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Abstract

Let {Λ∞t } be an isotopy of Legendrians (possibly singular) in a unit cosphere bundle
S∗M , such that they arise as slices of a singular Legendrian Λ∞I ⊂ S∗M×T ∗I. Let Ct =
Sh(M,Λ∞t ) be the differential graded (dg) derived category of constructible sheaves on
M with singular support at infinity contained in Λ∞t . We prove that if the isotopy
of Legendrians embeds into an isotopy of Liouville hypersurfaces, then the family of
categories {Ct} is constant in t.

0.1 Motivations and Results

Let M be a smooth manifold, Sh(M) be the cocomplete (dg) derived category of weakly con-
structible sheaves on M with coefficient in C. In [KS13] and [Tam08, GKS12], it is proved
that contact isotopy of the cosphere bundle T∞M = (T ∗M − T ∗MM)/R+ acts on Sh(M) as
equivalences of categories. In this paper, we consider a (singular) Legendrian Λ∞ ⊂ T∞M ,
and the full subcategory Sh(M,Λ∞) consisting of sheaves F with singular support at infinity
SS∞(F ) = (SS(F )− T ∗MM)/R+ contained in Λ∞. We define a notion of isotopy for the singu-
lar Legendrian Λ∞, and prove that the category Sh(M,Λ∞) remains invariant under such an
isotopy.

Such invariances of constructible sheaf categories are possible because constructible sheaves
are closely related to Lagrangians in T ∗M [NZ09, GPS18a, NS20], hence enjoy the flexibility
of symplectic geometry. More precisely, the full subcategory of compact objects in Sh(M,Λ∞),
denoted as Shw(M,Λ∞) is equivalent to the wrapped Fukaya category of the pair (T ∗M,Λ∞)
[GPS18a, NS20],

Shw(M,Λ∞) ' Fukw(T ∗M,Λ∞)

where ’w’ stands for ’wrapped’. The traditional constructible sheaves with bounded cohomologies
Shpp(M,Λ∞) can be recovered as perfect modules [Nad16]

Shpp(M,Λ∞) = Funex(Shw(M,Λ∞)op,Perf(C)).

There is an analogous result in the wrapped Fukaya category for Liouville sectors [GPS18b,
Theorem 1.4]: given a Liouville domain W with a ’stop’ S ⊂ ∂W , if the contact complement
∂W\S remains invariant up to contact isotopy as S moves, then the wrapped Fukaya category
Fukw(W,S) is invariant. Hence, combined with the comparison results of [GPS18a, NS20], we
then get that Sh(M,Λ∞) is invariant as long as T∞M\Λ∞ is invariant up to contact isotopy.
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Our paper gives a similar sufficient condition using ’isotopy’ of Λ∞: we replace Λ∞ by a tube
U = U(Λ∞) around the Legendrian Λ∞, and we equip U with a contact flow X that shrinks the
tube U back to Λ∞ (Definition 0.2). Although Λ∞ maybe singular, the data of (U,X) are smooth,
hence we can talk about isotopies of (U,X). The relation with the complement T∞M\Λ∞ is that,
if (Ut, Xt) varies smoothly, then the complements {T∞M\Λ∞t }t are contactomorphic, where Λ∞t
is the limit of Ut under the shrinking flow Xt.

To state our theorem precisely, we need some definitions.

Let (C,α) be a contact manifold with a contact 1-form α.

Definition 0.1. A singular Legendrian L ⊂ C is a Whitney stratifiable subspace, such that
its top dimensional strata are smooth Legendrians, and the closure of the union of the top
dimensional strata is L.

Definition 0.2. Let L ⊂ C be a singular Legendrian. A convex tube (U,X) around L is an
open subset U containing L with smooth boundary ∂U and a contact vector field X transverse
to ∂U and pointing inward to ∂U , such that LX(α) = −α and ∩u>0X

u(U) = L, where Xu is
the time u flow of X.

Definition 0.3. Let I ⊂ R be a closed interval and {(Ut, Xt,Lt)}t∈I be a family of singular
Legendrians Lt with convex tubes (Ut, Xt). If ∂Ut and Xt vary smoothly with t, then we say
{(Ut, Xt,Lt)}t∈I is an isotopy of convex tubes over I.

Let M be a smooth manifold with Riemannian metric g. Let S∗M ⊂ T ∗M be the unit
cosphere bundle, and α = λ|S∗M be a contact 1-form on S∗M where λ is the Liouville 1-form
on T ∗M (e.g λ = pdx on T ∗R). We identify S∗M with T∞M . We equip S∗M × T ∗I with the
contact form α̃ = α+τdt, where t is the coordinate of I and τ is the coordinate on the cotangent
fiber. Then the composition S∗M ×T ∗I ↪→ Ṫ ∗(M × I)→ T∞(M × I) is an open immersion and
contactomorphism, with image (x, t; [p, τ ]) ∈ T∞(M × I) where p 6= 0.

Definition 0.4. Let I ⊂ R be a closed interval. A strong isotopy of Legendrians in S∗M over I
is a Legendrian LI ⊂ S∗M × T ∗I. A strong isotopy of convex tubes is a convex tube (UI , XI) of
LI , such that XI preserves the fibers of S∗M × T ∗I → I.

Our main theorem is that

Theorem 0.5. If (UI , XI) is a strong isotopy of convex tubes around LI in S∗M ×T ∗I, then for
any t ∈ I, we have an equivalence of categories

ι∗t : Sh(M × I,LI)→ Sh(M,Lt)

where ιt : Mt = M × {t} ↪→MI = M × I is the inclusion of the slice over t.

Given a strong isotopy of Legendrian LI , we prove that to construct a tube thickening
(UI , XI), it suffices to construct a Liouville hypersurface thickening of each slice Lt (See Propo-
sition 1.14).

Although the result is well-expected given the analogous result in Fukaya category, and is
superseded by the recent paper [NS20], we hope the purely sheaf theoretic proof and the simpler
setting of cotangent bundle make the presentation still worthwhile.

0.2 Previous Works

We first recall the sheaf quantization of a contact isotopy of S∗M .
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Theorem 0.6 [GKS12] Theorem 3.7, Proposition 3.12. Let I be an open interval containing 0,
and ϕ : I × T∞M → T∞M be a smooth map with ϕt = ϕ(t,−). Assume ϕ satisfies (1) ϕ0 = id,
and (2) ϕt are contactomorphisms for all t ∈ I. Then for each t ∈ I, we have equivalences of
categories

ϕ̂t : Sh(M)
∼−→ Sh(M), such that SS∞(ϕ̂tF ) = ϕt(SS

∞(F )).

Note any isotopy of smooth Legendrian can be extended to a contact isotopy of the ambient
manifold. In general, we have the corollary

Corollary 0.7. If an isotopy of Legendrians {Λ∞t }t∈I can be embedded into an isotopy {ϕt}t∈I :
S∗M → S∗M of the contact manifold, that is, Λ∞t = ϕt(Λ

∞
0 ), then we have an equivalence of

categories

ϕ̂t : Sh(M,Λ∞0 )
∼−→ Sh(M,Λ∞t ).

For a deformation of singular Legendrians, there is one necessary condition for the invariance
of categories due to Nadler [Nad15].

Definition 0.8 Displaceable Legendrian. Let (S∗M,α) be the unit cosphere bundle of a Rie-
mannian manifold M with Reeb vector field R and time t Reeb flow Rt. A Legendrian L ⊂ S∗M
is ε-displaceable for R and for some ε > 0, if

L ∩Rs(L) = ∅, ∀0 < |s| < ε. (1)

We say a family of Legendrian {Lt} is uniformly ε-displaceable for R and for some ε > 0,
if each Lt is ε-displaceable.

If a family of Legendrians {Lt} can be upgraded to an isotopy of convex tubes {Ut, Xt,Lt},
then {Lt} is uniformly displaceable (Proposition 1.9).

Example 0.9. Consider the following example.

(1)

A B

C
D

(2)

A
B

C
D

yesno

(3)

A
B

C
D

Figure 1. The deformation to the right is uniformly displaceable, and the one to the left is not,
due to the appearance of new short Reeb chord (marked by a thick line). (c.f. [Nad15], Example
1.5)

The category of constructible sheaves for the above diagrams are the representation of the
following commutative diagrams (each region corresponds to a vertex, and arrow between vertices
goes against the direction of the hair).

(1) =

A B

C D

(2), (3) =

A B

C D
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0.3 A sketch of the proof

Given a convex tube (U,X) of a Legendrian L ⊂ S∗M , we may define a projection functor as
the ’limit’ of the flow X

ΠL : Sh(M,U)→ Sh(M,L), Π(F ) := lim
T→∞

X̂T (F ), (2)

where Sh(M,U) means the category of constructible sheaves with SS∞(F ) ⊂ U , and the limit
is defined using the nearby cycle functor in Section 2.6.

Let (UI , XI ,LI) be a strong isotopy of convex tubes in S∗M × T ∗I, and let {(Ut, Xt,Lt)}
be the slices. Let Ft ∈ Sh(M,Lt). We will extend Ft to a sheaf FI ⊂ Sh(M × I,LI) such that
FI |t = Ft.

One first shows that such an extension is unique (if it exists), this is equivalent to show that
the restriction functor Sh(M,LI)→ Sh(M,Lt) is fully-faithful (Proposition 3.1), i.e.

Hom(FI , GI)
∼−→ Hom(Ft, Gt), ∀FI , GI ∈ Sh(M × I,LI).

One needs to show that Hom(FI , GI)(M × (a, b)) is independent of the size of the interval, hence
one can interpolate from (a, b) = I to an infinitesimal small neighborhood around t. The key
technical point is to use the uniform displaceability condition to perturb GI slice-wise by positive
Reeb flow for time s, GI → K !

sGI , to separate SS∞(FI) and SS∞(K !
sGI).

One then shows that such an extension exists locally, i.e., given a Ft, we may find a small
neighborhood J = (t− δ, t+ δ), such that Lt × T ∗JJ ⊂ UJ = UI ∩ S∗M × T ∗J and extend Ft on
Mt to FJ on MJ by defining FJ = ΠLJ (Ft � CJ).

Finally, we use the uniqueness of extension to patch together the local extensions, and thus
we get the global extension result. (c.f. Lemma 1.13 in [GKS12]).

0.4 Acknowledgements

I would like to thank E. Zaslow for the statement and the proof of Prop 2.12, and D. Nadler,
V. Shende, P. Schapira, S. Guillermou for their interests and inspiring discussions. I would also
like to thank the anonymous referee who points out a serious gap in an earlier version and many
useful comments to improve the paper.

0.5 Notation

We use Sh(M) to denote the co-complete dg derived category of weakly constructible sheaves. We
abuse notation, and use ”constructible sheaf” to mean a cohomologically constructible complex
of sheaves. All the functors f∗, f

∗, f!,Hom, · · · are derived.

1. Convex tubes and Isotopy

1.1 Basics of contact geometry

We recall the definition of co-oriented contact manifold as follows. Let C be a 2n+1 dimensional
manifold, ξ ⊂ TC be a rank 2n sub-bundle, such that there exists a one-form (contact one-form)
α (up to multiplication of non-negative function) satisfying ξ = kerα and α ∧ (dα)n 6= 0. If we
fix such an α, we have a Reeb vector field Rα given by

ιRαα = 1, ιRαdα = 0.

We note that different choices of α will lead to different choices of Rα.
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A contact vector field X is a vector field on C that perserves the sub-bundle ξ.

Definition 1.1. Given a smooth function H : C → R, the contact Hamiltonian vector field
XH is uniquely determined by the following conditions{

〈XH , α〉 = H

ιXHdα = 〈dH,R〉α− dH
(3)

The Reeb vector field is a special case of XH where H = 1.

Proposition 1.2 [Gei08] Theorem 2.3.1. With a fixed choice of contact form α there is a one-
to-one correspondence between contact vector field X and smooth functions H : C → R. The
correspondence is given by

X 7→ H = 〈α,X〉, H 7→ XH .

Unlike symplectic Hamiltonian vector field, XH does not preserve the level sets of H.

Lemma 1.3.

〈XH , dH〉 = H〈R, dH〉
In particular, XH preserves the zero set of H.

Proof. One may apply ιXH to the second line of Eq (3), then use the first line.

We also have the Lie derivative of α along XH

LXH (α) = dιXHα+ ιXHdα = 〈R,H〉α.

Proposition 1.4. If L ⊂ C is a germ of smooth Legendrian, and H is any locally defined
function vanishing on L, then the contact flow XH is tangential to L.

Proof. To show that XH is tangential to L at p ∈ L, we only need to show that for any tangent
vector v ∈ TpL, we have dα(XH , v) = 0 and α(XH)|p = 0, because these two conditions imply
XH ∈ (TpL)⊥dα ∩ ker(α) = TpL. Indeed, α(XH)|p = H(p) = 0, and

dα(XH , v) = ιXH (dα)(v) = [〈R, dH〉α− dH](v) = 〈R, dH〉(α(v))−H(v) = 0.

Hence XH is tangential to L.

Example 1.5. Let M be a smooth manifold, and T ∗M the cotangent bundle with canonical
Liouville one-form λ and symplectic two-form ω = dλ. If we put local Darboux coordinate
(q, p) = (q1, · · · , qm; p1, · · · , pm) on T ∗M where m = dimRM , then λ =

∑m
i=1 pidqi and ω =∑

i dpi ∧ dqi, and we will suppress the indices and summation to write λ = pdq, ω = dpdq. Also
define Ṫ ∗M = T ∗M\T ∗MM , T∞M = Ṫ ∗M/R>0. The Liouville vector field for λ is defined by
ιVλω = λ, and here it is given by Vλ = p∂p. On T (Ṫ ∗M), the symplectic orthogonal to the
Liouville vector field defines a distribution

ξ̃ = {(q, p; vq, vp) ∈ T (Ṫ ∗M) : ω((vq, vp), Vλ) = 0},

which projects to a canonical contact distribution ξ on T∞M . Let g be any Riemannian metric
on M , then T ∗M has induced norm. Let S∗M = {(q, p) ∈ T ∗M | |p| = 1} be the unit cosphere
bundle with contact form α = λ|S∗M , then the contact distribution can also be written as
ξ = ker(α).

5



Peng Zhou

Define the symplectization of (C, ξ = kerα) by

S := C × Ru, λ = euα, ωS = d(euα).

We have the projection along Ru, and the inclusion of zero section as:

πS : S → C, ιC : C ' C × {0} ↪→ S.

A different choice of α would give rise to the same S up to a fiber preserving symplectomorphism
that identifies the ’zero-section’ Im(ιC).

A Hamiltonian function H : C → R can be extended to a homogeneous degree one function
H̃ : S → R by setting H̃ = euH. Then the symplectic Hamiltonian vector field ξ

H̃
, given by

ωS(−, ξ
H̃

) = dH̃(−), preserves the fiber of πS and descends to XH .

1.2 Convex Tubes

Recall the definition of convex tubes in Definition 0.2.

Definition 1.6. A Liouville hypersurface thickening of a singular Legendrian L is a hypersurface
H ⊃ L, such that (H, α|H) is a Liouville domain with the Liouville skeleton being L.

First we show that a Liouville hypersurface thickening can be upgraded to a convex tube
thickening of L.

Proposition 1.7. Let L be a singular Legendrian with a Liouville hypersurface thickening H.
Then L admits a convex tube (U,X), where the contact vector field X preserves H and X
restricts to H is the downward Liouville flow of H.

Proof. Let ε > 0 be small enough, such that for any 0 < s < ε we have H ∩ RsH = ∅. Then
define U = ∪|s|6ε/2RsH ' H × (−ε/2,+ε/2), and let h : U → (−ε/2,+ε/2) be the projection.
Then X = Xh shrinks U to L and restricts to downward Liouville flow on H. One may smooth
the corner of U and achieve transversality of X with ∂U .

Conversely, we show that each convex tube (U,X) around L determines a Liouville thickening.

Proposition 1.8. Let (U,X) be a convex tube around L. Let h = α(X), and H = h−1(0) ⊂ U .
Then H is a Liouville thickening of L.

Proof. Since X = Xh preserves H and shrinks H to L, we only need to show that H is transverse
to R and X is the downward Liouville flow on H.

Since LX(α) = 〈R, dh〉α = −α, hence R(h) = −1. Thus R is transversal to the level sets of h,
in particular H. Hence dα is non-degenerate on H, thus H is exact symplectic. Let λ = α|H, ω =
dλ. When we restrict to TH, we have

ιXh(ω) = ιXh(dα) = 〈R, dh〉α− dh = −λ

hence Xh is the downward Liouville flow on H.

Proposition 1.9. Let (U,X) be a convex tube of L. Then L is displaceable (See Definition 0.8).
Similarly, let I = [0, 1], let (UI , XI) be a strong isotopy of convex tubes for LI , then the family
of Legendrians Lt are uniformly displaceable.

Proof. Let h = α(X) be the Hamiltonian function generating X. Then h vanishes on L, and
by the normalization condition, we have R(h) = −1. If there is a Reeb chord γ : [0, T ] → C
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contained in U and ending on L, then we have∫ T

0
γ̇(dh)dt =

∫ T

0
R(dh)dt =

∫ T

0
(−1)dt = −T.

But on the other hand, we also have∫ T

0
γ̇(dh)dt =

∫
γ
dh = h(γ(T ))− h(γ(0)) = 0,

since γ(T ) ∈ L, γ(0) ∈ L and h|L = 0. Thus, there is no Reeb chord ending on L and contained
in U . For any x ∈ L, let t(x) = inf{t ∈ R : Rt(x) /∈ U}, then t(x) > 0 and is continuous on L.
Let ε = inf{t(x) : x ∈ L}, since L is compact, hence ε > 0. Then L is displaceable.

For the uniform displaceable statement, note that I = [0, 1] is compact, and ε(t) for (Ut, Xt)
is continuous in t, hence ε = inf{ε(t)} > 0.

1.3 The Construction of Strong Isotopies of Convex Tubes

Consider the unit cosphere bundle (S∗M,α) and a closed interval I ⊂ R. Let a point in S∗M
be denoted as (x, p) ∈ T ∗M with |p| = 1. Let a point in T ∗I be denoted as (t, τ) ∈ I × R. Let
S∗M × T ∗I be equipped with the contact 1-form

αI = α+ τdt.

Let πt : S∗M × T ∗I → I.

Proposition 1.10. The Reeb flow RI on S∗M × T ∗I for αI is the pullback of the Reeb flow R
on S∗M .

Proof. Let R denote the pullback to S∗M×T ∗I. We may verify that ιR(αI) = 1, ιR(dαI) = 0.

Let LI be a strong isotopy of Legendrian. Let

Lt = {(x, p) ∈ S∗M | ∃(x, p, t, τ) ∈ LI}.

Lemma 1.11. Lt is a singular Legendrian in S∗M .

Proof. Take any p ∈ Lt that is the image of a point p̃ in the smooth loci LsmI , and for any tangent
vector v ∈ TpLt, it can be lifted to ṽ ∈ Tp̃LI . Concretely, ṽ = v + c∂τ . Since 0 = (α+ τdt)(ṽ) =
α(v), we see TpLt is in the ker(α). Hence a dense open part of Lt is Legendrian, thus Lt is a
singular Legendrian.

Let (UI , XI ,LI) be a strong isotopy of convex tubes. First we define restriction to S∗M×T ∗t I.
Since XI preserves the t coordinate, hence for each t, we have the vector field

X̂t := XI |t ∈ Vect(S∗M × T ∗t I).

Also denote the restriction

Ût = UI ∩ S∗M × T ∗t I, L̂t = LI ∩ S∗M × T ∗t I.

Next, we define (Ut, Xt). Define the projection map π̂t : S∗M × T ∗t I → S∗M , and denote

Ut = π̂t(Ût), Lt = π̂t(L̂t).

Let hI = αI(XI), since XI has no ∂t component, then ∂τhI = 0, hence hI is independent of
τ . For each t ∈ I, we define

ht(x, p) := hI(x, p, t) ∀(x, p) ∈ Ut
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and we let Xt be the contact vector field generated by ht.

Proposition 1.12. With the above setup, we have

X̂t = Xt + (−τ − ∂tht)∂τ
Proof. We split a tangent vector v on S∗M×T ∗I as two components v = v1 +v2, where v1, v2 are
along the S∗M and T ∗I factors respectively. Similarly, we decompose XI = XI,1 + XI,2, where
XI,2 = a∂τ .

By the definition of XI , we have

ιXI (α+ τdt) = hI

and

ιXId(α+ τdt) = 〈RI , hI〉(α+ τdt)− dhI ,
which we will refer to as the first and second equations below.

Since τdt(XI,2) = 0, the first equation becomes

α(XI,1) = ht(x, p).

For the second equation, if we restrict to the tangent space on S∗M , we have

ιXI,1dα = 〈R, ht〉α− dht
Thus XI,1 = Xt is the contact vector field on S∗M generated by ht(x, p).

Finally, if we restrict the second equation to the tangent space of T ∗I, we get

ιXI,2(dτ ∧ dt) = 〈R, hI〉(τdt)− ∂thtdt

If we plug in XI,2 = a∂t and 〈R, hI〉 = −1, we get the desired result.

Proposition 1.13. For any t ∈ I, the above defined (Ut, Xt) is a convex tube for Lt. Furthermore,
the family {(Ut, Xt)}t varies smoothly with t hence is an isotopy of convex tubes for {Lt}.

Proof. From Proposition 1.12, we know that the flow of X̂t preserves the fibers of S∗M ×T ∗t I →
S∗M and the induced flow on S∗M is generated by Xt. Since the flow of X̂t shrinks Ût to
L̂t, i.e, L̂t = ∩u>0X̂

u
t Ût, the sequence of open sets X̂u

t Ût is monotonously decreasing in u, and
furthermore π̂t(X̂

u
t Ût) = Xu

t (Ut), thus we have

Lt = ∩u>0X
u
t (Ut).

Finally, the last proposition allows us to upgrade from an isotopy of Liouville hypersurfaces
to a strong isotopy of convex tubes.

Proposition 1.14. If LI is a Legendrian in S∗M × T ∗I, and if {Ht} is a smooth family of
Liouville hypersurfaces in S∗M such that Lt is the skeleton of Ht, then we have a strong isotopy
of convex tubes (UI , XI) around LI .

Proof. First we use Ht to get a family of convex tubes (Ut, Xt) and the associated Hamiltonian
functions ht, where ht|Ht = 0 and R(ht) = −1. The family of functions ht determines the lifted
function hI(x, p, t, τ) = ht(x, p) which is defined when (x, p) ∈ Ut. In turn, hI determines the
contact vector field XI , which restricts to the fiber S∗M × T ∗t I as given by Proposition 1.12.
Thus, we only need to specify the subset Ût ⊂ Ut×T ∗t I, such that its boundary ∂Ût is transverse
to the vector field X̂t, and it is compressed by the flow of X̂t to L̂t = LI ∩ S∗M × T ∗t I.

8



Sheaf Quantization of Legendrian Isotopy

Let

C = 1 + sup{|∂tht(x, p)| | (x, p) ∈ Ūt, t ∈ I}
and let

Ût = Ut × (−C,C) ⊂ S∗M × T ∗I.
Then the flow X̂t is tranverse to the boundary ∂Ut. We only need to show that ∩u>0X̂

u
t (Ût) = L̂t.

Since Ût → Ut with fiber (−C,C), and X̂t restricted to the fiber gives the equation for τ as

(d/du)τ(u) = −τ − ∂tht(x(u), p(u)).

This is a contracting flow with a unit contraction rate in the sense that, for any initial condition
τ1, τ2 at u = 0, we have τ1(u)− τ2(u) = (τ1 − τ2)e−u for u > 0.

Under the projection map π̂t : S∗M × T ∗t I → S∗M , we have the surjection

π̂t : L̂′t := ∩u>0X̂
u
t Ût → ∩u>0X

u
t Ut = Lt

and by the contracting property of the flow X̂t, the fiber can only consist of one point, thus
π̂t : L̂′t → Lt is a bijection.

Let UI = ∪t∈I Ût ⊂ S∗M × T ∗I, and put the slices L̂′t together into L′I = ∩u>0X
u
I UI . Recall

π̂ : S∗M × T ∗I → S∗M × I, then π̂(LI) = π̂(L′I), and L′I is homeomorphic to its image. Since
a smooth family of smooth Legendrians in S∗M × I has a unique lift to S∗M × T ∗I, thus LI
and L′I agree over the smooth loci of π̂(LI). Since LI is the closure of its smooth part, we have
LI = L′I , finishing the proof of the proposition.

2. Non-characteristic isotopy of sheaves

2.1 Constructible sheaves

We give a quick working definition for constructible sheaves used in this paper, and point to
[KS13] for a proper treatment. A constructible sheaf F on M is a sheaf valued in chain complex
of C-vector spaces, such that its cohomology is locally constant with finite rank with respect to
some Whitney stratification 1 S = {Sα}α∈A on M , where Sα are disjoint locally closed smooth
submanifolds with nice adjacency condition and M = tα∈ASα. The singular support SS(F ) of F
is a closed conical Lagrangian in T ∗M , contained in ∪α∈AT ∗SαM , such that SS(F )∩T ∗MM equals
the support of F , and (p, q) ∈ SS(F )\T ∗MM if there exists a locally defined function f with
f(q) = 0, df(q) = p, such that the restriction map F (Bε(q) ∩ {f < δ}) → F (Bε(q) ∩ {f < −δ})
fails to be a quasi-isomorphism for 0 < δ � ε� 1. We denote by SS∞(F ) = SS(F ) ∩ S∗M the
singular support of F at infinity.

If Λ ⊂ T ∗M is a conical Lagrangian containing zero section (as always assumed in this paper),
we write Sh(M,Λ∞) for the dg derived category of constructible sheaves with object F satisfying
SS∞(F ) ⊂ Λ∞.

Example 2.1. For example, on R, if C[0,1] (resp. C(0,1)) denote the constant sheaf with stalk C
on [0, 1] (resp. on (0, 1)) and zero stalk elsewhere, then their singular supports in T ∗R are

SS(C[0,1]) = , SS(C(0,1)) = .

1More precisely, µ-stratification, see [KS13, Section 8.3].
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Example 2.2. Let j : U = B(0, 1) ↪→ R2 be the inclusion of an open unit ball in R2. Then j∗CU
is supported on the closed set U , with singular support at infinity as

SS∞(j∗CU ) = {(x, η) ∈ S∗R2 | x ∈ ∂U, η = −d|x|} =

And j!CU is supported on the open set U , with singular support at infinity as

SS∞(j!CU ) = {(x, η) ∈ S∗R2 | x ∈ ∂U, η = d|x|} =

Here the Legendrians are represented by co-oriented hypersurfaces in R2 with hairs indicating
the co-orientation.

2.2 Operation on sheaves

In this subsection, we deviate from our running convention and use Sh(X) to denote the co-
complete dg derived category of sheaves on X without any constructibility condition. Let f :
Y → X be a map of real analytic manifolds. Then we have the following pairs of adjoint functors

−⊗ F :Sh(X)↔ Sh(X): Hom(F,−)

f∗ :Sh(X)↔ Sh(Y ): f∗

f! :Sh(Y )↔ Sh(X): f !.

Given an open subset U of X and its closed complement Z,

open inclusion: U
j
↪−→ X

i←−↩ Z, closed inclusion,

we have j∗ = j! and i∗ = i!. Furthermore, there are exact triangles

i!i
! → id→ j∗j

∗ [1]−→, j!j
! → id→ i∗i

∗ [1]−→ .

These are sheaf-theoretic incarnations of excisions: applied to the constant sheaf on X and taking
global sections, we get

H∗(Z, i!C)→ H∗(X,C)→ H∗(U,C)
[1]−→, H∗c (U,C)→ H∗c (X,C)→ H∗c (Z,C)

[1]−→ .

Let Xi, i = 1, 2, be spaces, and K ∈ Sh(X1 × X2). We define the following pair of adjoint
functors

K! : Sh(X1)↔ Sh(X2) : K ! (4)

K! : F 7→ π2!(K ⊗ π∗1F ), K ! : G 7→ π1∗(Hom(K,π!
2G)) (5)

In [KS13],K! = ΦK and K ! = ΨK and with X1, X2 switched. The notation here is suggestive for
them to be adjoint functors.

2.3 Isotopy of Constructible Sheaves

Let I = (a, b) ⊂ R. For any t ∈ I, let

jt : Mt := M × {t} ↪→MI := M × I

be the inclusion of the t-slice Mt into the total space MI , and let πI : MI → I be the projection.
Let CMt be the constant sheaf on Mt with stalk C. We have then

SS(CMt) = {(x, t; 0, τ) ∈ T ∗MI}, SS∞(CMt) = {(x, t; 0,±1) ∈ S∗MI ' T∞M}.
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Definition 2.3. Let M be a smooth manifold, I a closed interval of R.

(i) An isotopy of (constructible) sheaves is a constructible sheaf FI ∈ Sh(M×I), such that
SS∞(FI) is a strong isotopy of Legendrians in S∗M ×T ∗I (Definition 0.4). Or equivalently
for any t ∈ I, we have

SS∞(FI) ∩ SS∞(CMt) = ∅.
If FI is an isotopy of sheaves, then for any t ∈ I, we denote the restriction of FI at t as

Ft := FI |Mt ∈ Sh(M).

(ii) Two isotopies of sheaves FI , GI ∈ Sh(M × I) are said to be non-characteristic if

SS∞(FI)|t ∩ SS∞(GI)|t = ∅, for all t ∈ I.

Some easy to check properties are in order.

Proposition 2.4. Let M be a compact real analytic manifold.
(1) If FI is an isotopy of sheaves, and Λ∞I = SS∞(FI), then

SS∞(Ft) ⊂ Λ∞t .

(2) If FI is an isotopy of sheaves, πI : MI → I, then (πI)∗FI is a local system on I.

2.4 Invariance of morphisms under non-characteristic isotopies

We use the same notations for MI = M × I,Mt,CMt , · · · as in the previous subsection.

Lemma 2.5. Let F ∈ Sh(M). Let ϕ : M → R be a C1 function, such that dϕ(x) 6= 0 for
x ∈ ϕ−1([0, 1]).
(1) For s ∈ (0, 1), let Us = {x : ϕ(x) < s}, and let U1 = ∪sUs. If

SS∞(CUs) ∩ SS∞(F ) = ∅, ∀ 0 < s < 1,

then

Hom(CU1 , F )
∼−→ Hom(CUs , F ), ∀ 0 < s < 1.

(2) For s ∈ (0, 1), let Zs = {x : ϕ(x) 6 s}, and let Z0 = ∩sZs. If

SS∞(CZs) ∩ SS∞(F ) = ∅, ∀ 0 < s < 1,

then

Hom(CZs , F )
∼−→ Hom(CZ0 , F ), ∀ 0 < s < 1.

Proof. (1) is a special case in [GKS12, Prop 1.8]. (2) follows from (1) and

0→ CM\Zs → CM → CZs → 0.

The following lemma is also often used.

Lemma 2.6 Petrowsky theorem for sheaves [KS13]. Let F,G ∈ Sh(M) be (cohomologically)
constructible complexes of sheaves. If SS∞(F ) ∩ SS∞(G) = ∅, then the natural morphism

Hom(F,CM )⊗G→ Hom(F,G)

is an isomorphism.

11
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Corollary 2.7. If FI be an isotopy of sheaves, then

Hom(CMt , FI) ' CMt [−1]⊗ FI

Proposition 2.8. Let GI and FI be non-characteristic isotopy of sheaves, then Hom(FI , GI) is
an isotopy of sheaves. In particular,

Hom(Ft, Gt) ' Hom(Fs, Gs) for all t, s ∈ I

Proof. GI and FI being non-characteristic implies SS∞(GI)∩SS∞(FI) = ∅, hence we can bound
the singular support of the hom sheaf as [KS13]

SS(Hom(FI , GI)) ⊂ SS(GI) + SS(FI)
a.

Again, using GI and FI being non-characteristic, we have

SS∞(Hom(FI , GI)) ∩ SS∞(CMt) = ∅ for all t, s ∈ I.

Hence Hom(FI , GI)) is an isotopy of sheaves. For the second statement, we have

Hom(Ft, Gt)

= Hom(jt
∗FI , jt

∗GI) ' Hom(FI , jt∗j
∗
tGI) ' Hom(FI ,CMt ⊗GI)

' Hom(FI ,Hom(CMt , GI)[1]) ' Hom(CMt ,Hom(FI , GI))[1]

' Hom(Ct, πI∗Hom(FI , GI))[1] ' [πI∗Hom(FI , GI)]t (6)

then the result follows since πI∗(Hom(FI , GI)) is a local system.

2.5 Invariance of morphisms under Reeb perturbations

Sometimes we want to vary G,F while preserving Hom(F,G), but SS∞(G) ∩ SS∞(F ) 6= ∅, e.g.
F = G. Here we borrow an idea from infinitesimally wrapped Fukaya-category [NZ09], that to
compute HomFuk(L1, L2) one needs to do perturbation to separate L1, L2 at infinity, one can
perturb L2 ; RtL2 or L1 ; R−tL1 where Rt is the unit speed geodesic flow on T ∗M (smoothed
near zero section) for positive small time t, small enough so that no new intersections are created
between L1, L2 at infinity.

Fix a Riemannian metric g on M , and identify S∗M with T∞M , so that the Reeb flow Rt is
the unit speed geodesic flow. Let rinj(M, g) be the injective radius of (M, g). Let R̂t be the GKS
quantization of Rt. The remaining part of this subsection will be devoted to prove the following
Proposition.

Proposition 2.9. Let Λ∞ ⊂ T∞M be a Legendrian, and 0 < ε < rinj(M, g) be small enough
such that

Λ∞ ∩RtΛ∞ = ∅, ∀ 0 < |t| < ε.

(1) For any F ∈ Sh(M,Λ), 0 6 t < ε, we have a canonical morphism

F → R̂tF.

(2) For any F,G ∈ Sh(M,Λ), 0 6 t < ε, we have canonical quasi-isomorphisms

Hom(F,G)
∼−→ Hom(F, R̂tG), Hom(F,G)

∼−→ Hom(R̂−tF,G)

Proof. For any 0 6 t < ε, define

Kt = C{(x,y)|dg(x,y)6t} ∈ Sh(M ×M).

12
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Then from [GKS12], we have

R̂tF = π1∗Hom(Kt, π
!
2F ) = K !

tF,

and

R̂−tF = π2!(Kt ⊗ π∗1F ) = (Kt)!F,

where π1 and π2 are the projections from M ×M to the first and second factor, and Hom is
the (dg derived) sheaf-hom. From the canonical restriction morphism Kt → K0 = C∆, where
∆ ⊂M ×M is the diagonal subset, we have

F = π1∗Hom(K0, π
!
2F )→ π1∗Hom(Kt, π

!
2F ) = R̂tF.

For the second statement, we first prove the following lemma.

Lemma 2.10.

SS∞(Kt) ∩ SS∞(Hom(π∗1F, π
!
2G)) = ∅, ∀0 < t < ε. (7)

Proof. We identify the contact infinity T∞M with the unit cosphere bundle S∗M . Assume
that the intersection is non-empty and contains the point (x1, x2, p1, p2). Since (x1, x2; p1, p2) ∈
SS∞(Kt), we have

dg(x1, x2) = t.

Since t < ε < rinj(M, g), there is a unique length t geodesic γ connecting x1, x2, and pi is the
unit tangent vector along γ at xi pointing to the interior of the geodesic.

pi = −∂xidg(x1, x2).

Hence the geodesic flow on S∗M relates (xi, pi),

Rt(x1, p1) = (x2,−p2), Rt(x2, p2) = (x1,−p1). (8)

On the other hand, since (x1, x2; p1, p2) ∈ SS∞(Hom(π∗1F, π
!
2G)), we have

(x1,−p1) ∈ SS∞(F ), (x2, p2) ∈ SS∞(G). (9)

Hence, combining (8) and (9), we have

(x1,−p1) ∈ Rt(SS∞(G)) ∩ SS∞(F ) ⊂ RtΛ∞ ∩ Λ∞

This contradicts with the displaceability of Λ∞ for t < ε.

Now we come back to the proof of the main proposition. We have

Hom(F,G) ' Γ(M,Hom(F,G))

' Γ(M ×M,Hom(C∆,Hom(π∗1F, π
!
2G))

∼−→ Γ(M ×M,Hom(Kt,Hom(π∗1F, π
!
2G))

' Γ(M ×M,Hom(π∗1F,Hom(Kt, π
!
2G))

' Γ(M,Hom(F, π1∗Hom(Kt, π
!
2G))

' Hom(F, R̂tG).

where in the third step when we replace C∆ by Kt, we used the canonical morphism Kt → C∆,
and used Lemma 2.10 and Lemma 2.5(2) to show it is a quasi-isomorphism.

We will use the following purely sheaf-theoretical statement later to study family of GKS
quantization.
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Proposition 2.11. Let I = (0, 1), and KI ∈ Sh(M ×M × I) be an isotopy of sheaves, such that
Kt = C∆t for some closed subsets {∆t}0<t<1 satisfying

∆t ⊂ ∆s, ∀0 < t < s < 1, and
⋂
t∈I

∆t = ∆M = {(x, x) : x ∈M}

Let F,G ∈ Sh(M,Λ), and Hom(π∗1F, π
!
2G) ∈ Sh(M ×M) be the hom-sheaf. Assume

SS∞(Kt) ∩ SS∞(Hom(π∗1F, π
!
2G)) = ∅, ∀t ∈ I

then

Hom(F,G) ' Hom(F,K !
tG) ' Hom(Kt!F,G), ∀t ∈ I

where K !
t,Kt! are defined in (5).

Its proof is exactly as in Proposition 2.9 (2), where the condition provided in Lemma 2.10 is
put into the hypothesis, hence we do not repeat here.

2.6 Limit of contact isotopy

Let I = (0, 1) and denote the following inclusions as

(0, 1)
jI
↪−→ R

j0←−↩ {0}.
Proposition 2.12. [TWZ19, Lemma 7.1] Let FI ∈ Sh(MI) be an isotopy of constructible
sheaves, and let Λ∞I = SS∞(FI). Suppose the family (Λ∞t , t) ⊂ T∞M × (0, 1) has a closure in
T∞M × [0, 1) whose intersection with T∞M × {0} is a Legendrian Λ∞0 , then the sheaf

F0 := (j0)∗(jI)∗FI . (10)

has SS∞(F0) ⊂ Λ∞0 .

Proof. These are corollaries of results in [KS13]. By [KS13, Thm 6.3.1], a point (x, p; 0,−1) ∈
Ṫ ∗M×T ∗R belongs to SS((jI)∗FI) only if (x, p) is the limit of a sequence of point (xn, pn) ∈ Λtn
where tn → 0, i.e., (x, p) ∈ Λ0. By [KS13, Prop 5.4.5], SS(F0) ⊂ SS((jI)∗FI)|0 = Λ0, hence
SS∞(F0) ⊂ Λ∞0 .

Let (U,X) be a convex tube for a Legendrian L ⊂ S∗M . Let X be extended from a neigh-
borhood of Ū to all of S∗M . Let

X̂ [0,∞) : Sh(M)→ Sh(M × [0,∞))

be the sheaf quantization of the flow X. And let

j[0,∞) : [0,∞) ↪→ [0,∞] ←↩ {∞} : j∞.

Then we define the functor ΠX := (idM × j∞)∗ ◦ (idM × j[0,∞))∗ ◦ X̂ [0,∞) : Sh(M)→ Sh(M).

Let Sh(M,U) denote the subcategory of Sh(M) consisting of sheaves F with SS∞(F ) ⊂ U .

Proposition 2.13. When restricted to Sh(M,U), we have ΠU,X = ΠX |Sh(M,U) : Sh(M,U) →
Sh(M,L)

Proof. This follows from the definition of convex tube and Proposition 2.12.

3. Existence and uniqueness of the extension

In this section, we prove our main result, Theorem 0.5. In the remaining part of this section, we
will sometimes identify Λ∞t ⊂ T∞M with Lt ⊂ S∗M , and identify Reeb flow with geodesic flow.
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3.1 Uniqueness of extension

Recall from Proposition 1.9, existence of strong isotopy of convex tubes implies uniform displace-
ablity of the family {Lt}.

Proposition 3.1. Let Λ∞t be a family of Legendrian in T∞M that are uniformly displaceable
with parameter ε. Then, the restriction functor ι∗t is fully-faithful for all t.

Proof. For 0 6 s < ε, we define a family of kernels in Sh((M1 × I1)× (M2 × I2)):

Ks := Cd(x1,x2)6s � Ct1=t2 . (11)

One can check that Ks generates the slice-wise geodesic flow, i.e., if FI ∈ Sh(MI), and

K !
sFI := π1∗Hom(Ks, π

!
2FI)

then we have

SS∞((K !
sFI)|Mt) = RsSS∞(FI |Mt)

where πi is the projection from (M1 × I1)× (M2 × I2) to Mi × Ii, and Rs is the Reeb (geodesic)
flow for time s.

We first prove the following claim: for any FI , GI ∈ Sh(MI ,Λ
∞
I ), we have

Hom(CM×(a,b),Hom(FI , GI)) is independent of (a, b) ⊂ I.

It suffices to prove the case for the right end-point b. To use the estimate of the singular support
of the hom-sheaf, we would like to perturb GI by the fiberwise Reeb flow.

Lemma 3.2. For any 0 < s < ε, we have

Hom(CM×{t},Hom(FI , GI))
∼−→ Hom(CM×{t},Hom(FI ,K

!
sGI)).

Furthermore, Hom(CM×{t},Hom(FI ,K
!
sGI)) is independent of t. The same is true if we replace

{t} by any sub-interval, eg. [a, b], (a, b) of I.

Proof. Unwinding the definition of K !
s, we have

Hom(CM×{t},Hom(FI ,K
!
sGI))

= Hom(CM×{t},Hom(FI , π1∗Hom(Ks, π
!
2GI)))

= Hom(CM×{t}, π1∗Hom(π∗1FI ,Hom(Ks, π
!
2GI)))

= Hom(π∗1CM×{t},Hom(Ks,Hom(π∗1FI , π
!
2GI)))

We claim that

SS∞(π∗1CM×{t}) ∩ SS∞Hom(Ks,Hom(π∗1FI , π
!
2GI)) = ∅, ∀ 0 < s < ε. (12)

The verification is straightforward though a bit tedious, thus we leave it to the readers.

From this claim, and

Hom(π∗1CM×{t},Hom(Ks,Hom(π∗1FI , π
!
2GI)))

' Hom(π∗1CM×{t} ⊗Ks,Hom(π∗1FI , π
!
2GI)))

we may apply Lemma 2.5 (2) on shrinking closed set, to get

Hom(π∗1CM×{t} ⊗Ks,Hom(π∗1FI , π
!
2GI))) ' Hom(π∗1CM×{t} ⊗K0,Hom(π∗1FI , π

!
2GI)))
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for all 0 < s < ε. This proves the first statement of the Lemma.

The statement about independence of t follows from (12) and Proposition 2.8.

The case for sub-interval can be proved similarly, and we omit the details.

Now, we finish to prove the proposition. By Lemma 3.2,

Hom(CM×(a,b),Hom(FI , GI))

is independent of (a, b), hence we may shrink from (0, 1) to an arbitrary small neighborhood of
t. Then we have

Hom(FI , GI) ' [πI∗(Hom(FI , GI))]t ' [πI∗(Hom(FI ,K
!
sGI)]t

' Hom(ι∗tFI , ι
∗
tK

!
sGI) ' Hom(Ft, R

sGt) ' Hom(Ft, Gt)

where 0 < s < ε, and we used small Reeb perturbation to make FI ,K
!
sGI non-charactersitic

isotopy of sheaves, then apply Eq.(6) in Proposition 2.8.

Proposition 3.3. Let {Λ∞t } be a family of Legendrian in T∞M that are uniformly displaceable
with parameter ε. For a given t, let Ft ∈ Sh(M,Λ∞t ). Suppose we have F ′I and F ′′I in Sh(MI ,Λ

∞
I )

and isomorphisms

f : F ′I |t
∼−→ Ft, g : F ′′I |t

∼−→ Ft,

then there exists a canonical isomorphism

Φ : F ′I → F ′′I

such that Φ|t = g−1 ◦ f : F ′I |t → F ′′I |t.

Proof. The proof follows from Proposition 3.1 by standard argument.

3.2 Existence of local extension

Proposition 3.4. Let I = [0, 1]. Let LI be a strong isotopy of Legendrians in S∗M × T ∗I with
slice over t denoted as Lt. Let (UI , XI) be a strong isotopy of convex tubes for LI . Then for
any t ∈ I and Ft ∈ Sh(M,Lt), there exists an interval J ⊃ t and FJ ∈ Sh(MJ ,LJ), such that
FJ |t = Ft, where MJ = M × J,LJ = LI ∩ S∗M × T ∗J .

Proof. For any interval J ⊂ I, let UJ = UI ∩ S∗M × T ∗J . Then, for J small enough containing
t, we have Lt × T ∗JJ ⊂ UJ . Let XJ denote the restriction of XI to XJ , then if we define (see
Proposition 2.13 for definition of ΠU,X)

FJ := Π(UJ ,XJ )(Ft � CJ),

we have FJ |t = Ft and SS∞(FJ) ∈ LJ .

3.3 Proof of theorem 0.5

By the local extension result (Proposition 3.4) and uniqueness of extension result, for any t ∈
I = [0, 1] and Ft ∈ Sh(M,Lt), we can extend Ft to FI ∈ Sh(MI ,LI), such that FI |t = Ft. Hence
the functor ι∗t is fully-faithful (Proposition 3.1) and essentially surjective, thus is an equivalence.
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