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Abstract This article is a continuation of a series by the authors on partial Bergman
kernels and their asymptotic expasions. We prove a 2-term pointwise Weyl law
for semi-classical spectral projections onto sums of eigenspaces of spectral width
h = k= of Toeplitz quantizations H,, of Hamiltonians on powers L* of a positive
Hermitian holomorphic line bundle L — M over a Kihler manifold. The first result
is a complete asymptotic expansion for smoothed spectral projections in terms of
periodic orbit data. When the orbit is ‘strongly hyperbolic’ the leading coefficient
defines a uniformly continuous measure on R and a semi-classical Tauberian theorem
implies the 2-term expansion. As in previous works in the series, we use scaling
asymptotics of the Boutet-de-Monvel-Sjostrand parametrix and Taylor expansions
to reduce the proof to the Bargmann—Fock case.

This article is part of a series [18, 19] devoted to partial Bergman kernels on polarized
(mainly compact) Kéihler manifolds (L, h) — (M™, w, J), 1.e. Kidhler manifolds of
(complex) dimension m equipped with a Hermitian holomorphic line bundle whose
curvature form is w;, = w. Partial Bergman kernels

My g HO (M, L*) — Hy <k (D)
are orthogonal projections onto proper subspaces Hy. .z C H°(M, L¥) of the space
of holomorphic sections of L¥. Let H € C*°(M, R) denote a classical Hamiltonian,

let & = £y denote the Hamilton vector field of H, let V be the Chern connection.
The quantization of H is the Toeplitz Hamiltonian

Hy = T (%vg + H) O HOM, L% — H(M, L5). (2)
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Here, I« : L2(M, L¥) — H°(M, L¥) is the orthogonal (Szegd or Bergman) pro-
jection. Let {pu, j}‘;k: | denote the eigenvalues of Hj on the di-dimensional space
H°(M, L*) and denote the eigenspaces by

Vil j) = {s € H(M, L*) : His = puy s}
Also, denote the eigenspace projections by

My =T, : HO(M, L") > Vi(u ;).

Hik, j

Then the partial Bergman kernels (1) are the projections onto the spectral subspaces
Hi-p = {Hy < E} :={s € H' (M, L") : (Hys,s) < E{s, s)}

of (2).

In this article, we study the pointwise semi-classical Weyl asymptotics of [Ty - £(2)
(1) in the conventional semi-classical scalingby 7 = % The main results give asymp-
totics for the scaled pointwise Weyl sums,

Mf () =) f k(e — ENTe (2, 2)
J

for various types of test functions f. Equivalently, we consider a sequence of mea-
sures on R,

dpie ") = D e ()0t - )
j

thenT1Z ;(2) = [ fF(Ndpi " (A). When f € S(R) with f € C2°(R), Theorem 2.2
gives a complete asymptotic expansion. When f* = 1, 5 (the indicator function) one
has sharp Weyl sums, and Theorem 1.7 gives a pointwise Weyl formula with 2 term
asymptotics.

The % scaling originates in the Gutzwiller trace formula and has been studied in
numerous articles in diverse settings. Two-term pointwise Weyl laws is a standard
topic in spectral asymptotics. The pointwise asymptotics in the Kéhler setting are
quite analogous to Safarov’s asymptotic results for spectral projections of the Lapla-
cian of a compact Riemannian manifold [14, 15] and we use Safarov’s notations to
emphasize the similarity. For general Kéhler manifolds, integrated Weyl laws and
dual Gutzwiller trace expansions were studied in [17] using the Toeplitz calculus of
[3]. Pointwise Weyl laws of the type studied in this article are given in Borthwick-
Paul-Uribe [2], based on the Boutet-de-Monvel-Guillemin Hermite Toeplitz calculus
[3].

The main purpose of this paper is to prove pointwise Weyl asymptotics using
the techniques developed in [18, 19]. Existence of an asymptotic expansion for
smoothed Weyl sums is a straightforward consequence of a parametrix construction
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and of the method of stationary phase, replacing the elaborate symplectic spinor
symbol calculus of [3]. However, the coefficients are complicated to compute. In
the Toeplitz theory of [2, 3] they are calculated using the symplectic spinor symbol
calculus of Toeplitz operators, while we use scaling asymptotics of the quantized
flow in the sense of [13, 16, 19]. It is shown that the leading coefficients depend only
on the quadratic part of the Taylor expansions. Hence, the coefficients are the same as
in the linear model of [5] once the flow is linearized at a period. Our approach gives
a somewhat simpler formula for the leading term than in [2] and it is not completely
obvious that the formulae agree; in Sect. 8 we show that the formulae do agree with
those of [2]. Related calculations using the scaling approach of this article are also
given in articles of Paoletti [10, 11].

In the previous articles, we studied the scaling asymptotics of Il -g(z) :=
[Ty <p(z,z)ina \/LE—tube around the interface 0.4 between the allowed and forbidden
regions,

A={z:H() <E}, F={z:H() > E}.

This \/LE scaling was the new feature of the Weyl asymptotics of [19] and is reminis-

cent of the scaling of the central limit theorem. The %-scaling was also studied in [19],
but it was sufficient for the purposes of that article to obtain the crude asymptotics

corresponding to the singularity of the Fourier transform d yz;’ LE (1) atr = 0. Techni-

cally speaking, the main difference with respect to [19] is that the asymptotics of the
\/Lz scaling only involve ‘Heisenberg translations’ while those of d ui’l’E involve the
metaplectic representation. Although the notation and approach of this article have
considerable overlap with [19] we give a rather detailed exposition for the sake of

completeness.

1 Statement of Results

To state the results, we need some further notation. Given a Hermitian metric 4 on L,
we denote by X, = 0D C L* the unit S "bundle 7 : X, — M over M defined as
the boundary of the unit co-disc bundle in the dual line bundle L* to L. As reviewed
in Sect.3.5, X}, is a strictly pseudo-convex CR-manifold, and we denote the CR
sub-bundle by HX C T X,. As reviewed in Sect. 3.8, the Hamilton flow ¢’ : M —
M lifts to a contact flow ¢’ : X;, — X, (Lemma 3.5) with respect to the contact
structure « associated to the Kéhler potential of w. Then H X = ker « and therefore
Dg' : HX — HX. Moreover, HX inherits a complex structure J from that of M
under the identification m, : H, X — T)M, for all x € X. Its complexification
has a splitting H, X¢ = H, X ® C = H''X & H"!X into subspaces of types (1, 0)
resp. (0, 1). In the generic case where ¢’ is non-holomorphic, it does not preserve
this splitting.

At each point x € X, the complexified CR subspace H X¢ equipped with J,
together with the Hermitian metric 4, determines an osculating Bargmann—Fock
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space 'H;_ (see Sects.3.5 and 4.6 for background). Thus, H;, is the space of entire
holomorphic functions on H!°X which are square integrable with respect to the
ground state 2 (defined in (19)). Symplectic transformations 7 : H, X — H, X
resp. T : .M — T,M may be quantized by the metaplectic representation as com-
plex linear symplectic maps (see (29) and Sect.4.4) on the osculating Bargmann—
Fock space,
W;(T):H;, — Hy,. 4)
The asymptotics of u """
for ¢'.

(f) depend on whether or not z € M i1s a periodic point

Definition 1.1 Define periodic points of ¢’, as follows:
Pri={ze HYE):3aT >0: ¢z =12z).

For z € Pg, let T, denote the minimal period T > 0 of z.

It may occur that z € Pg but the orbit g; (x) with m(x) = z is not periodic, where

g, is the flow generated by the horizontal lift 5}1; of the Hamiltonian vector field &p.

This is due to holonomy effects: parallel translation of sections of L* around the

closed curve t — ¢'(z) may have non-trivial holonomy. We denote the holonomy by
¢ := the unique element ¢’ € ' : ¢/ x = ryx.

Letz € Pg, T = nT, be aperiod forn € Z. Then DgZT induces linear symplectic

map
S:=Dg! : .M — T, M, (5)

When working in the Kéhler context it is better to conjugate to the complexifications,
TMRC=T""'MaT>'M.
We denote the projection to the ‘holomorphic component’ by
a0 TM®C— TYM.
The spaces T"-OM, T%' M are paired complex Lagrangian subspaces.
Relative to a symplectic basis {e;, Jei} of T, M in which J assumes the standard
form Jy, the matrix of Dg"’= has the form,
A, By,
nT, .__ ¢on ._
Dgl'c = 8" = € Sp(m, R). (6)
C, D,

If we conjugate to the complexification 7, M ® C by the natural map )V defined in
(27), then (6) conjugates to
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<IQ-J':Z %:) € Sp.(m).

The holomorphic block
P, =(A,+ Dy +i(=B,+Cp) ="' Ws'W 710 70 — 7M0Mm  (7)

plays a particularly important role.

The symplectic map (5) is quantized by the metaplectic representation W, (4)
(see Sect.4.4) on the osculating Bargmann-Fock space H, of square integrable
holomorphic functions on TZI’OM , that is, the metaplectic representation defines a
unitary operator

W, (Dg"™) : H (T ' M) — H, (T M). (8)

The two-term Weyl law is stated in terms of certain data associated to Dg"’s and
Wy, (Dg"T2) (8). First, we let W&y be the image of the Hamilton vector field 5 in
T.M @ C.Leta = 7"OW¢y, let & € 7% W€y, and let P, be as in (7). Set,

Gu(z) :=(det P,)"7 - (&- P 'a) 2. 9)
The factor (det P)_% has an interpretation,
(det P,) ™2 = (W, (Dg"™) Q. Q) (10)

as the matrix element of (8) relative to the ground state 2; in H ;. . This relation is
essentially proved by Bargmann and by Daubechies [5]. It can be proved by com-
paring the Bargmann—Fock metaplectic representation of Sect. 4.4 with Daubechies’
Toeplitz construction of metaplectic representation in Sect.4.5. Daubechies did not
explicitly use the conjugation )V to the complexification, and therefore did not record
the identity (10).

Also let "% denote the holonomy of the horizontal lift of the orbit t — ¢'(z) at
t = nT.. We define the function Q7 (s) by:

Definition 1.2
Go(2) z ¢ Pe
Qf(s) = (11)

S Qm) e TSk G (7)) 7 € Py

Definition 1.3 For z € Pg, define the distributions dv on f € S(R) by

/R FOVAEN) =Y fT) Gy()e ™ = fR f ()0 (s)ds

nez
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The nature of Q. x(s) and v; depends on the type of periodic orbit of z € Pg.
In this article we confine ourselves to the case where the orbit of z is ‘real positive
definite symmetric’ in the following sense:

Definition 1.4 Letz € Pg, with T, = T, and let (T, M, J,, w,) be the tangent space
equipped with its complex structure and symplectic structure. Let {e;, fi}7,_, be a
symplectic basis of 7, M in which J = Jy and w = wy take the standard forms. We
say that DGZT is positive definite symmetric symplectic if its matrix § € Sp(m, R) in
the basis {e;, fi}7';—, is a symmetric positive definite symplectic matrix.

Positive definite symplectic matrices are discussed in Sects.3.1 and 3.2 and in
Sect.6.1. They are diagonalizable by orthogonal matrices in O(2n) and by unitary
matrices in U (n). In invariant terms, O(2n) is the orthogonal group of (T:M, g;.)
where g; (X, Y) = w,(X, J.Y). Unitary matrices commute with J;. The eigenvalues
of DGZT are real and to come in inverse pairs. The eigenvalue 1 corresponds to the
Hamilton vector field {5 of H and there is a second eigenvector of eigenvalue 1
coming from the fact that periodic orbits come in 1-parameter families (symplectic
cylinders) as the energy level E is varied (see [1]). The eigenvalues in the symplectic
orthogonal complement of the eigenspace V (1) of eigenvalue 1 come in unequal real
inverse pairs A, A\~!. For expository simplicity, we omit the case where eigenvalues
are complex of modulus # 1 and arise in 4-tuples A, AL, 5\, ! (sometimes called
loxodromic). We do discuss the elliptic case where S € U (n), and thus all of the
eigenvalues have modulus 1 and come in complex conjugate pairs.

We refer to [6] for background on positive definite symmetric symplectic matrices
and to [8] for types of periodic orbits of Hamiltonian flows.

Definition 1.5 We say that z satisfies the strong hyperbolicity hypothesis if DgZT :
(T:M, J,) — (T:M, J.) is a positive symplectic map, with a 2-dimensional sym-
plectic eigenspace V (1) for the eigenvalue 1.

The main motivation for this hypothesis is that we can explicitly compute (9)
in this case (see Proposition 6.1). Almost the same computation works if DgZT is
unitary (the elliptic case) However, in the strong hyperbolic case, we can prove that
the infinite series defining (11) converges absolutely and uniformly, and therefore:

Proposition 1.6 Ifz satisfies the strong hyperbolicity hypothesis, then v is an abso-
lutely continuous measure.

The main result is a sharp 2-term Weyl law in this case:

Theorem 1.7 Assume that z € H~'(E) and that 7 satisfies the strong hyperbolicity
hypothesis. Then,

( ‘ )m—1/2 Go()(b —a)(1 +0(1))., z€ HY(E), z ¢ Pk

b 2
/ dp ™" = .
‘ (L) i@ by (1 +0(1)),  ze€ HY(E),z € P,
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Theorem 1.7 is a Kéhler Toeplitz analogue of [15, Theorem 1.8.14] (originally
proved in [14]). The difference between z ¢ Pr and z € Pk is that in the former
case, there is a contribution only from the ¢t = 0 times of ¢’ (the identity map) and
in the latter case there are contributions from all iterates of g’=.

It may be expected that Theorem 1.7 extends in some suitable way to any type
of periodic orbit. In the somewhat analogous Riemannian setting studied in [15], the
pointwise Weyl law involves first return maps on the set of geodesic loop directions
£ € S{M atapoint x € M rather than closed orbits. In some cases (such as where x
is a focus of an ellipsoid), the corresponding measures or Q-functions are calculated
in [15, Example 1.8.20]. Otherwise, the authors say simply that it is difficult to
determine when the “Q” function of [15, (1.8.11)] is uniformly continuous. Itis likely
that Theorem 1.7 can be extended to any orbit for which none of the eigenvalues on
the symplectic orthogonal complement of the V (1)-eigenspace of S have modulus
one. This is certainly the case, by the same proof as in Proposition 1.6, if § is
diagonalizable by a unitary matrix.

2  Outline of the Proof

The proof is a continuation of that in [19], adding information on the remainder
term and its relation to periodic orbits of periods 7 > 0. Given a function f € S(R)
(Schwartz space) one defines

f(kHy) =/f(T)eikTﬁ"dT=ff(t)Uk(t)dt, (12)
R R
where A
Ur(t) = expitkHy. (13)

is the unitary group on H°(M, L¥) generated by kIfIk. Note that f(k Hy)isthe operator
on H(M, L*) with the same eigensections as H; and with eigenvalues f (k. i)
The metric contraction of the Schwarz kernel on the diagonal is given by,

H&@wiéfmem%mm@JMHzéfme”“wa¢Mn (14)

Here, and henceforth, the metric contraction of a kernel K; (z, w) is denoted by K (z).

Definition 2.1 The metric contraction of a kernel M;(z, w) := Z?": | Mk, Sk, (2)

sk j (w) expressed in an orthonormal basis {sk,_,-}?k: , of HO(M, L¥) is defined by

dy

Mi(2) == jlsej @y, (de = dim HO(M, L))
Jj=1
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In Sect. 3.8 below, we lift sections and kernels to the associated U (1) frame bundle
of L*; then metric contractions are the same as values of the lifts along the diagonal.

In [19] it is shown that U (¢) is a semi-classical Toeplitz Fourier integral operator
of a type defined in [17]. As in [19] we construct a parametrix of the form,

Mpeon (57 Tl (15)

where (¢§~")* is the pullback of functions on X, by g’ and where oy, is a semi-classical
symbol originally calculated in [17, Unitarization Lemma 1 (2b.5) and (3.10)]. In
fact, to leading order in &, and up to a phase factor,

1

01 (2) = (Qyr s, )7 (16)

Here, Dg" J, is the image of the complex structure at z and Jy, is the complex
structure of Ty, M and €2; denotes the ground state in the Bargmann—Fock Hilbert
space with complex structure J. It was proved in [5, 17] that (16) equals (det P)_%
by calculating the inner product of the two Gaussians.

Combining (3) and (14) shows that

TR /Rf(x)dui’]’E = fR fe B o @) M @)dr, (A7)

or equivalently

—

i E (@) = U 2, 2). 1o

Using a semi-classical Tauberian theorem, it is proved in Sect. 7 that the singularities
of (18) determine the 2-term asymptotics of ,ui’l’E [a, b] for any interval. Proposi-
tion 1.6 follows because the singularities are of a different type depending on the
convergence of Q. (k).

To prove the two-term Weyl law, we begin by obtaining asymptotics for the
smoothed partial density of states (17). In the first case where z ¢ Pg, the only
singularity occurs at ¢ = 0 and so the expansion is the same as in [19, Theorem 3]
(recalled here as Theorem 7.1). The time interval [—e, €] is assumed to be so short that
it contains no non-zero periods of periodic orbits. When z ¢ H~!(E) the expansion

is rapidly decaying. Thus, the new aspect is the second case where z € Pg.

Theorem 2.2 For f € S(R) with f € CX(R), we have (see Definitions 1.4 and 2.1)

—1/2
(£)" 7 F0G@ + 0w ). ze H™\(E). 2 ¢ Pg

- z,LE _ —-1/2 o _irnph
Mg, £ (2) '_/Rfd/"k =V (£)" T Laez F0T) G % 4 042, 2 e HTN(B). 2 € P,

0(k—), z¢ HU(E)
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To prove Theorem 2.2 we use the Boutet de Monvel-Sjostrand parametrix for
I ne. This gives a parametrix for (12) and (17) as semi-classical oscillatory integrals
with complex phases. The phase has no critical points when the orbit does not lie
in H~'(E) and no critical points for t # 0 when z ¢ Pr. The main difficulty is to
evaluate or interpret the phases and the Hessian determinant (and other invariants
that arise) dynamically, and to determine whether or not they are invariants of D g’
or invariants of the full orbit. One phase factor is a holonomy integral around the
periodic orbit ¢’ (x). In Proposition 5.6 it is shown that although the holonomy is
apriori a ‘global invariant’ of the orbit rather than an invariant of the first return map,
in fact the Hessian of the holonomy can be expressed as an invariant of the first return
map.

To evaluate the Hessian determinants, we first do so in the linear Bargmann—Fock
setting, where H is a quadratic Hamiltonian on the Kihler manifold C™, equipped
with a general complex structure J and a Hermitian metric /4.

Proposition 2.3 Let H be a quadratic Hamiltonian in the Bargmann—Fock setting.
Assume that H has compact level sets and non-degenerate periodic orbits on level
E. Then, in the notation of Definition 2.1,

1
N . m=z A .
/ f(t)Uk(l‘,Z)e_”Ekdt2<2£> > fnTye Mt @ p )12 (det Py T2,
R T

nez

where P, is the holomorphic block of Dg"" (7) and 7' 'W¢y = a.

We give a detailed proof in Sect. 5.4 because the general case is reduced to the
Bargmann—Fock case. It is shown in this article that the linearized calculation is the
principal symbol of non-linear problem (17), hence that Theorem 1.7 can be reduced
to Proposition 2.3. The proof consists of nothing more than Taylor expansions of the
phase in suitable Kéhler normal coordinates and stationary phase.

3 Background

The background to this article is largely the same as in [19], and we refer there
for many details. Here we give a quick review to setup the notation. First we intro-
duce co-circle bundle X C L* for a positive Hermitian line bundle (L, &), so that
holomorphic sections of L* for different k can all be represented in the same space
of CR-holomorphic functions on X, H(X) = @y H(X). The Hamiltonian flow ¢’
generated by £y on (M, w) will be lifted to a contact flow ¢’ generated by f g on X.
Then we review the Toeplitz quantization for a contact flow on X following [13, 17].
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3.1 Symplectic Linear Algebra

Let (V, o) be areal symplectic vector space of dimension 2n and let J be a compat-

ible complex structure on V. There exists a symplectic basis in which V ~ R?",

o takes the standard form w = 2 ZT:] dxj ANdy; and J has the standard form,
0 -1

Jo = . Let HJI’O resp. HY', denote the +i eigenspaces of J in V ® C.
I 0

The projections onto these subspaces are denoted by

1 - 1
PJ=§(I—iJ):V®(C—>H1’0, P,:§(1+i1):V®<C—>H}1.

Let S € Sp(m, R) be a real symplectic matrix. Then its transpose §* = JS~'J~!
also lies in Sp(m, R) and SJ = J(S")~'.

3.2 Symmetric Symplectic Matrices

A matrix S is called a symmetric symplectic matrix if S € Sp(n, R) and §* = S. For
such S it follows that SJ = JS~!. A good reference for positive definite symplectic
matrices is [8, p. 6] and [8, p. 52]. For the following see [6, Proposition 22]. Let
Un)=Sp(n)N O2n,R). Then UJ = JU and

A —B Al B!
U= ., AB'=B'A, AA'+BB' =1, U '= =U'.
B A —B' Al

Proposition 3.1 If S is a positive definite symmetric symplectic matrix and A =
diag( A, ..., A3 )\1_1, e )\;1) is the given diagonal matrix, then there exists U €
U(n) sothat S = U'AU.

The following is [6, Proposition 26].

Proposition 3.2 A symplectic matrix S is symmetric positive definite if and only
if S=eX with X esp(n) and X = X'. The map exp : sp(n) N Sym(2n, R) —
Sp(n) N Sym(2n, R) is a diffeomorphism.

Ifey, ..., e, are orthonormal eigenvectors of S corresponding to the eigenvalues
A, ..., \, thensince SJ = JS~!,

1
SJe, = JS_lek = —Je.
Aj
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Hence +Jey, ..., £Je, are orthonormal eigenvectors of U corresponding to eigen-

values A\;', ..., A\ and (2) =le,...,e,].

3.3 The Bargmann—Fock Space of a Complex Hermitian
Vector Space

The Bargmann—Fock spaces can be defined more generally for any complex structure
J on R?" and any Hermitian metric on C".
Let (V, w) be a real symplectic vector space. Define

T={J:R" > R" J*=—I, w(X,JY)=w(lX,Y), wX,JX)>>0)

to be the space of complex structures on R” compatible with w. The Bargmann—Fock
space of a symplectic vector space (V, o) with compatible complex structure J € J
is the Hilbert space,

H, = {fe_%"(”’”) e L*(V,dL), f is entire J-holomorphic}.

Here, 1
Qy(v) 1= 277V (19)

is the ‘vacuum state’ and d L is normalized Lebesgue measure (normalized so that
square of the symplectic Fourier transform is the identity). The orthogonal projection
onto H; is denoted by P; in [5] but we denote it by I1; in this article. Its Schwartz
kernel relative to d L (w) is denoted by I, (z, w).

Remark: The Bargmann—Fock space with J =i the standard complex structure is
often defined instead as the weighted Hilbert space of entire holomorphic functions
with Gaussian weight Cne_mzdL(z) where C,, is a dimensional constant. In this
definition the vacuum state is 1. There is a natural isometric ‘ground states’ iso-
morphism to H; defined by multiplying by +/2;. With the Gaussian measure, the
Bergman kernel is B(z, w) = ‘" When V = C" we write v =Z, JZ = iZ, and
0(Z, W) =ImZ - W. Then Q,(Z) = e~ 3|%",

3.4 Bargmann—Fock Bergman Kernels

For BF model, we have IT; : L>(M, L*) — H°(M, L*) the Bergman projection
operator. And IT; : L?(X) — Hy(X), the Szego projection operator on X to Hardy
space’s Fourier component. Let H also denote its pull back on X.
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The semi-classical Bargmann—Fock Bergman kernels (23) on C” are given by

m k m e
H£h07i(z’ LU) = <%> ek(Zw |z|7/2—|w] /2)

Their lifts to X are given by
A k\" -
My, (2, 0) = (%> oKV ED)
where

D@, W) = i(0, — 0,) + Pz, w) = i(0, — 0,) +2-w — |2]2/2 — lw[?/2.

where Z = (0., z) € S! x M = X denotes a lift of z.!
In the general case, by (3.1) of [5], one has

M) = (Q5,¢) = | ¥@)Q5(v)dv,
Cn
1.e. L . 1
,(z, w) = sz(w) — eza(z,w)e—io(z—w,l(z—w)) (20)

. > R | _ 2 - 1 2 2y . .
which reduces to ¢!!mWe=z(z—wl) = W= (W) jp the case J = i, h = hy.

3.5 Holomorphic Sections in L* and CR-Holomorphic
Functions on X

Let (L, h) — (M, w) be a positive Hermitian line bundle, L* the dual line bundle.
Let
X:={pel'|lplh=1, 7:X—>M

be the unit circle bundle over M.
Let e, € I'(U, L) be a non-vanishing holomorphic section of L over U, ¢ =
—log |le ||? and w = i9d¢. We also have the following trivialization of X:

e}i|z

UxS'"=Xl|y, (z;0) > e —L=
llez |- |

1)

'We also use the notation x = (z, 6,), y = (w, 6y).
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X has a structure of a contact manifold. Let p be a smooth function in a neighbor-
hood of X in L*, such that p > 0 in the open unit disk bundle, p|x = Oanddp|x # 0.
Then we have a contact one-form on X

a = —Re(idp)|x,

well defined up to multiplication by a positive smooth function. We fix a choice of

p by ,
p(x) = —log|lx|l,, xelL*,

then in local trivialization of X (21), we have
|
a=df— Ed‘go(z). (22)

X is also a strictly pseudoconvex CR manifold. The CR structure on X is defined
as follows: The kernel of « defines a horizontal hyperplane bundle

HX =kera C TX,
invariant under J since ker o« = ker dp N ker d“p. Thus we have a splitting
TX®C=H""X® H"'X®CR.

A function f : X — C is CR-holomorphic, if df|go1x = 0.
A holomorphic section s;, of L* determines a CR-function §; on X by

®k

Se(x) = (x®*,s), xe X CL”

Furthermore §; is of degree k under the canonical § Uaction ry on X, §;(rpx) =

¢"?5, (x). The inner product on L>(M, L¥) is given by

m

(51, 52) 1= f B (51(2), $2(2))d Vol (2), d Voly = ——,
M m:

and inner product on L?(X) is given by

- d m
(i fo) = f A B Vol (x), d Vol = ZKA( "
X

T m!

Thus, sending s; > 5§ is an isometry.
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3.6 Szego Kernel on X

On the circle bundle X over M, we define the orthogonal projection from L?(X) to
the CR-holomorphic subspace H(X) = E]AakZon (X), and degree-k subspace Hy (X):

: L2(X) > HX), I;:L*X) = Hy(X), = Z I,.

The Schwarz kernels IT; (x, y) of I, is called the degree-k Szego kernel, i.e.
(M F)(x) = f i (x, y)F(y)d Volx (y), VF € L*(X).
X

If we have an orthonormal basis {Sx,j}; of Hi(X), then

Me(x,y) = > S j (08 ().
J
The degree-k kernel can be extracted as the Fourier coefficient of I(x, y)

f IR _iko
r(x,y) = o [(rgx, y)e '"d6. (23)
0

We refer to (23) as the semi-classical Bergman kernels.

3.7 Boutet de Monvel-Sjostrand Parametrix for the Szego
Kernel

Near the diagonal in X x X, there exists a parametrix due to Boutet de Monvel-
Sjostrand [4] for the Szego kernel of the form,

(x, y) :/ VTN (x, y, o)do + R(x, y). (24)
R+

where 1/3(x, y) is the almost-CR-analytic extension of &(x, x) = —p(x) =log||x 12,
and s(x,y,0) =0"su(x,y) + 0" su_1(x,y)+--- has a complete asymptotic
expansion. In local trivialization (21),

N 1 1
¢(x’ )’) = l(ex - 9)’) + w(Z, U}) - ESO(Z) - Ego(w%

where 1(z, w) is the almost analytic extension of (z).
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3.8 Lifting the Hamiltonian Flow to a Contact Flow on X},

In this section we review the definition of the lifting of a Hamiltonian flow to a contact
flow, following [19, Section 3.1]. Let H : M — R be a Hamiltonian function on
(M, w).Let{y be the Hamiltonian vector field associated to H, suchthatd H = 1, w.

The purpose of this section is to lift £y to a contact vector field é n on X. Let o denote
the contact 1-form (22) on X, and R the corresponding Reeb vector field determined
by (o, R) = 1 and tgdax = 0. One can check that R = 0.

Definition 3.3 (1) The horizontal lift of £ is a vector field on X denoted by 5};1. It
is determined by

Tl = En, (o, &) =0.
(2) The contact lift of £ is a vector field on X denoted by é u- It is determined by
.y = En, L0 =0.
Lemma 3.4 The contact lift é H 1s given by
€y =& — HR.
The Hamiltonian flow on M generated by £y is denoted by ¢

g :M—> M, g =exp(tin).
The contact flow on X generated by £y is denoted by §'

i X > X, § =exptln).

Lemma 3.5 In local trivialization (21), we have a useful formula for the flow, §'
has the form (see [19, Lemma 3.2]):

1 )
J'(z,0) = (9’(z), 9+f0 5(61‘90, En) (g’ (2))ds —tH(z)>-

Since ¢ preserves « it preserves the horizontal distribution H (X;) = ker a, i.e.
Dy H(X)y — H(X)y ).

It also preserves the vertical (fiber) direction and therefore preserves the splitting
V @ H of TX. Its action in the vertical direction is determined by Lemma 3.5.
When ¢’ is non-holomorphic, g’ is not CR holomorphic, i.e. does not preserve the
horizontal complex structure J or the splitting of H(X) ® C into its =i eigenspaces.
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3.9 Toeplitz Quantum Dynamics

Here we consider quantization for the Hamiltonian flow ¢’ on holomorphic sections
of LK, or CR-functions of degree k on X. An operator T : C*®(X) — C™(X) is
called a Toeplitz operator of order k, denoted as T € T*, if it can be written as
T=TIo Qo I1, where Q is apseudo-differential operator on X. Its principal symbol
o(T) 1s the restriction of the principal symbol of Q to the symplectic cone

Y={x,rakx)|r>0=X xR, CT"X.
The symbol satisfies the following properties

o(T'Ty) = o(T)o(T?);

o([Ty, I2)) = {o(T1), o(T2)};
IfT € TF, ando(T) =0, then T € T+ 1.

The choice of the pseudodifferential operator Q in the definition of 7 = QI is
not unique. However, there exists some particularly nice choices.

Lemma 3.6 ([3]Proposition2.13) Let T be a Toeplitz operator on ¥ of order p, then
there exists a pseudodifferential operator Q of order p on X, such that [Q, [1] =0
and T =TI QI1.

Now we specialize to the setup here, following closely [13]. Consider an order
one self-adjoint Toeplitz operator

T =To(H- -D)oll,
where D = (—i0y) and 0Oy is the fiberwise rotation vector field on X, and H is
multiplication by 7~ ! (H), where we abuse notation and identify A downstairs with
its pullback upstairs 7~ (H). We note that D decompose L*(X) into eigenspaces
®rez L (X); with eigenvalue k € Z. The symbol of T is a functionon ¥ = X x R,
given by

o(T)x,r) = (c(H)cD)|s)x,r) = HXx)r, VY(x,r)eX.

Definition 3.7 ([13], Definition 5.1) Let U (t) denote the one-parameter subgroup
of unitary operators on L?(X), given by

U(t) := MO - 11(x) = H(X),

and let Uk (t) (13) denote the Fourier component acting on L?(X)g:
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Uy (1) := T & MEOT T 1 (X) — Hi(X) (25)

We use Uy (t) to denote the corresponding operator on H O(M, L").

Proposition 3.8 ([13], Proposition 5.2) Ut)isa group of Toeplitz Fourier integral
operators on L*(X), whose underlying canonical relation is the graph of the time t
Hamiltonian flow of r H on the symplectic cone % of the contact manifold (X, o).

Proposition 3.9 ([17]) There exists a semi-classical symbol o (t) so that the unitary
group (25) has the form X A R
U(t) = T (97" or ()11

modulo smooth kernels of order k=°°.

It follows from the above proposition and the Boutet de Monvel-Sjostand
parametrix construction that U (t, x, x) admits an oscillatory integral representa-
tion of the form,

R o0 o0 o) ~t o) X . )
Ot x, x) ~ / / / / / L1000 %G ) +020 ) 3 =ik =ik02 ¢ 40 105 dory dondy
xJo Jo JstJsl

where S is a semi-classical symbol, and the asymptotic symbol >~ means that the
difference of the two sides 1s rapidly decaying in k.

4 Bargmann-Fock Space

In this section, we illustrate the various definition of the background section using
the example of Bargmann—Fock (BF) space. We also define the osculating BF space
for at the tangent space T, M for a general Kihler manifold, and show that in the
semi-classical limit as k — oo the Bergman kernel near the diagonal reduces to the
BF model at leading order.

4.1 Set-Up

Let M = C™ with coordinate z; = x; + ~/—1y;, L — M be the trivial line bundle.
We fix a trivialization and identify L = C™ x C. Weuse Kdhlerformw =i ), dz; A
dz; and Kihler potential p(z) = |z|* := ), |z;|*.* The Bargmann—Fock space of
degree k on C™ is defined by

He = {f(z)e_HZZ/2 | f(z) holomorphic function on C", / |f|ze_k‘z|2 < oo} .

m

The volume form on C™” is d Volgn = W™ /m!.

2Qur choice of w may differ from other conventions by factors of 2 or 7.
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More generally, fix (V, w) be a real 2m dimensional symplectic vector space. Let
J : V. — V be aw compatible linear complex structure, thatis g(v, w) := w(v, Jw)
is a positive-definite bilinear form and w(v, w) = w(Jv, Jw). There exists a canon-
ical identification of V = C™ up to U (m) action, identifying w and J. We denote the
BF space for (V, w, J) by Hy. ;.

The circle bundle 7 : X — M can be trivialized as X = C" x S!. The contact
form on X is

a=db0+(i/2) ) (z;dz; — 7;dz;).
J

If s(z) is a holomorphic function (section of L) on C™, then its CR-holomorphic
lift to X is
§(z, 0) = 0210 ().

Indeed, the horizontal lift of J;; is 8;’]_ =0;;, — %z 0y, and 8;’}@ (z,0) = 0. The vol-
ume form on X = C" x S'isd Voly = (d0/27) A w™/m\.

4.2 Bergman Kernel on Bargmann—Fock Space

The degree k Bergman kernel downstairs on C™ is given by

k " Zw
Iy (z, w) = % e,

Given any function f € L2(C™, e %<"/2dV olcn), its orthogonal projection to holo-
morphic function is given by

(I f)(z) = / My (z, w) f (w)e X" d Volen (w).

m

The degree k Bergman (Szego) kernel (2, W) upstairs for X = C™ x S! is
given by

~ kN\" oL
(2, ) = (—) Ve,
2
where Z = (z,0,), w = (w, 0,) and the phase function is

1 1
¢(2,u3)=i(9z—9w)+zﬂ)—EIZIZ—EIwIZ- (26)
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4.3 Heisenberg Representation

The space C™ x S! can be identified with the reduced Heisenberg group H" ,, where
the group multiplication is given by

(z,0)0(Z,0)=(z+7,0+ 0 +1m(zZ)).
Lemma 4.1 The contact form o = df + ’5 Zj (z;dz; — zjdzj) on HY, ; is invariant

under the left multiplication

L.60) : (2,0) = (20,60) o (2,0) = <z + 20,0+ 0y + W) .

Proof

720 — 202
20

i - - -
(L0000 =d <9 + 6o + ) +3 D ((zj +20p)dzj — Gj + Z0j)dzj) = al.p)-
J

OJ

In particular, H , preserves the volume form o A (da)™ /m! on X, hence defines
a unitary operator acting on the degree k CR functions on X.

The infinitesimal Heisenberg group action on X can be identified with contact
vector field generated by a linear Hamiltonian function H : C" — R.

Lemma 4.2 ([19, Section 3.2]) For any 8 € C™, we define a linear Hamiltonian
function on C" by

H(z) = 23+ 2.
The Hamiltonian vector field on C" is
En = —iP0: +i[0:,
and its contact lift is

A -

I - _
§n = —iP0; +ip0; — 5(25 + 82) 0.
The time t flow §' on X is given by left multiplication

9'(z,0) = (=ipt,0) o (z,0) = (z — ift, 0 — tRe(S2)).
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4.4 Metaplectic Representation

Let R w =2 Z;": ,dx; A dy; be a symplectic vector space. The space Sp(m, R)
consists of linear transformation S : R*” — R?” such that S*w = w. In coordinates,

we write (2)=5()=(22) ()

In complex coordinates z; = x; + iy;, we have then

0)-G3)0-0)

PQ\_ ,,1(AB R
(Q ﬁ)‘w (CD)W’ W‘ﬁ(—ilil)' @7)

The choice of normalization of W is such that W~! = W*. Thus,

where

P:%(A-i—D-i—i(C—B)).

We say such A € Sp.(m, R) € M(2n, C). The following identities are often useful.

Proposition 4.3 ([7] Prop 4.17) Let A = (g g) € Sp., then

-1
P QO (P =0"\ _ . (10
(1) (Q P) = <—Q* pr ) = KA*K, where K = (0_1>.
(2) PP*— QQ* =1 and PQ_’ = QP'.
(3) PP — Q'Q =1 and P'Q = Q*P.
The (double cover) of Sp(m, R) acts on the (downstairs) BF space H, via kernel:

) P
given M = <Q %) € Sp., we have

k\" 1, -
Kim(z, w) = (%> (det )~ exp {ki (zQP 'z +20P 'z - zI)P‘leD)}

where the ambiguity of the sign the square root (det P)~'/? is determined by the lift

to the double cover. When A = Id, then Ky _4(z, w) = i (z, w). Similarly, we have
the kernel upstairs on X as

l€k,A(2, ﬁ)) — ’Ck,M(Z, ID)ek(iez_‘Z|2/2)+k(_i9“’_|w|2/2). (28)
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A quadratic Hamiltonian function H : C" — R will generates a one-parameter
family of symplectic linear transformations 4, = ¢' : C" — C™. However, A, is
only R-linear but not C-linear, i.e. M, does not preserve the complex structure of C™.
Hence, one need to orthogonal project back to holomorphic sections. To compensate
for the loss of norm due to the projection, one need to multiply a factor 7 4,. This is
in the spirit of Proposition 3.9.

Proposition 4.4 Let A : C" — C™ be a linear symplectic map, A = (g %) and
let A: X — X be the contact lift that fixes the fiber over O, then

KeaG. ) = (detP*)l/zf (2. AT (i, b)d Vol (i)
X

Proof The contact lift A: C" x §! — C™ x S! is given by A acting on the first
factor: .
A:(z,0) — (Pz+ 0z,0),

one can check that A*« = av. The integral over X is a standard complex Gaussian

integral, analogous to [7, Prop 4.31], and with determinant Hessian 1/| det P|, hence
we have (det P*)'/?/| det P| = (det P)~'/2, O

4.5 Toeplitz Construction of the Metaplectic Representation

As in [5], the metaplectic representation W;(S) of S € Mp(n, R) on H; can also
be constructed by the Toeplitz approach. First, let Us be the unitary translation
operator on L*>(R?", dL) defined by UgF (x, &) := F(S™'(x, £)). The metaplectic
representation of S on H; is given by ([5], (5.5) and (6.3 b))
W;(S) =nysI,UsIly, (29)

where we define (see [5] (6.1) and (6.3a)),

nys=2"det(I —iJ)+ SU +iJ): (30)
and IT; is the Bargmann—Fock Szego projector (20).

Also define 3 gy5-1 = 27"2[det(SJ + JS)]V/*. Then, |n;.5| = B ss5-1. In fact
(see [5], above (6.3a), and (B6))

27" det(I —iJ) + S +iJ)?| = [det(SJ + JS)V2 =2"52 .
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We further record the identities,
det(SJ + JS) =det(I + J~1S71JS) = det( + S*S).

The following identity gives another explanation of the presence of (det Pn)_%
in (9).

Lemma 4.5 (see [5], p. 1388)
5By 55 = (us)* ™" =nys 2" (det(I + §*8))
and (cf. [5], p. 1388),
(77?5)_1 =det((/ +iJ)+SU —iJ)) =2"det(A+ D +i(B — C)) = det P*.
Proof The first equality is proved on p. 1388 of [5]. The second asserts that
Bysss1 = 27" (det(I + 575))",

which follows from (30) and identity (ii) above. [
Corollary 4.6 7, ysy-1 = ns.s where U € U (m).

Proof This follows from replacing S by USU ! and using that UJ = JU. UJ

4.6 Osculating Bargmann—Fock Space

In this subsection, we first define the osculation Bargmann—Fock space for any fixed
point z € M, using the triple (7;M, w,, J;). Then, we define the preferred local
coordinates in a neighborhood U of z and a preferred frame section e; of L over
U, which together determines a coordinate system of the circle bundle X | over U.
In these special coordinate, the Boutet—Sjostrand phase can be approximated by the
Bargmann—Fock—Heisenberg phase function modulo cubic order terms.

Definition 4.7 Given a point x € X; (resp. z € M), we define the osculating
Bargmann—Fock space at x (resp. z) to be the Bargmann—Fock space of (H, X, J, wy)
resp. (I;M, J,, w;). We denote it by H, ., (resp. Hj. ..).

If z is a periodic point for ¢', let v = |, -, -, g°z be the corresponding closed
geodesic, and we may apply the metaplectic representation to define W 7.(Dg'|;) as
a unitary operator on H,_, . There is a square root ambiguity which can be resolved
as in [5] but for our purposes it is not very important and for brevity we omit it from
the discussion.
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Definition 4.8 Let p € M. A coordinate system (z, ..., Z,,) on a neighborhood U
of p is called K-coordinates at p if

m
iZde/\dszwp

j=1
Let e, be a local frame and let ¢(z) = —log ||eL.(z)|[7, if in a K-coordinates
$(2) = 2>+ Y _asxz’z%, with |J] = 2, |K| > 2. (31)
JK

then ¢, is called a K-frame.

K-coordinates are defined by Lu—Shiffman in Definition 2.6 of [9]. Existence of K-
coordinates and K-frames are proved in [9] (Lemma 2.7). Further, in K-coordinates,
w=wp + ZRijkeZiZdek Ndzg+---, wo = Zdzj Adzj.
ijke '

The K-frame and K-coordinates together give us ‘Heisenberg coordinates’:

Definition 4.9 A Heisenberg coordinate chart at a point xg in the principal bundle
X isacoordinatechartp: U — V with0 e U C C" x S'and p(0) =xp € V C X
of the form

. e*(z
p(Zla "'7Zm’9) = ele*L—() ’
ez (@)t
where e is a preferred local frame for L — M at Py = w(xp), and (zy, ..., Z;n) are
K-coordinates centered at Py. (Note that Py has coordinates (0, ..., 0) and e] (Py) =

XO.)

In these coordinates, the Boutet—Sjostrand phase 1/ (x, y) may be approximated
modulo cubic remainder terms by the Bargmann—Fock—Heisenberg phase (26).

The lifted Szego kernel is shown in [16] and in Theorem 2.3 of [9] to have the
scaling asymptotics,

Theorem 4.10 Let Py € M and choose a Heisenberg coordinate chart about P.

) 0 0 )
kT (5_ kl j_ kz) 1 oy v, 02)(1+k YA, v, 01, 05) + - - )

where T1 th‘L is the osculating Bargmann—Fock Szego kernel for k = 1 and for the
tangent space T,M >~ C™ equipped with the complex structure J, and Hermitian
metric h;.

Here we identify the coordinates (u, 61, v, 8,) with linear coordinates on 7,M X
S'x T.M x S'.
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5 Proof of Theorem 2.2

In this section we study the rescaled Weyl sum

0§ f(z,2) = Y fk(ue; — ENT (2, 2).
J

Our purpose is to prove Theorem 2.2. By comparison with interface asymptotics
[19], we now need to consider the Hamiltonian flow for long times.

The main idea of the proof is that aside from the holonomy factor (the value of
the phase at the critical point), the data of the principal term in Theorem 2.2 localizes
at the periodic point. That is, the data come from the derivative of the first return
map and do not involve data along the orbit. Too see this, we use the quadratic
Taylor approximation of the phase ¥ (x, §'y) + 1 (y, x) in (¢, y) around a periodic
point (7', x). First, we approximate the phase v by its osculating Bargmann—Fock
approximation 1y at x. Further we approximate g’ by its linear approximation Dg’.
We also need to determine the quadratic approximation to the holonomy term of the
phase coming from the € variable. This part of the calculation is apriori non-local. But
we show in Proposition 5.6 that the Hessian of the holonomy term éw (T') vanishes at
the periodic point. After these Taylor approximations, the calculation is essentially
reduced to the linear Bargmann—Fock case of Sect. 4.

5.1 Stationary Phase Integral Expression

Let z € M and x € X such that w(x) = z. Let f € S(R) with Fourier transform
foy=/[rf (x)ei”“zi—fr compactly supported. We combine the definition (15) with
two compositions of the Boutet de Monvel-Sjoestrand parametrix (24) to get

H/E,f(z) = /]Rf(t)e*”kEljk(t,x,x)dt

- F(0)ekV@-x3.01.02.00.0) 4, 451 dordfydOrdydt + O (k).
RJXx Jst JstJR, JR

where the phase function is given by,

W (t,x,y,01,00,01,0)) = —itE + o10(rg,x, §'y) + 02t(rg,y, x) — i — i6
(32)
and Ay is a semi-classical symbol. We consider the critical points and the determinant
of the Hessian matrix of the phase.

We will work with a K-coordinate and K-frame in a neighborhood U of z. In this
coordinate, z = (0,...,0) e C",x =(0,...,0;0) e C" x S',and y = (w; 0,) €
C™ x S'. We denote §'y = (w(t); 0, (1)). Since 0,,(t) — 0,, only depends on w, t
but independent of 6,,, then we define the holonomy phase for flow ¢':
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0,(1) := 0, (1) — 0,

Similarly, the holonomy phase 6" (¢) for the horizontal flow exp(tf'},) is denoted by

exp(r&) (w3 Ou) = (g"w; O + 0, (1)). (33)

Note that éw (1) depends on H, where as #,,(¢) only depend on H modulo constant,or
dH.

Proposition 5.1 Fix a K-coordinate and K-frame in a neighborhood U at 7. Let
X : M — R be a smooth cut-off function supported in U and constant equals to one
near z. Then we have

My ()

=/ / / / / Fnyek ¥ moro2 ity () (w) Skdordorddidirdwdt + O (k).
RJM ISt st IR, JRy

where

\I//(t, w,o1,0p,01,02) = —itE +01(i0] — iéw(t) — e(w(@)) + 02(i0r — p(w)) —if; —ibs.
(34)

Proof Introducing the cut-off function y in the integral (32) only changes the integral
by O (k~°°). Within the support of the cut-off function, we may use the K-coordinates.
Then phase function W can be written as (within the coordinate patch):

W = —itE + 01(i0) — i0,(1) — i0, + (0, w(t)) — p(w(t))
+0'2(i92 + i@w + ¢(w, 0) — go(w)) — i91 — i92
= —itE + 010, — i0,(t) — p(w(1)) + 02(i0, — p(w)) — i) — if

where 51 =60, —0, and 52 =0, + 6,. We note (0, w) = 0 due to the choice of
K-frame (31). After the change of variables, we see the phase W does not depend on
0,,. Hence we may perform the 6,, integral, and rewrite 6; as 6;, to get the reduced
phase function W', O

Proposition 5.2 The critical points for V' (34) are as following:

(1)Ifz ¢ H™'(E), there is no critical points.

(2)Ifz € H-'(E) but 7 ¢ Pg, then the only critical point corresponds to t = 0.
(3) If z € H"'(E) and 7 € Pg, then for each n € Z, there is a critical point with
t = nT,, where T, is the primitive period of ¢' at z.

Proof We will prove that the critical points for W’ (32) are given by

w=0, wit)=0, oy =0y =1, 0, = y(t), 6 =0.
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Taking derivatives of o and o,, we need to have
i0) —i0,(t) — o(w(t) =0, 6 — p(w) = 0.

Hence .
01 = GO(t)9 92 - 0’

Thus, we may work in a neighborhood of x from now on.
Taking derivatives in 6} and 6, and setting them to zero, we get

g1 = 1, gy = 1.
Taking derivative in ¢ and setting it to zero, we have

ov  dB,()
=—iE+io
ot

= —i(E —o01H(0)).

Thus, using oy = 1, we have E = H(0).
Finally, taking derivatives in w, we have

ov’

= —ialc‘?wéw(t) = _iawew(T)
ow

where T is a period. Since §7 preserves horizontal space, and 9, is in the horizontal
space at x = (0; 0), hence

w0 (T) = (als, (§7 11)x0w) = (als, Ou) = (d6, D,,) = 0.

5.2 Determinant of Hessian of V'

Let T be a period of ¢ at z (possibly zero). To compute the contribution at t = T,
we will do a slight change of variables.

Lemma 5.3 Define new integration variables
=T+, w=g"w, 0, =0, —0y(—t), =0, + 0, (—1).
Then the Jacobian factor is 1, and the phase function Wy in the new variables is

Wr (', w', 07, 0)) = —i(T +1)E 4 01(i0] — i0,(T) — o' (T)) + 026 + 0y (—1)
—pw'(=1")) —ib] — 6.

(We will drop the prime from now on.)
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Proof The Jacobian matrix is block-upper-triangular, with the w — w’ block having
determinant 1, since g’ preserves the volume form.
The holonomy for flow g’ can be written as

0. () = 0, (1) — 0,(0) = 0, (T) — Oy (—1') = By (T) — 0,0 (—1").

OJ

Lemma 5.4 The Hessian matrix for V7 (t, w, 0;,0;)att =0, w =0,0; = 1,60, =
0o(T), 0, =0is as

Ul_OiOO
6| i 000

02

HessWr = ]

S oo o
SO OO =

t

0
o 00 i

0000 0,¥Yr 0uV¥r

0000 0u¥Yr Opw¥r |

w

In particular, at this critical point, we have

Wy O,
detHess\I!Tzdet(an r O T).

8wt lIJT 8ww \IIT

Proof The calculation is very similar to that in the proof of Proposition 5.2, and is
therefore omitted. UJ

5.3 Quadratic Approximation to the Phase

To compute the Hessian of the phase function W7 in ¢ and w, suffice to set o;, 6; to
their critical value, and compute the Taylor expansion of W7 to second order. Thus,
we get

Wy (1, w) = —i(T +DE = i0,(T) = pw(T) + ifu (1) = p(w(=1).
We will consider second order Taylor expansion in each term. We write >~ for equal

modulo cubic order term.
Suppose H has Taylor expansion

H(w) = E 4 (aw + wa) + 0(w]?).

We define the corresponding Hpp for the osculating BF space C” = T, M, as the
linear term of H:
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Hpr(w) = aw + wa.

We denote the BF model potential as ¢pr(z) = |z|*. Let §% » be the flow generated
by Hgr on Xzr = C™ x S', such that

G5 (w3 0u) = WD prs Gy + 00 (D))
Then, we have the following comparison result

Proposition 5.5 (1) 0, (—1) — 1E = 0,,(~0)pr + O3 = L (az + zv)r.
(2) p(w(T)) = [Dg"w|* + O;.
(3) p(w(=10) = [w(=D)pr|> + O3 = |w +iat|* + Os.

Proof (1) éw(—t) = fot %a’cgo(&q)lw(s)ds + tH(w). Since d“pl, = O(|w|) and the
integral interval is first order in ¢, hence

i I .
/ =d“OEu)|weds = t=d“p(En)|w + O3
0 2 2
I . 1 .
= f(gd Olw, Emlo) + O3 = Ed ©BF €y lwisyds + Os.
0
And tH(w) = t(E + Hgr(w)) + O3. Hence
. ] .
Ow(—1) —tE = | —d“oprEnpp)luw(sds +1(E+ Hpp(w)) — tE + O3 = 0y (~t)pF + O3.
0 2
Finally, we may use Lemma 4.2 to compute the increment in 6.
(2) Since p(w) = [w|*+ O(w]®) and w(T) = g"(w)=g"(0) + Dg"w +
O(lw|?>) = Dg"w + O(Jw|?), hence
p(w(T)) = |Dg" w|* + 0;
(3)Since &y = —iad, +iad: + O(|z]), wehave w(—t) = w + iat + O,, hence

o(w(—1)) = |w+iot)? + 03 = lw(—t)gr|* + Os.

Proposition 5.6 A .
0, (T) = 0o(T) + O(Jw|?).

Proof The proof is rather long, so we break it up into the following two Lemmas.

Lemma 5.7 There exists a neighborhood V- C U of z, such that for any w € V, and
any path v : [0, 1] = V from z to w, we have
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. A 1 1
0u(r) =)~ [ Jaco+ [ Sae
gl 9" ()

Proof We only give proof for T = nT., n > 0, the n < 0 case is analogous. Let
{(Ui, e, pi)}!_, beasequence of coordinate patch U;, such that there exists a partition
of [0,T]: 0=t <t <---<t, =T, such that U; covers the ith segment of the
orbit O; = {¢°z | ti-1 <s <t;}, and ¢; € I'(U;, L) are non-vanishing holomorphic
sections, and e™¥ = ||¢;||>. Without loss of generality, we may take U; = U. We
identify index n 4 i with i.

Since ¢''z € U; N U;4q for 0 < i < n, hence

zeV = ﬂg_t"(Ui NUit1).
i=0
For any w € V,lety : [0, 1] — V be a path from z to w. Let
Yo="7 =497

Then
Im(v;)) cU NU;j+,,¥V0 <i <n.

Over U; N U;41, define transition function g; = log(e;+1/e;), such that g; = a; +
v —1b;, with b; (¢" z) € [0, 27). Then we have

i i
leirill = lgillleill = e 27+ = e“e 2% = @iy — p; = —2a,.

Over U;, let 0; = ¢} /|le}|| be the section in the co-circle bundle X. Then over
U; NU;;1, we have

log(ef, /i) =1/g; = e V"W = ¢, — 6, = —b;, mod 2.
where we used additive notation for section valued in S'.

Then, the holonomy can be expressed using Lemma 3.5 in each coordinate
patch U;

A n i 1
ew(T) = Hw(T) - ‘9w = Z/ E(dcgoiv €H>|g~‘wd5 - (ti—i—l —tH)H(w) + b; (g”'w).
i=1 Y01

Thus, we may take the difference

. . LA N I
Ou(T) — 0o(T) = Z/ E(d‘go,-,fH)lgswds —/ E(dL%,fHHgfzdS = (tit1 — 1) (H(w) — H(2))
i=1 Yti-1 i—1

+ > bi(g"w) — bi(g"2)

i=1
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_ / / W@y D)dids — (111 — 1) (H(w) — H(2))

I -
Z /7 *dc% / Ed‘@i + Z/ db;
i=l i i=1"Y"7

n t
=) /0 / dH (@y)dtds — (ti41 — 1;)(H(w) — H(2)
i=l1 li-1

I
‘N
) \

1 n
dp1 + Z/ 5d“(oi — piv1) + /% 74 P + ,21:/“,, db;
1 n
= —/ d o +/ Edc@nJrl +Z/ (da; + db;)
70 Tn i=1 Y%

: 1o
= —/ dp1 +f Sdp1
70 Tn 2

where in the last step, we used

| =

| —

d"(a,- —+ A/ —lbi) = d(\/ —lal- — b,) = d"a,- = —db,'.
U

Lemma 5.8 For any fixed path v : [0, 1] — U starting from 0, and for any 1 >
€ > 0, we have .
[ o= [ e sends = o)
7([0,€D) 0

Proof If apath ~y: [0, 1] — U with v(0) = 0 and y(1) = w is a straight-line, then
fd%o = O(lwP).
.
Indeed, consider the Taylor expansion of ¢(z) at z = 0,
p(2) = 21> + 0(zl)
then

dp = =2 |zldbi + ) (0(z)dz + 0(z)dz)).

However, along a straight line path from 0 to w, 6; is constant, hence the leading term
of dp vanishes in the integral. For the remainder term, we have | fv dz;| = O(Jw)),
hence proving the claim.

Next, we consider a general path as in the statement of the lemma. For each €, we
may consider the straight-line path 3 : [0, €] — U from 0 to vy(¢). From the previous
claim, we know fﬁ(e) dp = O(€%). Let

e [0,€] x [0,1] = U, (t,u) — uvy(t) + (1 —u)5(¢).
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Then, we may verify that

/ dp < C
7([0,€D

where the estimate of fz w=2). fz dx; A dy; can be done by noting for any
smooth function f,

/ w‘ + 0@ < 0().
e

€ 1
/0 Fedx ~ 3 (FO) + (@) = 0(E),

Using above two lemma, we have

0.,(T) = 00(T) = —/

l ¢ l c, 3 T. 13y _ 3
dp+ do=0(wl)+ O0(g wl”) = O(Jw|").
v gt (v)

2

This finishes the proof for Proposition 5.6. U

5.4 Reduction to Osculating BF Model

We continue the calculation of the contribution to the stationary phase integral for
period T orbit. The reduced phase function W (¢, w) has the following expansion:

W (1, w) = —iTE —i0y(T) + itRe(aw) — |w + iat|?/2 — |Dg"w|*/2 + Os.
= —iTE —i0y(T) + iwat — |w|*/2 — |at)?/2 — |Dg" w|*/2 + O5.

We may write the critical value as
W7 (0,0) = Wrlei = —iTE — ifo(T) = —i6g(T)

using holonomy phase of the horizontal flow (33).
The leading term of the stationary integral can be obtained by the following model
result on BF space.

Proposition 5.9 Let H = az + za. Let A : C" — C™ be a symplectic linear map,
Aw = Pw + Qw. Suppose &y is invariant under A. Then
(1)

2m
(det P*)l/Z (;) / ek(itwa—|w|2/2—z2|a|2/2—|Aw|2/2)d Volen (w)

s

= /&k,_A((O; 0), @t (O, O))
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= (det P)~1/? (zﬁ) o—k2(1aP=aP71 0@)/2
T

where the metaplectic representation kernel I@k, A(z, W) is defined in (28).

(2)

m—1/2
f K,.4((0;0), §'(0; 0))dt = (—) (det P)"'*(aP ).
R 2T
Proof (1) We note that

PN N
(_) ek(—|-Aw|2/2) = I, (0, (Aw, 0)),
2T

and

2

k\" . N A
( ) TR 221l 12) _ {1 (57 (w; 0), 0) = F ((w; 0), § (0; 0)).

Hence by Proposition 4.4, we have

s

2m
(det P*)l/z (;) / ek(itwa—|w|2/2—z2|a|2/2—|Aw|2/2)d Volen (w)
= (det P¥)!/? f [T, 0, (Aw; 0)IT; ((w; 0), §' (0; 0))dw
= Kr.4((0; 0), §' (0; 0)).

And the last line follows by g’ (0; 0) = (—i«at; 0) and definition for I@k’ A-
(2) Next, we use the fact that £ is preserved by A, i.e.

()=(e%) ()

a= Pa— Qa (35)

Thus

hence
o> —aP'0a = o> —aP ' (Pa—a)=aP la

Then, we have

k m o k m—1/2
(%) (det P)—l/Z/ e—k%ﬂ(OzP la)dt — <g) (&P_la)_l/z(det P)—I/Z
R

O
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Combining all the steps before, we have proven the following proposition.

Proposition 5.10 Letz € M be a periodic point for the flow £y and H(z) = E, then

. - k m—1/2
Nf,G2) =Y fnTe g, (Z) (14+0k™))

nez

. . . . P,
where if Dg"'=|. in K-coordinate at z can be written as ( Qn %n), then
n n

G, = (det P)"*(@P o)~/

6 Proof of Proposition 1.6
The issue at hand is the regularity of the measures ,ui’]’E defined on test functions

f € S(R) with f € Ci°(R) in Theorem 2.2. It is only an interesting question when
z € Pg. In this case,

m—1/2
/ fuitt = (i) > f@T) Gu@e ™% + 0k ).
R neZz

Unravelling the Fourier transform gives that, in the sense of distributions,

m—1/2
d,ui’l’E(x) — <%) Zemsz gn(z)e—tkm%’dx + O(km_3/2).

nez

The proposition asserts first that this series converges absolutely and uniformly
when the orbit through z is real hyperbolic. To prove this we need to consider the
behavior of the matrix element & P!« and the determinant det P, asn — oo, where
as in (7)

P, :=P;S"P;:THOM — TOM.

We first develop the symplectic linear algebra introduced in Sect. 3.1.

6.1 Matrix Elements and Determinants of Positive Definite
Symplectic Matrices

We are interested in P; S P; with P; = %(1 — i J). We also use the notation («, 3) =

(' - « for the sesquilinear inner product.
First we prove
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Proposition 6.1 If S is positive definite symmetric symplectic, with invariant vector
€ and o = P&, and if the spectrum of S is {e, eV Yizi with A; = 0 then

(i) [P;SP;1 ' =q,
(ii) det P;SPy|giopa = ]_[’;Zl[cosh Al

Proof The proof is through a series of lemmas:

Lemma 6.2 If S is positive definite symplectic, then
PSP, = %PJ(S +85 = %(S + 8 Hp,
Proof
PySP; = 3 —iSU —iJ)= L[S —iJS—iSJ —JSJ]
= JS+s-tus+sh=1 ((S+S—1) —iJ(S+S—1)) =1Pys+s7h.
since JSJ = —S~1if S is symmetric. Also,
JS+SH=JS+SI=("+8J

sothat P;(S+ S H = +SHp,. O

Lemma 6.3 Let S be positive definite symmetric symplectic and e; be eigenvectors
of S for eigenvalues \y, ..., \,. Consider the basis Pjey ofHJl’O. Then

[PJSPJ]PJek = COSh()\j)Pjek,

and [P;SP;17' = Py[S+ S7'17'Py.
Proof Follows from the previous lemma and the fact that (S + S~!) commutes with

P]Z

1 1
[Py SPs1Prex = 2 Py(S + S ey = E(ex,- + e M) Pje; = cosh(\) Pyex.

Statement (i) of the Proposition follows from the fact that
1
[P;SPyla = 5(1 + Da = a.

Statement (ii) follows from the fact that the eigenvalues of P;SP; are cosh A; by
Lemma 6.3. l
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6.2 Strong Hyperbolicity Hypothesis

Let z be a periodic point of the Hamiltonian flow ¢’. Under this hypothesis, we have
the following result.

Proposition 6.4 [fdimc M = m > 1, and z be a periodic point with primitive period
T, satisfying the strong hyperbolic hypothesis. Then

> 1G4(2)] < oo

nez

Proof Let the spectrum of S := Dg’ be (e, e N }’J’?:], with A\ = 0and A; > O for
j =2,...,n. Then, recall that

Gn(2) = [det(P;S"Py){((P;S"P)) o, )]~ V2.

Then, from previous section, we have det(P;S"P;) = ]_[';.:1 cosh(n);), and
((P;S"Pj)a, a) = (o, o) independent of n. Since A\; > 0 for j =2, ..., m, hence

Gl = | det(P;S" Py) (v, )| 72 < Ce IMILi

for some positive constant C. Thus the sum ), _, |G,(z)| converges exponentially
fast. U

6.3 Proof of Proposition 1.6

By Proposition 6.4, the family of measures

dvr () = ) pr(nT(@)e e %0 G (2)dN, (T € Ry)

ln|<T

converges in the weak* sense of distributions on the space S (R) of Schwartz functions
to the limit distribution,

dv(\) =Y e T G (2)d ),

nez

since the coefficients G, (z) are bounded in n and by dominated convergence,

/R fNdvrN) = Y pr(nT () f (1T (2) Gu(x) = Y [ (T (2)) Gu(2),

|n|<T nez

where the sum on the right side converges absolutely.
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7 Proof of Theorem 1.7

In this section we apply Theorem 2.2 and a Tauberian theorem to prove Theorem
1.7. We are concerned with the Weyl sums,

E> L LE __
Mg 1) = [ A" = 2 juquy—Henel By B Tk (2)-

The basic idea is to convolve 1jg, g,) with a well-chosen Schwartz test function
depending on (h, T'), apply Theorem 2.2 and then estimate the remainder.

We consider both families of measures of (3), j; and ,u,i’l’E . The main difference
is the range of eigenvalues involved. The measures 1; have a fixed compact support,
the range H (M) = [Hpin, Hmax] of H, and the mean level spacing between the k™

. . I.E .
point masses ju; is k~"". The measures p;” *" are scaled versions,

ptFl-M M= YT (),

Jilup—El<¥

and the mean level spacing between the point masses is k1. Of course,

-M M
—] ; (36)

1L E
Z i (2) = pg " [=M, M] = 155 [T A

Jiluj—El<2

As a preliminary, we quote a result from [19, Theorem 3]:

Theorem 7.1 Let E be a regular value of H and z € H='(E). If ¢ is small enough,
such that the Hamiltonian flow trajectory starting at z does not return to z for time
|t| < 2me, then for any Schwarz function f € S(R) with f supported in (—¢, €) and
f(O) = [ f(x)dx =1, and for any o € R we have

la B i m—1/2 _% \/z
/Rf (0 = <2w) < R @l

There is a further integrated version of the Weyl law with remainder,

(14 0k™?%)).

#7 e E<M —2MV1h—1E k1 k1 37
J kg — |_7 —(ZWO( (E)) +o(k"). (37)

The constraint in the sum (36) is a ‘codimension one’ condition localizing around
H~'(E). The extra integration in (37) gives an extra factor of k~> in the station-
ary phase expansion. Note that f v Hij(2)dV (z) = Mult("y) (the multiplicity of the
eigenvalue, generically equal to 1), so the integrated Weyl law does not deal with
non-uniform weights ITy; (z). The integrated Weyl law (essentially contained in [3]).

The remainder estimate requires the use of a semi-classical Tauberian theorem
for a sequence 1 LE of measures. Before getting started, let us note some basic facts
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about this sequence. First, ji;’ IE is not normalized to be a probability measure, but it
is finite and could be normalized by dividing by its mass IT«(z) >~ k™ 4+ O (k™=1).

In the following discussion, we divide by the mass. Second, note that [T (z) ~'d LE

is a centered re-scaling of IT« (z)_ld,u,z{ (3). That is DkTEd,u,f’lE = dp; where the

dilation operator is defined by D, v (1) = v(kI) for any interval / and measure v. Also
T f(x) = f(x — E). Now, 1 is supported in H (M) (the range of H : M — R),

1
hence u,i’l’E is supported in k(H — E)(M). In [19] we studied I« (z)_l,u,i’z’E =

D ;T (z)_lui’l’E, whose support is «/%(H — E)(M) and proved that it tends to
a Gaussian. In particular, its Fourier transform is continuous at 0, and by Levy’s

continuity theorem (or by direct analysis), the sequence IT;«(z) ! e V2E g tight. By

comparison, Iy (z)_lui’l’E is not tight, and indeed the IT: (z)_l,ui’l’E([a, b)) ~
k=2, so that the mass is spreading out to infinity and it does not weak™® converge on
Cp(R).

Theorem 1.7 not only gives the leading order term but also the order of the
remainder. As is well-known from work of Duistermaat—Guillemin, Ivrii, Safarov
and others, obtaining a sharp remainder term requires the use of something simi-
lar to Fourier transform methods and in particular Fourier Tauberian theorems. As
mentioned before, Theorem 1.7 is analogous to Safarov’s non-classical pointwise
Weyl asymptotics for the spectral function of a Laplace operator A, or more pre-
cisely, asymptotics on intervals [\, A + 1] for /—A. The Q-notation is adopted from
[14, 15]. Since we are working on phase space, Q involves closed orbits rather than
loops in configuration space. However, we need to use a semi-classical Tauberian
theorem rather than the homogeneous Tauberian theorem of [15], i.e. we are consid-
ering a sequence of measures u,i’l’E on a fixed interval rather than a fixed measure
on expanding intervals [0, A].

Semi-classical Tauberian theorems have been known for a long time. It is a clas-
sical fact that to obtain sharp remainder estimates, one must make use of the Fourier
transform of the measures on long time intervals [—7, T']. A Tauberian theorem of
the needed type is proved in [12], adapting the statement of Safarov’s non-classical
Weyl asymptotics to a semi-classical problem. This theorem does not quite apply to
our setting for various reasons: (i) It assumes the sequence of measures have fixed
compact support; (ii) it assumes the ‘weights’ or masses of the point masses are
uniform. On the contrary, the ‘weights’ IT; ;(z) of ,u,i’l’E are highly non-uniform in
a way that is inconsistent with the hypotheses of the Tauberian Theorem of [12].
Consider the graph of the weights I, ;(z) as a function of 14, i.e. the coefficients
of the point masses of 1; (3). On average the weights are of order 1 since there are
k™ terms and the total sum is I1;(z) >~ Vol(M, w)k™. But the weights are highly
non-uniform:

(1) they peak when py; >~ H(z); indeed, it is shown inf [19, Theorem 1] that s
tends weakly to dg ;).
(2) By [19, Theorem 2], > 1 Iy, j(z) ~ Mk™ while the number of

Jili—H (@) <Mk~ 2
. _1 . I
terms is of order k"'~ 2. Thus, on average, Iy ;(z) is of size k2 in this eigenvalue
range.
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(3) Further, I j(z) S k=€ when |H(z) — Mij| > Ck—> log k. Hence, the weights
decay rapidly when f; lies outside of the range |H (z) — | < C k2 log k.
Consequently, the sequence of dilated measures ,u,z(’l’E concentrates in the sets
[—k2 logk, k2 logk].

Since we need to modify the Tauberian Theorem of [12] to accommodate the

strong peaking of the weights around H (z), we go through the modified proof in
detail.

7.1 Mollifiers and Convolution

1
Xl _] )
202
p1(—t) = p1(t). Wemay also assume Fp; (1) > 0and Fp, (1) > dy > Ofor|7| < €,
where F and F~! denote the standard Fourier transform and its inverse,

We use the following notation: Let p; € C3°(—1, 1) satisfy p;(t) =1 on [—1

fx) = FfHx) = 2n)~! / fMe ™dt, f(x)=(F ' Hix) = / F)e ™ dx

Then set, -
pr(T) = pi (?) . 0r(x) = pr(x) = Tp(xT). (38)

In particular, f@T(x)dx = land 07 (x) > Ty for |x| < €/ T. Let

zlE(x) zlE( oox]

7.2 Tauberian Theorem for uz’l B

In this section we determine the asymptotics of

E,
“E(E>—0“E<E1>—/ dpp" foy = ) nk,j(z>.

E, E
Ji g SHjk— E<

We recall that the mean level spacings of k(y;, j — E) is k~™+! so that the number of

terms in the sum is of order K™ ~!. The plan is to mollify the measures by convolution
with 67 (38), so that it suffices to determine the asymptotics of

o w Op(Ba) — oy x O ()
(39)
(o7 (B — 07 " (ED) = (075 %0 (En) — o7 F 5 01(ED)
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Since
E,

ot % 0r(Ey) — of! E*HT(El):/ Onr *dpp T O,
E

1

we have
. 1,E z,1,E 1, E 2, 1,E
(025 (B2 — o7 (E) = (07 % 07 (B2 — 0f 7 w0 (E))

E
_ / Or % djiF — 4yl Ey, (40)
E

1

First we consider the top terms of (39).

Proposition 7.2 Assume that H(z) = E, z € Pg. Then

&k \"—1/2 . -
o E b)) = (%) > pr@T)e e IG, (2) 4 0 (k"2 (41)

dx nez
and
o x Or(Ey) — op ' % 07 (Ey)
= k" f Y pr(nT)e "m0 G ()d A + 0" ") .
Ev yar<tr
Proof

LG E b)) = [ orec =y F o

- /R /R pr(=ne 1Y Z Ok (., ;—E) DT, j (2)dydt
J

— APT (t)e—itx Zeitk(“k*j_E) Hky](Z)dt
J

— / pT(t)e_ltx_ltkEUk(t, Z, Z)dt
R

B (E) Y prnTyye Tz kb TG, (1 + 0.
nez

where the last line follows from Theorem 2.2 to f(y) = 07 (x — y). H

Corollary 7.3 Under the strong hyperbolicity hypothesis (Definition 1.5), there
exists constants vy(z), C1(T, z), such that

d m—1/2
d—(az ME Oy (x) < (g) Y0(z) + C1 (T, k™ /2.
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Proof We start from (41), and let T — oo. By Proposition 6.4, the sum in (41) with
pr replaced by 1 converges absolutely. OJ

We now employ a semi-classical Fourier Tauberian theorem to estimate (40). In
fact, since we already semi-classically scaled di; by k, we do not need to scale again.
We only refer to the Tauberian as semi-classical because it applies to a sequence /1’ LE
of measures on a fixed interval rather than to a fixed measure on a dilated family of
intervals as in the homogeneous Tauberian theorem.

The Tauberian theorem states:

Proposition 7.4 There exist constant y(z), C(T, z) such that, for any T > 0,

Er
Or *dp ™" —dp™") < @k’”‘i + C(T, k"2,

E,
Together with Proposition 7.2 this gives

Corollary 7.5 Forany T > 0, there exist vo(z, 7), v, Ci1(T, z, 7) > 0 so that

1,E 1LE
op T (E2) —op T (EY)

K\"2 E AT, —ikn0! (T 1 -1 3/2
- (_) > prTe e 0D Gy @)dA + 0" 2) + Or k"2,
2 E; T <T T

7.3 Proof of Proposition 7.4

As mentioned above, the hypotheses of [12, Theorem 3.1] do not hold in our setting.
Hence we must extract from [12, Theorem 3.1] the key elements that pertain to our
setting.

‘We have,

JE2 O wdpp " —dp Py = fy By, B2l = 7) — il Ey. Eo)) 07 (r)dr

T [g (uk(LE1, E2]l —7) — wk[E1, E2D) p1(rT)dT

= T [i <1 G (E1, B2l = 7) = julEv, E2D) pr(TT)dT
+ T Jio 1 (B, B2l =7) — el Evs E2) pr(7T)d7

=N+ 1.
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Evidently, the key objects to estimate are the increments

p([Er, Ex] —7) — e (LEY, E2])
The key point is to prove the analogue of [12, Proposition 3.2]:

Proposition 7.6 There exist constants v,(z) and C(T, z) such that, forany T > 0,

1 m—1 m—3/2
(i ([E1, E2]l — 7) — ur[Eq, E2D)| < 71(2) 7+|T| K772+ C1(T,2)0(k )

We now show that Proposition 7.6 implies Proposition 7.4.

Proof First, observe that Proposition 7.6 implies,

Il S Sup |,Uk([E1,E2]_T)_Mk([EI’EZ])|a

1
ITI< %

and Proposition 7.6 immediately implies the desired bound of Proposition 7.4 for

7] < % For I, one uses that p; € S(R). Since T f\T|>i p1(rT)dT < 1, Proposition
=T

7.6 implies,

1
h K" I @T / (7 + |T|) pI(TT)dT + C1(T, )OK" /)T / | P1(rTHdr
ol

|7|> 7
If one changes variables to r = T'7 one also gets the estimate of Proposition 7.4. []
We now prove Proposition 7.6.

Proof We need to estimate (p[Ey, E2] — 7) — [ E1, E2])). The estimate depends

both on the position of [E|, E,] relative to the center of mass at 0 and on the

position of 7. We recall the the total mass of p; = ui’l’E on the complement of

[—vk log k, ~/k log k] is rapidly decaying in k. Hence we may assume that at least
one of the following occurs:

o [Ey, E>;]N[—vklogk, Vklogk] # @, ie. E, = —vklogk, E; < vk logk.

o [E\, E]— 17N [—+klogk, Vklogk]l # @, ie E, —7—+klogk, B, —7 <
Vklogk.

The proof is broken up into 3 cases: (1) 7| < F, (2) 7 = %eo, 3) %eo <7<

%eo, for some ¢ € Z.

(1) Assume |7| < 7. Assume 7 > O since the case 7 < 0 is similar. Write

pr((E1, Ex]l —7) — il Er, Ex)) = [pllig,—r 5y—r) — 1iE, £21]1(0)d pik (X).

For T sufficiently large so that 7 < E, — E|,
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(Mg, —r.Ey—r1 — V£ E)(X) = 11g,—7 £y — LBy —1 -

We do not expect cancellation between the terms for arbitrary E;, E,, 7 and
therefore must show that each term satisfies the desired estimate. Since they are
similar we only consider the [E; — 7, E|] interval. Since for |7| < ¢/ T, we
have 07 (1) > Ty, thus

1

((Ey — 7, Eq]) < ﬁ/ Or (E1 — x)d px (x)
0 Jr

1 d
~ T—%Ewé” s 07)(E)

Y0(2) km_1/2
T3,

It follows that

270(2) =172
T 5o '

|l (LE1, E2] — 7) — [ Ev, ERD| <

(2) AssumeT = £2, £ € Z. Withno loss of generality, we may assume £ > 1. Write
14
ik (LE1, Eal) — pu | [EY, E2] — 7 €0

. j—1 j
= ;uk ([El, Ea] - 60) — 1 ([El, Ey] — ?60>

and apply the estimate of (1) to upper bound the sum by

2570(Z)km—1/2 _ 2% fm=1/2
T(S() 60(5()

(3) Assume %eo <7< %eo and |7h| < € with £ € Z. Write

i ((E1, Ex] 4+ 7) — m([E1, E2]) = pu([E1, Ex]l 4 7) — p([E1, E2] + %€0)

+ 1 ([E1, E2] + £e0) — i ([E1, E2)).
Apply (1) and (2) , it follows that

1 1
1+—>%wJWWL

|l ([E1, E2] + 7) — i ([Eq, E2])| <

do

270(2) <
€0 T
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8 Comparison with BPU

In this section we compare our formula for the leading coefficient in Theorem 2.2
with that in [2]. To do so, we need to introduce the notation and terminology of that
article.

Let (bﬁ be the horizontal lift of the Hamiltonian flow to X, (denoted P in [2]).
At each point p € P, define T;’P to be the horizontal subspace and A, to be the
positive definite Lagrangian subspace of T;l P ® C (i.e. the type (1, 0) subspace). By
the analysis of [3, p. 98] there exists a one-dimensional kernel W, of this action, the
line of ground states W, C Hy, (T;’ P). A normalized section of the bundle YW — P
defined by W, is denoted by e,,. Further denote by M : Hy, (Tlﬁ‘ P) — Hy (Tlf P) the
metaplectic representation of the symplectic group of the horizontal space H (T;’ P).

Let E denote the Hamilton vector field &g. It is written in [2] that “E acts on
H(T }? P) and hence on HOO(T;’ P) by via the Heisenberg representation. The action
is by translations. The projection from H,( TI? (P)) to generalized invariant vectors
under E is defined by

m .
Pzv ::/ e'""vdt

(0.¢]

the projection from Hoo(T,il P) to the invariant vectors for the flow of E p above z.
Further let Q be a first order pseudo-differential operator on L?(P) so that
[TQIT = DIIMyTI and so that [Q, IT] = 0. Let g be the symbol of Q, which gen-
erates a contact flow ¢; on P. Then the flow maps A, — Ay ) and M, maps e, to
a multiple of ey, (,y). Define c(t) by E ey, () = ic(t)eg, (-
Then the formula of [2] for the leading coefficient at a periodic orbit of period

T 1S
1 7] (T d
Cro= 57 {M ep. Paley))e i Jy @ (@)+e(t)dr

The approach of this paper is to replace HOO(T,?) by the osculating Bargmann—
Fock space, 1.e. the Bargmann—Fock space on HZI’OM which carries a complex struc-
ture and Hermitian metric and hence a Gaussian inner product. In effect, the quadratic
part of the scaled phase of Uy (t, z, z) replaces the symbol calculus. We do not use
Q but the related operator in our setting is Hy. The Pz operator there corresponds to
the dt integral near a period in our approach. We now verify that our formula agrees
with theirs to the extent possible.

We would like to compare the expression (9) with the one in [2],

—1 _ —1 BF,T _ -1 )
(MT eo, Pgeq) = (nJ,DgTHJUDgTeOv‘A%g* eodT) ="MNy,DgT %I%UJDgTeO’g* e)dT

where ¢ is the BF translation (Heisenberg representation) of the constant vector
field £ (0) by time 7. Here, we dropped the projection operator I, since it is acting

on gBF:Te(, which is holomorphic already.
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Let

_ 2
v = e KIZI°/2

be the (unnormalized) coherent state centered at 0. We first review how Heisenberg

group and Metaplectic group acts on it.
(i) Let w € C™. Let S(w) be translation by w. Then

[B(w)v](z) = ek[zw—|2|2/2—|w|2/2] — ek[ilm(zlb)—lz—wlz/Zl

Indeed, it is centered at w, with a non-trivial phase factor iIm(zw).

P *  _ N
(ii) Let M = (Q %) € Spe, with M~ = (_PQ* < ) Then
(Mv)(2) =~z b0 et
(det P)1/2
And for our purpose, we also need
(M) (z) = L k=220 (P 12— 3121"]
(det P*)1/2
Let E = —iad, + ia0;, the Hamiltonian vector field for H = az 4+ az. Then,

we can write Pz v as

(PEU)(Z):fﬁ(_iat)vdt:fek[itz&—lzz/Z—lazlz/Z]dt
R R

It is possible to perform the Gaussian integral, then we get

(Pav)(z) = 2T M-l 2 a2 20 P)]
) klaf?

We will see, it is better not to evaluate the dt integral first.

Proposition 8.1

(M~ ", Pgv) = (2_) (@(P* ')~ 2 (det P*)~1/2
T

The power of (%) does not matter, since we did not choose a normalized coherent
state. The difference between P and P* with previous result may be due to the
difference of time +7 or —T trajectories. Since we will sum time {nT | n € Z}
trajectories, the difference does not matter in the end.
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Proof

1 * *\—1 2 T -
-1 ) c— k[—zQ*(P*) ™ z—|z|7 /2] Lk[itza—|z|? /2— |t |2 /2]
(M~ v, Pgv) : /@n / o *)1/26 e dtd Vol(z)

= / / ekl=itza—z0* (P 712/ 2=12P~lat /2] 4 \iol (1)1
R 'm

_ / / e~V g Vol (2)d1
]R 'm

Let us do the complex Gaussian integral. The phase function is quadratic

t

la|? 0 —ia t
V=(rzzZ) 0 o PH" I z
—ix I 0 Z
We have
|| 0 —iat lal? ial Q*(P*)~! —ial
det| 0 o*P*)~' 1 |=det| 0 0 I
—ia I 0 —ia 1 0
|a|2 _ atQ*(P*)_loz iatQ*(P*)_l —iat
— det 0 0 I | =EDal? - o 0P
0 I 0

Again, we use £y is invariant under M, to get (35), taking conjugate we have
o' =a'P*—d QF
Hence
o’ —a' 0*(PH la =|af’ — @' P* —a)(P)la=a'(P)a

Thus, doing the complex Gaussian integral, and note that (—1)"/? from determinant
Hessian, should cancels with i” coming from the volume form, we get

k —m—1/2
(M~'v, Pgv) = (2_> (@(P*) ') V2 (det P*)71/2,
™
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