proof The calculation is very similar to that in the proof of Proposition 5.2, and is
therefore omitted. !

5.3 Quadratic Approximation to the Phase

To compute the Hessian of the phase function 'T in t and w, suffice to set σi , θi to
their critical value, and compute the Taylor expansion of 'T to second order. Thus,
we get

' ′
T (t, w) := −i(T + t)E − i θ̂w(T )− ϕ(w(T ))+ i θ̂w(−t)− ϕ(w(−t)).

We will consider second order Taylor expansion in each term. We write 0 for equal
modulo cubic order term.

Suppose H has Taylor expansion

H(w) = E + (αw̄ + wᾱ)+ O(|w|2).

We define the corresponding HBF for the osculating BF space Cm ∼= TzM , as the
linear term of H :
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HBF (w) = αw̄ + wᾱ.

We denote the BF model potential as ϕBF (z) = |z|2. Let ĝtBF be the flow generated
by HBF on XBF = Cm × S1, such that

ĝtBF (w; θw) = (w(t)BF ; θw + θ̂w(t)BF ).

Then, we have the following comparison result

Proposition 5.5 (1) θ̂w(−t)− t E = θ̂w(−t)BF + O3 = 1
2 (αz̄ + zᾱ)t .

(2) ϕ(w(T )) = |DgTw|2 + O3.
(3) ϕ(w(−t)) = |w(−t)BF |2 + O3 = |w + iαt |2 + O3.

Proof (1) θ̂w(−t) =
∫ t
0

1
2d

cϕ(ξH )|w(s)ds + t H(w). Since dcϕ|w = O(|w|) and the
integral interval is first order in t , hence

∫ t

0

1
2
dcϕ(ξH )|w(s)ds = t

1
2
dcϕ(ξH )|w + O3

= t〈1
2
dcϕ|w, ξH |0〉+ O3 =

∫ t

0

1
2
dcϕBF (ξHBF )|w(s)ds + O3.

And t H(w) = t (E + HBF (w))+ O3. Hence

θ̂w(−t)− t E =
∫ t

0

1
2
dcϕBF (ξHBF )|w(s)ds + t (E + HBF (w))− t E + O3 = θ̂w(−t)BF + O3.

Finally, we may use Lemma 4.2 to compute the increment in θ.
(2) Since ϕ(w) = |w|2 + O(|w|3) and w(T ) = gT (w) = gT (0)+ DgTw +

O(|w|2) = DgTw + O(|w|2), hence

ϕ(w(T )) = |DgTw|2 + O3

(3) Since ξH = −iα∂z + i ᾱ∂z̄ + O(|z|), we havew(−t) = w + iαt + O2, hence

ϕ(w(−t)) = |w + iαt |2 + O3 = |w(−t)BF |2 + O3.

!

Proposition 5.6
θ̂w(T ) = θ̂0(T )+ O(|w|3).

Proof The proof is rather long, so we break it up into the following two Lemmas.

Lemma 5.7 There exists a neighborhood V ⊂ U of z, such that for anyw ∈ V , and
any path γ : [0, 1] → V from z to w, we have
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θ̂w(T ) = θ̂0(T )−
∫

γ

1
2
dcϕ +

∫

gT (γ)

1
2
dcϕ.

Proof We only give proof for T = nTz , n > 0, the n ≤ 0 case is analogous. Let
{(Ui , ei ,ϕi )}ni=1 be a sequence of coordinate patchUi , such that there exists a partition
of [0, T ]: 0 = t0 < t1 < · · · < tn = T , such that Ui covers the i th segment of the
orbit Oi = {gs z | ti−1 ≤ s ≤ ti }, and ei ∈ $(Ui , L) are non-vanishing holomorphic
sections, and e−ϕi = ‖ei‖2. Without loss of generality, we may take U1 = U . We
identify index n + i with i .

Since gti z ∈ Ui ∩Ui+1 for 0 ≤ i ≤ n, hence

z ∈ V :=
n⋂

i=0

g−ti (Ui ∩Ui+1).

For any w ∈ V , let γ : [0, 1] → V be a path from z to w. Let

γ0 = γ, γi = gti γ.

Then
Im(γi ) ⊂ Ui ∩Ui+1,∀0 ≤ i ≤ n.

OverUi ∩Ui+1, define transition function gi = log(ei+1/ei ), such that gi = ai +√−1bi , with bi (gti z) ∈ [0, 2π). Then we have

‖ei+1‖ = |gi |‖ei‖ ⇒ e−
1
2 ϕi+1 = eai e−

1
2 ϕi ⇒ ϕi+1 − ϕi = −2ai .

Over Ui , let θi = e∗i /‖e∗i ‖ be the section in the co-circle bundle X . Then over
Ui ∩Ui+1, we have

log(e∗i+1/e
∗
i ) = 1/gi = e−ai−

√−1bi ⇒ θi+1 − θi ≡ −bi mod 2π.

where we used additive notation for section valued in S1.
Then, the holonomy can be expressed using Lemma 3.5 in each coordinate

patch Ui

θ̂w(T ) = θw(T )− θw =
n∑

i=1

∫ ti

ti−1

1
2
〈dcϕi , ξH 〉|gswds − (ti+1 − ti )H(w)+ bi (gtiw).

Thus, we may take the difference

θ̂w(T )− θ̂0(T ) =
n∑

i=1

∫ ti

ti−1

1
2
〈dcϕi , ξH 〉|gswds −

∫ ti

ti−1

1
2
〈dcϕi , ξH 〉|gs zds − (ti+1 − ti )(H(w)− H(z))

+
n∑

i=1

bi (gtiw)− bi (gti z)
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=
n∑

i=1

∫ 1

0

∫ ti

ti−1

ω(∂t , ∂s )dtds − (ti+1 − ti )(H(w)− H(z))

+
n∑

i=1

−
∫

γi−1

1
2
dcϕi +

∫

γi

1
2
dcϕi +

n∑

i=1

∫

γi

dbi

=
n∑

i=1

∫ 1

0

∫ ti

ti−1

dH(∂s)dtds − (ti+1 − ti )(H(w)− H(z))

−
∫

γ0

1
2
dcϕ1 +

n∑

i=1

∫

γi

1
2
dc(ϕi − ϕi+1)+

∫

γn

1
2
dcϕn+1 +

n∑

i=1

∫

γi

dbi

= −
∫

γ0

1
2
dcϕ1 +

∫

γn

1
2
dcϕn+1 +

n∑

i=1

∫

γi

(dcai + dbi )

= −
∫

γ0

1
2
dcϕ1 +

∫

γn

1
2
dcϕ1

where in the last step, we used

dc(ai +
√
−1bi ) = d(

√
−1ai − bi ) ⇒ dcai = −dbi .

!

Lemma 5.8 For any fixed path γ : [0, 1] → U starting from 0, and for any 1 =
ε > 0, we have ∫

γ([0,ε])
dcϕ =

∫ ε

0
〈dcϕ, γ̇(s)〉ds = O(ε3)

Proof If a path γ : [0, 1] → U with γ(0) = 0 and γ(1) = w is a straight-line, then

∫

γ
dcϕ = O(|w|3).

Indeed, consider the Taylor expansion of ϕ(z) at z = 0,

ϕ(z) = |z|2 + O(|z|3)

then
dcϕ = −2

∑

i

|zi |2dθi +
∑

i

(O(|z|2)dzi + O(|z|2)dz̄i ).

However, along a straight line path from 0 tow, θi is constant, hence the leading term
of dcϕ vanishes in the integral. For the remainder term, we have |

∫
γ dzi | = O(|w|),

hence proving the claim.
Next, we consider a general path as in the statement of the lemma. For each ε, we

may consider the straight-line path β : [0, ε] → U from 0 to γ(ε). From the previous
claim, we know

∫
β(ε) d

cϕ = O(ε3). Let

%ε : [0, ε]× [0, 1] → U, (t, u) .→ uγ(t)+ (1− u)β(t).
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Then, we may verify that

∫

γ([0,ε])
dcϕ < C

∣∣∣∣

∫

%ε

ω

∣∣∣∣+ O(ε3) < O(ε3).

where the estimate of
∫
%

ω = 2
∑

i

∫
%
dxi ∧ dyi can be done by noting for any

smooth function f ,

∫ ε

0
f (x)dx − ε

1
2
( f (0)+ f (ε)) = O(ε3).

!

Using above two lemma, we have

θ̂w(T ) = θ̂0(T ) = −
∫

γ

1
2
dcϕ +

∫

gT (γ)

1
2
dcϕ = O(|w|3)+ O(|gTw|3) = O(|w|3).

This finishes the proof for Proposition 5.6. !

5.4 Reduction to Osculating BF Model

We continue the calculation of the contribution to the stationary phase integral for
period T orbit. The reduced phase function ' ′

T (t, w) has the following expansion:

' ′
T (t, w) = −iT E − i θ̂0(T )+ i tRe(αw̄)− |w + iαt |2/2− |DgTw|2/2+ O3.

= −iT E − i θ̂0(T )+ iwᾱt − |w|2/2− |αt |2/2− |DgTw|2/2+ O3.

We may write the critical value as

' ′
T (0, 0) = 'T |cri t = −iT E − i θ̂0(T ) = −iθh0 (T )

using holonomy phase of the horizontal flow (33).
The leading term of the stationary integral can be obtained by the followingmodel

result on BF space.

Proposition 5.9 Let H = αz̄ + zᾱ. LetA : Cm → Cm be a symplectic linear map,
Aw = Pw + Qw̄. Suppose ξH is invariant under A. Then
(1)

(det P∗)1/2
(

k
2π

)2m ∫

Cm
ek(i twα−|w|2/2−t2|α|2/2−|Aw|2/2)d VolCm (w)

= K̂k,A((0; 0), ĝt (0; 0))
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= (det P)−1/2
(

k
2π

)m

e−kt2(|α|2−ᾱP−1Qᾱ)/2

where the metaplectic representation kernel K̂k,A(ẑ, ŵ) is defined in (28).
(2)

∫

R
K̂k,A((0; 0), ĝt (0; 0))dt =

(
k
2π

)m−1/2

(det P)−1/2(ᾱP−1α).

Proof (1) We note that

(
k
2π

)m

ek(−|Aw|2/2) = !̂k(0, (Aw; 0)),

and
(

k
2π

)m

ek(i twα−|w|2/2−t2|α|2/2) = !̂k(ĝ
−t (w; 0), 0) = !̂k((w; 0), ĝt (0; 0)).

Hence by Proposition 4.4, we have

(det P∗)1/2
(

k
2π

)2m ∫

Cm
ek(i twα−|w|2/2−t2|α|2/2−|Aw|2/2)d VolCm (w)

= (det P∗)1/2
∫

Cm
!̂k(0, (Aw; 0))!̂k((w; 0), ĝt (0; 0))dw

= K̂k,A((0; 0), ĝt (0; 0)).

And the last line follows by ĝt (0; 0) = (−iαt; 0) and definition for K̂k,A.
(2) Next, we use the fact that ξH is preserved by A, i.e.

(−iα
i ᾱ

)
=
(
P Q
Q̄ P̄

)(−iα
i ᾱ

)

Thus
α = Pα − Qᾱ (35)

hence
|α|2 − ᾱP−1Qᾱ = |α|2 − ᾱP−1(Pα − α) = ᾱP−1α

Then, we have

(
k
2π

)m

(det P)−1/2
∫

R
e−k 1

2 t
2(ᾱP−1α)dt =

(
k
2π

)m−1/2

(ᾱP−1α)−1/2(det P)−1/2

!
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Combining all the steps before, we have proven the following proposition.

Proposition 5.10 Let z ∈ M be a periodic point for the flow ξH and H(z) = E, then

!E
k, f (z, z) =

∑

n∈Z
f̂ (nTz)e−iknθhz Gn

(
k
2π

)m−1/2

(1+ O(k−1))

where if DgnTz |z in K-coordinate at z can be written as
(
Pn Qn

Q̄n P̄n

)
, then

Gn = (det Pn)−1/2(ᾱP−1
n α)−1/2.

6 Proof of Proposition 1.6

The issue at hand is the regularity of the measures µz,1,E
k defined on test functions

f ∈ S(R) with f̂ ∈ C∞
0 (R) in Theorem 2.2. It is only an interesting question when

z ∈ PE . In this case,

∫

R
f µz,1,E

k =
(

k
2π

)m−1/2∑

n∈Z
f̂ (nTz) Gn(z)e−inkθhz + O(km−3/2).

Unravelling the Fourier transform gives that, in the sense of distributions,

dµz,1,E
k (x) =

(
k
2π

)m−1/2∑

n∈Z
einTz x Gn(z)e−iknθhz dx + O(km−3/2).

The proposition asserts first that this series converges absolutely and uniformly
when the orbit through z is real hyperbolic. To prove this we need to consider the
behavior of the matrix element ᾱP−1

n α and the determinant det Pn as n →∞, where
as in (7)

Pn := PJ Sn PJ : T (1,0)
z M → T (1,0)

z M.

We first develop the symplectic linear algebra introduced in Sect. 3.1.

6.1 Matrix Elements and Determinants of Positive Definite
Symplectic Matrices

We are interested in PJ SPJ with PJ = 1
2 (I − i J ). We also use the notation 〈α,β〉 =

β̄t · α for the sesquilinear inner product.
First we prove
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Proposition 6.1 If S is positive definite symmetric symplectic, with invariant vector
ξ and α = PJ ξ, and if the spectrum of S is {eλ j , e−λ j }nj=1 with λ j ≥ 0 then






(i) [PJ SPJ ]−1α = α,

(i i) det PJ SPJ |T 1,0
0 R2n =

∏n
j=1[cosh λ j ].

Proof The proof is through a series of lemmas:

Lemma 6.2 If S is positive definite symplectic, then

PJ SPJ = 1
2
PJ (S + S−1) = 1

2
(S + S−1)PJ

Proof

PJ SPJ = 1
4 (I − i J )S(I − i J ) = 1

4 [S − i J S − i S J − J S J ]

= 1
4 [S + S−1]− i

4 [J [S + S−1] = 1
4

(
(S + S−1)− i J (S + S−1)

)
= 1

2 PJ (S + S−1).

since J S J = −S−1 if S is symmetric. Also,

J (S + S−1) = J S + SJ = (S−1 + S)J

so that PJ (S + S−1) = (S + S−1)PJ . !
Lemma 6.3 Let S be positive definite symmetric symplectic and e j be eigenvectors
of S for eigenvalues λ1, . . . ,λn. Consider the basis PJ ek of H

1,0
J . Then

[PJ SPJ ]PJek = cosh(λ j )PJek,

and [PJ SPJ ]−1 = PJ [S + S−1]−1PJ .

Proof Follows from the previous lemma and the fact that (S + S−1) commutes with
PJ :

[PJ SPJ ]PJek =
1
2
PJ (S + S−1)ek =

1
2
(eλ j + e−λ j )PJek = cosh(λ j )PJek .

!
Statement (i) of the Proposition follows from the fact that

[PJ SPJ ]α = 1
2
(1+ 1)α = α.

Statement (ii) follows from the fact that the eigenvalues of PJ SPJ are cosh λ j by
Lemma 6.3. !
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6.2 Strong Hyperbolicity Hypothesis

Let z be a periodic point of the Hamiltonian flow gt . Under this hypothesis, we have
the following result.

Proposition 6.4 IfdimC M = m > 1, and z beaperiodic pointwith primitive period
T , satisfying the strong hyperbolic hypothesis. Then

∑

n∈Z
|Gn(z)| < ∞.

Proof Let the spectrum of S := DgT be {eλ j , e−λ j }mj=1, with λ1 = 0 and λ j > 0 for
j = 2, . . . , n. Then, recall that

Gn(z) = [det(PJ Sn PJ )〈(PJ Sn PJ )
−1α,α〉]−1/2.

Then, from previous section, we have det(PJ Sn PJ ) =
∏n

j=1 cosh(nλ j ), and
〈(PJ Sn PJ )α,α〉 = 〈α,α〉 independent of n. Since λ j > 0 for j = 2, . . . ,m, hence

|Gn| = | det(PJ Sn PJ )〈α,α〉|−1/2 < Ce−|n|∑ j λ j

for some positive constant C . Thus the sum
∑

n∈Z |Gn(z)| converges exponentially
fast. !

6.3 Proof of Proposition 1.6

By Proposition 6.4, the family of measures

dνT (λ) :=
∑

|n|≤T

ρT (nT (z))e−iλnTz e−iknθhz (Tz) Gn(z)dλ, (T ∈ R+)

converges in theweak* sense of distributions on the spaceS(R)ofSchwartz functions
to the limit distribution,

dν(λ) :=
∑

n∈Z
e−iλnTz e−iknθhz (Tz) Gn(z)dλ,

since the coefficients Gn(z) are bounded in n and by dominated convergence,

∫

R
f (λ)dνT (λ) =

∑

|n|≤T

ρT (nT (z)) f̂ (nT (z)) Gn(z) →
∑

n∈Z
f̂ (nT (z)) Gn(z),

where the sum on the right side converges absolutely.
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7 Proof of Theorem 1.7

In this section we apply Theorem 2.2 and a Tauberian theorem to prove Theorem
1.7. We are concerned with the Weyl sums,

!k,[E1,E2](z) =
∫ E2

E1
dµz,1,E

k =∑ j :k(µk j−H(z))∈[E1,E2] !k, j (z).

The basic idea is to convolve 1[E1,E2] with a well-chosen Schwartz test function
depending on (h, T ), apply Theorem 2.2 and then estimate the remainder.

We consider both families of measures of (3), µz
k and µ

z,1,E
k . The main difference

is the range of eigenvalues involved. The measures µz
k have a fixed compact support,

the range H(M) = [Hmin, Hmax] of H , and the mean level spacing between the km

point masses µk j is k−m . The measures µz,1,E
k are scaled versions,

µz,1,E
k [−M,M] =

∑

j :|µ jk−E |< M
k

!k j (z),

and the mean level spacing between the point masses is k−m+1. Of course,

∑

j :|µ jk−E |< M
k

!k j (z) = µz,1,E
k [−M,M] = µz

k

[−M
k

,
M
k

]
, (36)

As a preliminary, we quote a result from [19, Theorem 3]:

Theorem 7.1 Let E be a regular value of H and z ∈ H−1(E). If ε is small enough,
such that the Hamiltonian flow trajectory starting at z does not return to z for time
|t | < 2πε, then for any Schwarz function f ∈ S(R) with f̂ supported in (−ε, ε) and
f̂ (0) =

∫
f (x)dx = 1, and for any α ∈ R we have

∫

R
f (x)dµz,1,α

k (x) =
(

k
2π

)m−1/2

e
− α2

‖ξH (z)‖2

√
2

2π‖ξH (z)‖
(1+ O(k−1/2)).

There is a further integrated version of the Weyl law with remainder,

#
{
j : |µk j − E | ≤ M

k

}
= 2M

(2π)n
Vol(h−1(E))km−1 + o(km−1). (37)

The constraint in the sum (36) is a ‘codimension one’ condition localizing around
H−1(E). The extra integration in (37) gives an extra factor of k−

1
2 in the station-

ary phase expansion. Note that
∫
M !k j (z)dV (z) = Mult(¯kj) (the multiplicity of the

eigenvalue, generically equal to 1), so the integrated Weyl law does not deal with
non-uniform weights !k j (z). The integrated Weyl law (essentially contained in [3]).

The remainder estimate requires the use of a semi-classical Tauberian theorem
for a sequence µz,1,E

k of measures. Before getting started, let us note some basic facts
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about this sequence. First, µz,1,E
k is not normalized to be a probability measure, but it

is finite and could be normalized by dividing by its mass !hk (z) 0 km + O(km−1)).
In the following discussion,we divide by themass. Second, note that!hk (z)−1dµz,1,E

k

is a centered re-scaling of !hk (z)−1dµz
k (3). That is DkτEdµ

z,1E
k = dµz

k where the
dilation operator is defined by Dkν(I ) = ν(k I ) for any interval I andmeasure ν. Also
τE f (x) = f (x − E). Now, µz

k is supported in H(M) (the range of H : M → R),
hence µz,1,E

k is supported in k(H − E)(M). In [19] we studied !hk (z)−1µ
z, 12 ,E
k :=

D√
k!hk (z)−1µz,1,E

k , whose support is
√
k(H − E)(M) and proved that it tends to

a Gaussian. In particular, its Fourier transform is continuous at 0, and by Levy’s
continuity theorem (or by direct analysis), the sequence!hk (z)−1µz,1/2,E

k is tight. By
comparison, !hk (z)−1µz,1,E

k is not tight, and indeed the !hk (z)−1µz,1,E
k ([a, b]) 0

k−
1
2 , so that the mass is spreading out to infinity and it does not weak* converge on

Cb(R).
Theorem 1.7 not only gives the leading order term but also the order of the

remainder. As is well-known from work of Duistermaat–Guillemin, Ivrii, Safarov
and others, obtaining a sharp remainder term requires the use of something simi-
lar to Fourier transform methods and in particular Fourier Tauberian theorems. As
mentioned before, Theorem 1.7 is analogous to Safarov’s non-classical pointwise
Weyl asymptotics for the spectral function of a Laplace operator (, or more pre-
cisely, asymptotics on intervals [λ,λ + 1] for√−(. The Q-notation is adopted from
[14, 15]. Since we are working on phase space, Q involves closed orbits rather than
loops in configuration space. However, we need to use a semi-classical Tauberian
theorem rather than the homogeneous Tauberian theorem of [15], i.e. we are consid-
ering a sequence of measures µz,1,E

k on a fixed interval rather than a fixed measure
on expanding intervals [0,λ].

Semi-classical Tauberian theorems have been known for a long time. It is a clas-
sical fact that to obtain sharp remainder estimates, one must make use of the Fourier
transform of the measures on long time intervals [−T, T ]. A Tauberian theorem of
the needed type is proved in [12], adapting the statement of Safarov’s non-classical
Weyl asymptotics to a semi-classical problem. This theorem does not quite apply to
our setting for various reasons: (i) It assumes the sequence of measures have fixed
compact support; (ii) it assumes the ‘weights’ or masses of the point masses are
uniform. On the contrary, the ‘weights’ !k, j (z) of µ

z,1,E
k are highly non-uniform in

a way that is inconsistent with the hypotheses of the Tauberian Theorem of [12].
Consider the graph of the weights !k, j (z) as a function of µk j , i.e. the coefficients
of the point masses of µz

k (3). On average the weights are of order 1 since there are
km terms and the total sum is !k(z) 0 Vol(M,ω)km. But the weights are highly
non-uniform:

(1) they peak when µk j 0 H(z); indeed, it is shown inf [19, Theorem 1] that µz
k

tends weakly to δH(z).
(2) By [19, Theorem 2],

∑
j :|µk j−H(z)|<Mk−

1
2
!k, j (z) ∼ Mkm while the number of

terms is of order km−
1
2 . Thus, on average, !k, j (z) is of size k

1
2 in this eigenvalue

range.
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(3) Further, !k, j (z) " k−C when |H(z)− µk j | ≥ Ck−
1
2 log k. Hence, the weights

decay rapidly when µk j lies outside of the range |H(z)− µk j | ≤ Ck−
1
2 log k.

Consequently, the sequence of dilated measures µz,1,E
k concentrates in the sets

[−k
1
2 log k, k

1
2 log k].

Since we need to modify the Tauberian Theorem of [12] to accommodate the
strong peaking of the weights around H(z), we go through the modified proof in
detail.

7.1 Mollifiers and Convolution

We use the following notation: Let ρ1 ∈ C∞
0 (−1, 1) satisfy ρ1(t) = 1 on [− 1

2 ,
1
2 ],

ρ1(−t) = ρ1(t).Wemayalso assumeFρ1(τ ) ≥ 0 andFρ1(τ ) ≥ δ0 > 0 for |τ | ≤ ε0,
where F and F−1 denote the standard Fourier transform and its inverse,

f̂ (x) := (F f )(x) = (2π)−1
∫

f (t)e−i t xdt, f̌ (x) = (F−1 f )(x) =
∫

f (t)eitxdx

Then set,
ρT (τ ) = ρ1

( τ

T

)
, θT (x) := ρ̂T (x) = T ρ̂1(xT ). (38)

In particular,
∫

θT (x)dx = 1 and θT (x) > T δ0 for |x | < ε0/T . Let

σz,1,E
k (x) = µz,1,E

k (−∞, x].

7.2 Tauberian Theorem for µz,1,E
k

In this section we determine the asymptotics of

σz,1,E
k (E2)− σz,1,E

k (E1) =
∫ E2

E1

dµz,1,E
k (x) =

∑

j : E1k ≤µ jk−E≤ E2
k

!k, j (z).

We recall that the mean level spacings of k(µk, j − E) is k−m+1 so that the number of
terms in the sum is of order km−1. The plan is to mollify the measures by convolution
with θT (38), so that it suffices to determine the asymptotics of

σz,1,E
k ∗ θT (E2)− σz,1,E

k ∗ θT (E1)

+
(
σz,1,E
k (E2)− σz,1,E

k (E1)
)
−
(
σz,1,E
k ∗ θT (E2)− σz,1,E

k ∗ θT (E1)
) (39)
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Since

σz,1,E
k ∗ θT (E2)− σz,1,E

k ∗ θT (E1) =
∫ E2

E1

θh,T ∗ dµz,1,E
k (λ),

we have
(
σz,1,E
k (E2)− σz,1,E

k (E1)
)
−
(
σz,1,E
k ∗ θT (E2)− σz,1,E

k ∗ θT (E1)
)

=
∫ E2

E1

(θT ∗ dµz,1,E
k − dµz,1,E

k ). (40)

First we consider the top terms of (39).

Proposition 7.2 Assume that H(z) = E, z ∈ PE . Then

d
dx

(σz,1,E
k ∗ θT )(x) =

(
k
2π

)m−1/2∑

n∈Z
ρT (nTz)e−i xnTz e−iknθhz (Tz )Gn(z)+ OT (km−3/2) (41)

and

σz,1,E
k ∗ θT (E2)− σz,1,E

k ∗ θT (E1)

= km−
1
2

∫ E2

E1

∑

|nTz |≤T

ρT (nTz)e−iλnTz e−iknθhz (Tz) Gn(z)dλ + O(km−1) .

Proof

d
dx

(σz,1,E
k ∗ θT )(x) =

∫
θT (x − y)dµz,1,Ek (y)

=
∫

R

∫

R
ρT (−t)e−i t (x−y)

∑

j

δk(µk, j−E)(y)!k, j (z)dydt

=
∫

R
ρT (t)e

−i t x
∑

j

ei tk(µk, j−E)!k, j (z)dt

=
∫

R
ρT (t)e

−i t x−i tkEUk(t, z, z)dt

=
(

k
2π

)m−1/2∑

n∈Z
ρT (nTz)e

−i xnTz e−iknθhz (Tz)Gn(z)(1+ O(k−1)).

where the last line follows from Theorem 2.2 to f (y) = θT (x − y). !
Corollary 7.3 Under the strong hyperbolicity hypothesis (Definition 1.5), there
exists constants γ0(z),C1(T, z), such that

d
dx

(σz,1,E
k ∗ θT )(x) ≤

(
k
2π

)m−1/2

γ0(z)+ C1(T, z)km−3/2.
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Proof We start from (41), and let T →∞. By Proposition 6.4, the sum in (41) with
ρT replaced by 1 converges absolutely. !

We now employ a semi-classical Fourier Tauberian theorem to estimate (40). In
fact, since we already semi-classically scaled dµz

k by k, we do not need to scale again.
Weonly refer to theTauberian as semi-classical because it applies to a sequenceµz,1,E

k
of measures on a fixed interval rather than to a fixed measure on a dilated family of
intervals as in the homogeneous Tauberian theorem.

The Tauberian theorem states:

Proposition 7.4 There exist constant γ(z),C(T, z) such that, for any T > 0,

∫ E2

E1

(θT ∗ dµz,1,E
k − dµz,1,E

k ) ≤ γ(z)
T

km−
1
2 + C(T, z)km−3/2.

Together with Proposition 7.2 this gives

Corollary 7.5 For any T > 0, there exist γ0(z, τ ), γ,C1(T, z, τ ) > 0 so that

σz,1,E
k (E2)− σz,1,E

k (E1)

=
(

k
2π

)m− 1
2
∫ E2

E1

∑

|nTz |≤T

ρT (nTz)e
−iλnTz e−iknθhz (Tz ) Gn(z)dλ + 1

T
O(km−

1
2 )+ OT (k

m−3/2).

7.3 Proof of Proposition 7.4

As mentioned above, the hypotheses of [12, Theorem 3.1] do not hold in our setting.
Hence we must extract from [12, Theorem 3.1] the key elements that pertain to our
setting.

We have,

∫ E2
E1

(θT ∗ dµz,1,Ek − dµz,1,Ek ) =
∫
R (µk([E1, E2]− τ )− µk [E1, E2]) θT (τ )dτ

= T
∫
R (µk([E1, E2]− τ )− µk [E1, E2])) ρ̂1(τT )dτ

= T
∫
|τ |≤ 1

T
(µk([E1, E2]− τ )− µk [E1, E2])) ρ̂1(τT )dτ

+ T
∫
|τ |> 1

T
(µk([E1, E2]− τ )− µk [E1, E2])) ρ̂1(τT )dτ

=: I1 + I2.
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Evidently, the key objects to estimate are the increments

µk([E1, E2]− τ )− µk([E1, E2])

The key point is to prove the analogue of [12, Proposition 3.2]:

Proposition 7.6 There exist constants γ1(z) and C1(T, z) such that, for any T > 0,

|(µk([E1, E2]− τ )− µk [E1, E2]))| ≤ γ1(z)
(
1
T

+ |τ |
)
km−

1
2 + C1(T, z)O(km−3/2)

We now show that Proposition 7.6 implies Proposition 7.4.

Proof First, observe that Proposition 7.6 implies,

I1 ≤ sup
|τ |≤ 1

T

|µk([E1, E2]− τ )− µk([E1, E2])| ,

and Proposition 7.6 immediately implies the desired bound of Proposition 7.4 for
|τ | ≤ 1

T . For I2 one uses that ρ̂1 ∈ S(R). Since T
∫
|τ |≥ 1

T
ρ̂1(τT )dτ ≤ 1, Proposition

7.6 implies,

I2 " km−
1
2 γ1(z)T

∫ (
1
T

+ |τ |
)

ρ̂1(T τ )dτ + C1(T, z)O(km−3/2)T
∫

|τ |> 1
T

ρ̂1(τT )dτ

If one changes variables to r = T τ one also gets the estimate of Proposition 7.4. !

We now prove Proposition 7.6.

Proof We need to estimate (µk[E1, E2]− τ )− µk[E1, E2])). The estimate depends
both on the position of [E1, E2] relative to the center of mass at 0 and on the
position of τ . We recall the the total mass of µk = µz,1,E

k on the complement of
[−

√
k log k,

√
k log k] is rapidly decaying in k. Hence we may assume that at least

one of the following occurs:

• [E1, E2] ∩ [−
√
k log k,

√
k log k] /= ∅, i.e. E1 ≥ −

√
k log k, E2 ≤

√
k log k.

• [E1, E2]− τ ∩ [−
√
k log k,

√
k log k] /= ∅, i.e. E1 − τ −

√
k log k, E2 − τ ≤√

k log k.

The proof is broken up into 3 cases: (1) |τ | ≤ ε0
T , (2) τ = &

T ε0, (3) &
T ε0 ≤ τ ≤

&+1
T ε0, for some & ∈ Z.

(1) Assume |τ | ≤ ε0
T . Assume τ > 0 since the case τ < 0 is similar. Write

µk([E1, E2]− τ )− µk[E1, E2]) =
∫
R[1[E1−τ ,E2−τ ] − 1[E1,E2]](x)dµk(x).

For T sufficiently large so that τ ? E2 − E1,
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[1[E1−τ ,E2−τ ] − 1[E1,E2]](x) = 1[E1−τ ,E1] − 1[E2−τ ,E2].

We do not expect cancellation between the terms for arbitrary E1, E2, τ and
therefore must show that each term satisfies the desired estimate. Since they are
similar we only consider the [E1 − τ , E1] interval. Since for |τ | < ε0/T , we
have θT (τ ) > T δ0, thus

µk([E1 − τ , E1]) ≤
1

T δ0

∫

R
θT (E1 − x)dµk(x)

∼ 1
T δ0

d
dx

(σz,1,E
k ∗ θT )(E1)

<
γ0(z)
T δ0

km−1/2

It follows that

|µk([E1, E2]− τ )− µk[E1, E2])| ≤
2γ0(z)
T δ0

km−1/2.

(2) Assume τ = & ε0
T , & ∈ Z.With no loss of generality, wemay assume & ≥ 1.Write

µk([E1, E2])− µk

(
[E1, E2]−

&

T
ε0

)

=
&∑

j=1

µk

(
[E1, E2]−

j − 1
T

ε0

)
− µk

(
[E1, E2]−

j
T

ε0

)

and apply the estimate of (1) to upper bound the sum by

2&γ0(z)
T δ0

km−1/2 = 2γ0
ε0δ0

τkm−1/2

(3) Assume &
T ε0 ≤ τ ≤ &+1

T ε0 and |τh| ≤ ε1 with & ∈ Z. Write

µk([E1, E2] + τ )− µk([E1, E2]) = µk([E1, E2] + τ )− µk([E1, E2] + &
T ε0)

+µk([E1, E2] + &
T ε0)− µk([E1, E2]).

Apply (1) and (2) , it follows that

|µk([E1, E2] + τ )− µk([E1, E2])| ≤
2γ0(z)

δ0

(
τ

ε0
+ 1

T

)
γ0(σ,λ)km−

1
2 .

!
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8 Comparison with BPU

In this section we compare our formula for the leading coefficient in Theorem 2.2
with that in [2]. To do so, we need to introduce the notation and terminology of that
article.

Let φh
τ be the horizontal lift of the Hamiltonian flow to Xh (denoted P in [2]).

At each point p ∈ P , define T h
p P to be the horizontal subspace and #p to be the

positive definite Lagrangian subspace of T h
p P ⊗ C (i.e. the type (1, 0) subspace). By

the analysis of [3, p. 98] there exists a one-dimensional kernelWp of this action, the
line of ground statesWp ⊂ H∞(T h

p P). A normalized section of the bundleW → P
defined byWp is denoted by ep . Further denote byMτ : H∞(T h

p P) → H∞(T h
p P) the

metaplectic representation of the symplectic group of the horizontal space H(T h
p P).

Let ) denote the Hamilton vector field ξH . It is written in [2] that “) acts on
H(T h

p P) and hence on H∞(T h
p P) by via the Heisenberg representation. The action

is by translations. The projection from H∞(T h
p (P)) to generalized invariant vectors

under ) is defined by

P)v :=
∫ ∞

−∞
eit)vdt

the projection from H∞(T h
p P) to the invariant vectors for the flow of ) p above z.

Further let Q be a first order pseudo-differential operator on L2(P) so that
!Q! = D!MH! and so that [Q,!] = 0. Let q be the symbol of Q, which gen-
erates a contact flow φt on P . Then the flow maps #p → #φt (p) and Mτ maps ep to
a multiple of eφt (p)). Define c(t) by )qeφt (p) = ic(t)eφt (p).

Then the formula of [2] for the leading coefficient at a periodic orbit of period
τ is

Cτ ,0 =
1

2πn+1
〈M−1

τ ep1 , P)(ep1)〉e−i
∫ τ
0 (σsub(Q)+c(t))dt .

The approach of this paper is to replace H∞(T h
p ) by the osculating Bargmann–

Fock space, i.e. the Bargmann–Fock space on H 1,0
z M which carries a complex struc-

ture andHermitianmetric and hence aGaussian inner product. In effect, the quadratic
part of the scaled phase of Uk(t, z, z) replaces the symbol calculus. We do not use
Q but the related operator in our setting is Ĥk . The P) operator there corresponds to
the dt integral near a period in our approach. We now verify that our formula agrees
with theirs to the extent possible.

We would like to compare the expression (9) with the one in [2],

〈M−1
T e0, P)e0〉 = 〈ηJ,DgT !JU

−1
DgT

e0,
∫

R
gBF,τ∗ e0dτ 〉 = ηJ,DgT

∫

R
〈U−1

DgT
e0, g

BF,τ
∗ e0〉dτ

where gτ is the BF translation (Heisenberg representation) of the constant vector
field ξH (0) by time τ . Here, we dropped the projection operator!J , since it is acting
on gBF,τ

∗ e0, which is holomorphic already.
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Let
v = e−k|z|2/2

be the (unnormalized) coherent state centered at 0. We first review how Heisenberg
group and Metaplectic group acts on it.
(i) Let w ∈ Cm . Let β(w) be translation by w. Then

[β(w)v](z) = ek[zw̄−|z|2/2−|w|2/2] = ek[iIm(zw̄)−|z−w|2/2]

Indeed, it is centered at w, with a non-trivial phase factor iIm(zw̄).

(ii) Let M =
(
P Q
Q̄ P̄

)
∈ Spc, with M−1 =

(
P∗ −Qt

−Q∗ Pt

)
. Then

(Mv)(z) = 1
(det P)1/2

ek[
1
2 z Q̄P−1z− 1

2 |z|2].

And for our purpose, we also need

(M−1v)(z) = 1
(det P∗)1/2

ek[−
1
2 zQ

∗(P∗)−1z− 1
2 |z|2]

Let ) = −iα∂z + i ᾱ∂z̄ , the Hamiltonian vector field for H = αz̄ + ᾱz. Then,
we can write P)v as

(P)v)(z) =
∫

R
β(−iαt)vdt =

∫

R
ek[i t zᾱ−|z|2/2−|αt |2/2]dt

It is possible to perform the Gaussian integral, then we get

(P)v)(z) =
√

2π
k|α|2 e

k[−|z|2/2−(zᾱ)2/2|α|2)]

We will see, it is better not to evaluate the dt integral first.

Proposition 8.1

〈M−1v, P)v〉 =
(

k
2π

)−m−1/2

(ᾱ(P∗)−1α)−1/2(det P∗)−1/2

The power of
( k
2π

)
does not matter, since we did not choose a normalized coherent

state. The difference between P and P∗ with previous result may be due to the
difference of time +T or −T trajectories. Since we will sum time {nT | n ∈ Z}
trajectories, the difference does not matter in the end.
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Proof

〈M−1v, P)v〉 :=
∫

Cm

∫

R

1
(det P∗)1/2

ek[−zQ∗(P∗)−1z−|z|2/2]ek[i t zᾱ−|z|2/2−|αt |2/2]dtd Vol(z)

=
∫

R

∫

Cm
ek[−i t z̄α−zQ∗(P∗)−1z/2−|z|2−|αt |2/2]d Vol(z)dt

=
∫

R

∫

Cm
e−

1
2 k'(t,z)d Vol(z)dt

Let us do the complex Gaussian integral. The phase function is quadratic

' =
(
t zt z̄t

)



|α|2 0 −iαt

0 Q∗(P∗)−1 I
−iα I 0








t
z
z̄





We have

det




|α|2 0 −iαt

0 Q∗(P∗)−1 I
−iα I 0



 = det




|α|2 iαt Q∗(P∗)−1 −iαt

0 0 I
−iα I 0





= det




|α|2 − αt Q∗(P∗)−1α iαt Q∗(P∗)−1 −iαt

0 0 I
0 I 0



 = (−1)n(|α|2 − αt Q∗(P∗)−1α)

Again, we use ξH is invariant under M , to get (35), taking conjugate we have

ᾱt = ᾱt P∗ − αt Q∗

Hence

|α|2 − αt Q∗(P∗)−1α = |α|2 − (ᾱt P∗ − ᾱt )(P∗)−1α = ᾱt (P∗)−1α

Thus, doing the complex Gaussian integral, and note that (−1)n/2 from determinant
Hessian, should cancels with i n coming from the volume form, we get

〈M−1v, P)v〉 =
(

k
2π

)−m−1/2

(ᾱ(P∗)−1α)−1/2(det P∗)−1/2.

!
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