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1. Introduction

This is the second paper in a series [31] where we construct deformation families of 
Lagrangian skeletons in the toric variation of GIT setting. Consider a complex torus T =
(C∗)k acting on a vector space V = CN . There are possibly many GIT quotient stacks 
[V/θT ] depending on the choice of a character θ : T → C∗. If the T action preserves 
the standard volume form on CN , then the resulting quotients are (non-compact) toric 
Calabi-Yau stacks whose derived categories of coherent sheaves are equivalent, although 
the equivalences are not canonical. The lack of uniqueness of GIT quotients and their 
equivalences is a feature instead of a bug, and one expects a local system of categories 
over the complexified Kähler moduli space minus some discriminant, such that away from 
the discriminant, various asymptotic regions in the parameter space should correspond 
to various GIT quotients; parallel transports along paths between the regions should 
correspond to derived equivalences.

In general, it is difficult to construct such a local system of categories explicitly, since 
the discriminant can be complicated. However, under the ‘quasi-symmetric’ condition 
(see Definition 1.1 below), the discriminant is an affine hyperplane arrangement, and we 
are able to construct the local system of categories using microlocal sheaf theory and 
Lagrangian skeletons.

The Coherent-Constructible-Correspondence (CCC) for toric varieties was initiated by 
Bondal [4] and Fang-Liu-Treumann-Zaslow [8,9], and finalized in the paper by Kuwagaki 
[20] using wrapped constructible sheaves developed in [22]. These results relate the A-
model to the B-model within each GIT chamber, and our work here interpolates various 
A-models across different chambers.

1.1. Setup

Let n = N − k. Let ZN = Hom((C∗)N , C∗) and Zk = Hom((C∗)k, C∗) be the 
character lattices, and let (ZN )∨ and (Zk)∨ be their duals. Let {ei}Ni=1 be the standard 
basis of ZN and {e∨i }Ni=1 be the dual basis of (ZN )∨. We assume that the torus action 
(C∗)k on CN induces short exact sequences of lattices

0 → M → ZN μZ−−→ Zk → 0, (1.1)

0 → (Zk)∨ → (ZN )∨ νZ−−→ N → 0, (1.2)

where M and N are dual lattices of rank n. Let μR : RN → Rk be induced from μZ
by − ⊗ R. We let T = R/Z � S1, and let Tn be the real n-dimensional torus. We use 
MR, MT , NR, NT to denote the result of tensoring the lattice with T or R. For simplicity, 
we will choose a basis of M and identify MR � Rn and MT � Tn by an abuse of notation.

Let βi = μZ(ei) ∈ Zk be the weights of the action T on V . We assume that βi are all 
nonzero and span Rk.
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Definition 1.1. Let L = {L1, · · · , Lm} be the collection of lines in Rk where each line 
contains at least one βi. We say the action of T on V satisfies the quasi-symmetric 
condition, if ∑

βi∈L

βi = 0, ∀L ∈ L.

The quasi-symmetric condition implies the Calabi-Yau condition, which is 
∑

i βi = 0. 
Indeed, the non-vanishing volume form 

∏
dzi on CN descend to the quotients.

Remark 1.2. The quasi-symmetric condition is equivalent to having the following factor-
ization of μZ : ZN → Zk,

ZN =
∏
L∈L

Z[N ]L πZ−−→
∏
L∈L

Z
q−→ Zk,

where we denote [N ] = {1, · · · , N} and [N ]L = {i ∈ [N ] : βi ∈ L} and for each factor 
L ∈ L, the weight map Z[N ]L → Z satisfies the Calabi-Yau condition.

1.2. Zonotopes and windows

We take the zonotope

∇ := 1
2

N∑
i=1

[0, βi],

where [0, v] is the line segment connecting 0 and v, and the sum is the Minkowski sum. 
The quasi-symmetric condition implies ∇ = −∇ and that ∇ can be translated to a 
lattice zonotope.

For any δ ∈ Rk, we define the shifted zonotope and window

∇δ = δ + ∇, Wδ = ∇δ ∩ Zk.

We call δ a shift parameter, and we say δ is generic if ∂∇δ contains no lattice points. In 
general, there is a stratification of Rk induced by the function δ 	→ Wδ.

For any w ∈ ZN , we consider a translated open positive quadrant w + RN
>0, and the 

constructible sheaf

Lw := Cw+RN
>0

(1.3)

locally constant with stalk C on w+RN
>0 and 0 elsewhere. We define a conical Lagrangian 

in T ∗RN ,
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Λw = SS(Lw) =
w

. (1.4)

Concretely, for w = 0, we have

Λ0 = SS(CRN
>0

)

= {(x1, · · · , xN , ξ1, · · · , ξN ) ∈ T ∗RN

| for each i, either (xi > 0, ξi = 0), or (xi = 0, ξi ≤ 0) }.

Definition 1.3 (Window skeletons). Let δ ∈ Rk be a shift parameter and Wδ be a window. 
The window skeleton of Wδ is defined as the union

ΛWδ
=

⋃
w∈W̃δ

Λw ⊂ T ∗RN ,

where W̃δ = μ−1
Z (Wδ). We also define the non-equivariant window skeleton

ΛWδ
= ΛWδ

/M ⊂ T ∗(RN/M) � T ∗(Tn ×Rk),

where M acts on RN and T ∗RN by translation.

Recall μR : RN → Rk is the induced character map from the group homomorphism 
(C∗)k → (C∗)N . For any l ∈ Rk, we define the restriction of ΛWδ

to the fiber Xl = μ−1
R (l)

to be the symplectic reduction

Λδ,l := ΛWδ
|Xl

⊂ T ∗Xl � T ∗Rn,

where we use the notion of restricting a conical Lagrangian Λ ⊂ T ∗M to the cotangent 
bundle T ∗S of a smooth submanifold S ⊂ M ,

Λ|S := (Λ ∩ T ∗M |S)/T ∗
SM ⊂ (T ∗M |S)/T ∗

SM � T ∗S.

Similarly, we define the non-equivariant version of fiber skeleton

Λδ,l = Λδ,l/M ⊂ T ∗(Xl/M) � T ∗Tn.

1.3. Constructible sheaf of categories

We first present our result about ΛWδ
for a fixed δ.

We first state a result saying ΛWδ
over various asymptotic region are the mirror 

skeletons to the various GIT quotients. Recall that Rk admits stratification according 
to how the fiber of μR intersects with the positive quadrant RN

≥0. This stratification fits 
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into a GKZ fan (secondary fan), where each maximal cone’s interior C is called a GKZ 
chamber, and labels the GIT quotient XC . In Section 2, we prove that for any δ ∈ Rk and 
chamber C, there is an stable region C∇δ

in the direction C, such that ΛWδ
restricted 

over C∇δ
is the mirror to the GIT quotient XC .

Theorem 1.4 (Theorem 2.6). For any δ ∈ Rk and any GKZ chamber C, if we define

C∇δ
=

⋂
p∈∇δ

p + C

and the skeleton for GIT quotient in chamber C,

ΛC =
⋃

I∈IC

(ZN + RI) × (−(R∨
≥0)I

c

) ⊂ T ∗RN , IC = {I ⊂ [N ] | μ−1
R (C) ∩RI

≥0 �= ∅},

then we have

ΛWδ
= ΛC , inside μ−1

R (C∇δ
).

In particular, if l ∈ C∇δ
∩Zk, then Λδ,l ⊂ T ∗Tn is the (non-equivariant) FLTZ skeleton 

ΛΣC
/M (see Definition 2.2) mirror to the GIT quotient CN//l(C∗)k.

In fact, Theorem 2.6 holds for general toric GIT, without toric CY or quasi-symmetric 
condition.

Next, we prove a result showing that, for δ generic, ΛWδ
induces an equivalence among 

all skeletons Λδ,l for l ∈ Rk. We recall the notion of non-characteristic deformation of 
Lagrangian. For any smooth manifold M and conical Lagrangian Λ ⊂ T ∗M , we follow 
the notation of Nadler [22] and consider the cocomplete dg derived category of sheaves 
on M that are cohomologically constructible and have singular support contained in Λ, 
and denote it by Sh♦(M, Λ). The compact objects in Sh♦(M, Λ) are called wrapped con-
structible sheaves, and constitute the full subcategory Shw(M, Λ). It is proven recently 
[10,25] that the wrapped constructible sheaves (and more generally wrapped microlocal 
sheaves) and the corresponding wrapped Fukaya categories W(T ∗M, Λ) are equivalent. 
We follow [21], and say a family of Lagrangian skeletons {Λt ⊂ T ∗M} parametrized by 
t is a non-characteristic deformation family, if the corresponding categories Sh♦(M, Λt)
are independent of t.

Theorem 1.5 (Theorem 6.1). If δ ∈ Rk is generic, then {Λδ,l}l∈Rk and {Λδ,l}l∈Rk are 
non-characteristic deformations of Lagrangian skeletons parametrized by l ∈ Rk. More 
precisely, for any l ∈ Rk the restriction functors are equivalence of categories

ρδ,l : Sh♦(RN ,ΛWδ
) ∼−→ Sh♦(Rn,Λδ,l), ρδ,l : Sh♦(Tn ×Rk,ΛWδ

) ∼−→ Sh♦(Tn,Λδ,l).
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Hence given a choice of the window Wδ for δ generic, there is a simultaneous non-
characteristic interpolation among the universal FLTZ skeletons ΛC in all chambers. 
Consequently, the A-model categories are all equivalent through parallel transport.

Our next result is about what happens when δ is non-generic. On the B-side, the story 
is explained by [13] and [30], and we have the ‘window inclusion functors’ and their left 
and right adjoints. For each δ ∈ Rk, we have the zonotope ∇δ and the corresponding 
window Wδ = ∇δ ∩ Zk as before, and we have the window category Bδ (denoted as 
M(∇δ) in [13] and EC in [30] for the strata C in Rk containing δ) as full subcategory of 
Coh([CN/(C∗)k]) generated by (C∗)k-equivariant line bundles Lw with weights w ∈ Wδ,

Bδ := 〈{Lw | w ∈ Wδ}〉. (1.5)

If δ, δ′ ∈ Rk, and δ is a specialization of δ′, i.e. Wδ ⊃ Wδ′ , then we have the window 
inclusion functor

ιδ′,δ : Bδ′ → Bδ, if Wδ′ ⊂ Wδ.

The adjoint functors are studied in [13, Lemma 6.7], and the right adjoints are used to 
establish a perverse schober structure on certain periodic affine hyperplane arrangements 
[30].

On the A-side, we give a complete Lagrangian skeletal translation of the above story. 
We use the same construction of the window skeleton ΛWδ

in RN as in the case that δ
is generic, however the variation of skeleton {Λδ,l}l∈Rk is no longer non-characteristic: 
there will be jumps in the constructible sheaf category Sh♦(Rn, Λδ,l) as we vary l. In 
Fig. 2, the jumps are shown with blue hairy lines, and dashed lines indicate there are 
no jumps. Hence it is useful to adopt the language of a constructible sheaf of categories 
and use its singular support and microlocal stalks to indicate the ‘location and amount’ 
of the jumps.1 More precisely, we consider a sheaf of categories Sh♦

ΛWδ
on RN defined 

in [22, Section 3.6] and its push-forward along μ to Rk. We denote these two sheaves of 
categories as

C̃δ := Sh♦
ΛWδ

, Cδ := μ∗Sh
♦
ΛWδ

. (1.6)

Hence for any convex open sets Ũ ⊂ RN and U ⊂ Rk, we have

C̃δ(Ũ) := Sh♦
ΛWδ

(Ũ), and Cδ(U) := Sh♦
ΛWδ

(μ−1(U)), (1.7)

where we require convexity of the open sets so that value of the sheaf and pre-sheaf agree. 
The same can be defined when ΛWδ

is replaced by the non-equivariant skeleton ΛWδ
, 

and/or the large constructible sheaf is replaced by the wrapped constructible sheaves

1 Admittedly, the use of ‘constructible sheaf of categories and singular supports’ is rather informal and 
naive in this paper. However, since the situation is combinatorial and explicit, we hope the language can 
be formalized without affecting the final result.
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Cw
δ := μ∗Sh

w
ΛWδ

, Cδ := μ∗Sh
♦
ΛWδ

, Cw

δ := μ∗Sh
w
ΛWδ

. (1.8)

Note however, that for the wrapped constructible sheaf, one in general only get a cosheaf 
of categories, where as for Sh♦ one get both a sheaf and co-sheaf. Hence, we will prove 
results for Sh♦ first, and pass to Shw only when needed.

The definition of singular support of C̃δ and Cδ is given in Section 3.5. It is a straight-
forward generalization of the one for constructible sheaves [17, Chapter 5], and measures 
the failure of existence of unique extensions of objects and their hom spaces from a 
smaller open set to a bigger open set. For any given non-zero vector (x, ξ) ∈ T ∗Rk, we 
have the microlocal restriction functor

ρx,ξ : Cδ(Bx) → Cδ(Bx,ξ,−) (1.9)

from a small ball Bx centered at x to a half ball Bx,ξ,− obtained by ‘retreating’ in the ξ
direction. Then ρx,ξ is an equivalence if and only if ρx,ξ and its left-adjoint, the microlocal 
co-restriction functor

ρLx,ξ : Cδ(Bx,ξ,−) → Cδ(Bx) (1.10)

are both fully-faithful. Hence, we define the usual singular support SS(Cδ) measuring the 
failure of ρx,ξ being an equivalence, and two smaller versions, SSHom(Cδ) and SSL

Hom(Cδ), 
measuring when ρx,ξ and ρLx,ξ fails to be fully-faithful, i.e. quasi-isomorphism on the hom 
space. By construction, the various versions of singular supports satisfy

SS(Cδ) = SSHom(Cδ) ∪ SSL
Hom(Cδ).

If one thinks in terms of extending a constructible sheaf in Cδ(U) = Sh♦(π−1(U), ΛWδ
)

to one in Cδ(V ) over a slightly larger convex open set V ⊃ U , then SSL
Hom(Cδ) is the 

obstruction for the existence of an extension, and SSHom(Cδ) is the obstruction for the 
uniqueness of the extension.

Our next theorem describes the location of the jumping loci for Cδ on Rk. Let Σ∇
be the exterior conormal fan to the zonotope ∇, then faces of ∇ are in one-to-one 
correspondence to the cones in Σ∇.

Theorem 1.6 (Theorem 4.6 and 5.1 and Proposition 6.5). For any δ ∈ Rk, let Cδ denote 
the constructible sheaf of categories on Rk defined in Eq. (1.6), then SSL

Hom(Cδ) is the 
zero section of T ∗Rk, and

SS(Cδ) = SSHom(Cδ) =
⋃

Fδ,σ:Fδ,σ∩Zk �=∅
Aff(Fδ,σ) × (−σ) ⊂ Rk × (Rk)∨ � T ∗Rk

where Fδ,σ is the face of the shifted zonotope ∇δ = δ + ∇ labeled by a cone σ ⊂ Σ∇.
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Remark 1.7. We do not have a good way to prove that SSL
Hom(Cδ) is the zero section of 

T ∗Rk except by verifying by hand that the hom spaces between microlocal skyscrapers 
are invariant under microlocal co-restriction. This is analogous to asking certain covariant 
sectorial inclusion functor on the wrapped Fukaya categories being fully-faithful. It would 
be interesting to develope a general method to check this, even just for piecewise linear 
conical Lagrangians in R2n.

For any Λ ⊂ T ∗M conical Lagrangian, we define the contact sphere bundle T∞M =
(T ∗M\T ∗

MM)/R>0, and the corresponding Legendrian Λ∞ = (Λ\T ∗
MM)/R>0. We define 

the jumping loci S(Cδ) for Cδ as the projection image of the Legendrian SS∞(Cδ) ⊂
T∞Rk to the base Rk. By the above theorem,

S(Cδ) =
⋃

Fδ,σ:Fδ,σ∩Zk �=∅
Aff(Fδ,σ).

If l ∈ Rk is not in the jumping loci S(Cδ), we say l is a regular value for Cδ.
With the knowledge of singular support, we may deform a convex open set U ⊂ Rk

without changing the categorical output Cδ(U) as along as the exterior unit conormal of 
U is disjoint from SS∞(Cδ). The following corollary is immediate, noting the connected 
components in the complement of the jumping loci are convex hence contractible.

Corollary 1.8. If l1, l2 ∈ Rk are in the same connected component in the complement of 
the jumping loci for Cδ, then we have a canonical isomorphism of stalks Cδ|l1 � Cδ|l2 .

More usefully, we have the following result identifying the stalk of Cδ|l at a regular 
value l with the constructible sheaf category on the fiber over l.

Proposition 1.9. If l is a regular value of Cδ, then we have

Cδ|l � Sh♦(Rn,Λδ,l).

Similar statement holds if we change Sh♦ to Shw and/or Λδ,l with Λδ,l.

Proof. By Proposition 3.23 and the triviality of SSL
Hom(Cδ), we may extend a sheaf 

in Sh♦(μ−1
R (l), Λδ,l) to a tubular neighborhood of μ−1

R (l), e.g. μ−1
R (Bx). By regularity 

of l, the restriction from μ−1
R (Bx) back to μ−1

R (l) is non-characteristic with respect to 
SSHom(Cδ), hence the extension is unique, and we have proven that the restriction from 
μ−1
R (Bx) to the fiber μ−1

R (l) is an equivalence of categories. �
In the following example, we illustrate what the singular support looks like.

Example 1.10 (N = 6, k = 2). Consider the example of (C∗)2 acting on C6 with weight 
vectors βi (as column vectors) given by
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Fig. 1. Stratification of the shift parameter space Rk
δ .

Fig. 2. The zonotope ∇δ (yellow), the windows points Wδ (red) and the singular supports (blue hairy lines 
and blue arcs) of the sheaf of categories. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

(β1, β2, · · · , β6) =
(

1 −1 0 0 1 −1
0 0 1 −1 1 −1

)
There are 6 GKZ chambers, separated by the 6 rays generated by βi.

The stratification of the shift parameter space δ ∈ R2 is shown in Fig. 1. We write Rk
δ

for the space that δ varies, and write Rk
l for that of l. We consider three sample choices 

of δ as shown above, with δ1 being the most non-generic and δ3 being generic. For each 
δi, we illustrate in Fig. 2 the zonotope ∇δ, window points Wδ, and the singular support 
of the sheaf of categories Cδ. Note that in the first figure, over the vertices the zonotope, 
we have Lagrangian cones in the cotangent fiber, marked by the blue arcs, and over other 
intersections of the blue hairy lines, we don’t have anything extra in the cotangent fiber. 
�

Next, we describe what is causing the jump. Intuitively, as l moves pass the jumping 
loci in the direction of the singular support (i.e. pass a blue hairy line in the direction of 
the hair), the fiber skeleton Λδ,l will pick up something extra, it turns out the Legendrian 
boundary Λ∞

δ,l will obtain certain ‘Legendrian vanishing spheres’. The prototypical local 
behaviors are shown in Fig. 3, where the fiber skeleton is 1-dimensional, and the base 
Rk

l is 1-dimensional.
In general, for higher dimensional base Rk

l , the jumping loci

Vδ,σ = Aff(Fδ,σ)
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Fig. 3. This is a local picture of a skeleton ΛWδ
in R2 such that Cδ has jumping loci in R1

l . The fiber skeleton 
over the green dashed line has one stop, and the one over the red line has two stops, a zero-dimensional 
Legendrian vanishing sphere S0. The yellow region is the support of a sheaf that vanishes when restricted 
to the right of the green line, hence SSHom(Cδ) has a covector pointing to the left.

are affine linear extrapolations of the faces Fδ,σ in ∇δ that contain lattice points. There 
exist global vanishing cycles {Lσ,ṽ | ṽ ∈ ZN , μ(ṽ) ∈ Vδ,σ} (Eq. (6.3)) associated to Fδ,σ, 
whose support in RN has projection image in Rk contained in the affine cone

Cδ,σ := Vδ,σ − σ∨ = Vδ,σ + R≥0 · {y − x | y ∈ ∇, x ∈ Fσ}.

For each x ∈ Vδ,σ, we can define a category of the local vanishing cycles, namely those 
sheaves in Cδ(Bx) that restrict to 0 in Bx,ξ,− for ξ ∈ Int(−σ). This collection of categories 
again forms a sheaf of categories on Vδ,σ, denoted as Cδ,σ.

Definition 1.11. For each (δ, σ) such that the face Fδ,σ contains lattice points, we define
the sheaf of vanishing cycles Cδ,σ on Vδ,σ as a sheaf of full subcategories of Cδ supported 
on Vδ,σ, such that, for any convex open subset U ⊂ Vδ,σ,

Cδ,σ(U) = lim−−→
Ω⊃U

{F ∈ Cδ(Ω) | μ(Supp(F )) ⊂ Cδ,σ},

where Ω ⊂ Rk runs through all convex open subset such that Ω ∩ Vδ,σ = U .

We also abuse notation and view Cδ,σ as a sheaf on Rk supported on Vδ,σ, so that for 
any convex open Ω ⊂ Rk, we have Cδ,σ(Ω) := Cδ,σ(Ω ∩ Vδ,σ).

In Theorem 6.9, we relate the sheaf of vanishing cycles Cδ,σ with certain window 
subcategories on Vδ,σ. For details, see Section 6.3. Here we present a simplified version.

Theorem 1.12. Let Fδ,σ be a face of ∇δ with exterior conormal σ which contains lattice 
points in Zk. Then for any x ∈ Aff(Fδ,σ) and ξ ∈ Int(−σ), we have a semi-orthogonal 
decomposition

Cδ(Bx) = 〈Cδ,σ(Bx), Cδ(Bx,ξ,−)〉.

Furthermore, Cδ,σ(Bx) is generated by the restriction of the following sheaves to μ−1(Bx),
R
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Fig. 4. Window skeleton of ΛWδ
⊂ T ∗RN for N = 2. From left to right, we have Wδ = {0}, {0, 1}, {1}

respectively. In the middle figure, the yellow region is an example of a ‘vanishing cycle sheaf’ whose tip has 
μ image at l = 1. Similarly, the green region is the support of a ‘vanishing cycle sheaf’ whose tip has μ
image at l = 0. They are the images of the structure sheaf of the unstable loci in the action of C∗ on C2

with weight (1, −1). See Example 1.13 for details.

{Lσ,ṽ | ṽ ∈ ZN , μZ(ṽ) ∈ Fδ,σ}
Lσ,ṽ = Lṽ

��
→

⊕
I⊂Iσ,|I|=1

Lṽ−eI →
⊕

I⊂Iσ,|I|=2

Lṽ−eI → · · · ,

where Lw for w ∈ ZN is given in Eq. (1.3), and the morphisms are induced by inclusions 
of open sets.

Example 1.13 (N = 2, k = 1). In this example, we consider the simplest possible case, 
where N = 2, k = 1, and C∗ acts on C2 with weight (1, −1). The example already 
illustrates many of the notions mentioned above. The zonotope ∇ = [−1/2, 1/2], and 
the stratification of δ-space consisting of (1/2) + Z in R and its complement. For a 
non-generic choice of δ, say δ = 1/2, we can draw the window skeleton in RN = R2, as 
Fig. 4.

The non-generic window Wδ = {0, 1} has two sub-windows, Wδ−ε = {0} and Wδ+ε =
{1}. We note that the three window skeletons only differ in the ‘transition region’, 
shown between the two red dashed lines. We denote Ĉ− = (−∞, 0) and Ĉ+ = (1, ∞), 
the quantized GKZ chambers, and we also use Λ± to denote the universal FLTZ skeleton, 
which can be determined by restrict (any of) the window skeleton ΛWδ

to μ−1
R (Ĉ±) and 

extend periodically in the obvious way.
Consider the window inclusion functor induced by window inclusion {1} ↪→ {0, 1}:

ι+ : Sh♦(R2,Λ{1}) ↪→ Sh♦(R2,Λ{0,1}),

the skeletons are shown in the right and middle panel in Fig. 4.
The inclusion functors has two adjoints, the left adjoint ιL+ and right adjoint ιR+. 

The left-adjoint is the stop removal functor, where the stop removed is the difference 
Λ{0,1}\Λ{1}. One such stop is shown as a red segment, whose microlocal skyscraper 
sheaf in Λ{0,1} is shown in green. Hence, stop removal will kill the green sheaf (and its 
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various shifts by ker(μZ) up and down), but will leave the sheaf in the ‘left half space’ 
μ−1(Ĉ−) unchanged. Since if we know a sheaf in the left stable region, and the sheaf is 
admissible for the skeleton Λ{1}, then the sheaf is uniquely determined, hence the stop 
removal functor is the composition of restriction and co-restriction with respect to a new 
skeleton Λ{1}:

ιL+ : Cδ(R) → Cδ(Ĉ−) → Cδ+ε(R).

The right adjoint ιR+ is going to kill objects invisible by the image ι+. Since the 
image of ι+ is generated by the microlocal skyscrapers for cotangent fiber in open cells 
{w + (0, 1)2 | w ∈ μ−1

Z (1)}, e.g. w + (0, 1)2 with w = (0, 1), and the stalks of the yellow 
sheaf in these cells are zero, the yellow sheaf and its translates by ker(μZ) are killed by 
the right-adjoint.2 By a similar argument, we have

ιR+ : Cδ(R) → Cδ(Ĉ+) → Cδ+ε(R).

We note that this is precisely the construction of the adjoint functors given by [13, 
Lemma 6.7]. �

Finally, we prove homological mirror symmetry for the window categories between 
A-model and B-model.

Theorem 1.14. For any δ ∈ Rk, we have an equivalence of categories

Bδ � Shw(RN/M,ΛWδ
).

Note that this is not automatic by coherent-constructible correspondence, which only 
gives a fully-faithful embedding of Bδ ↪→ Shw(RN/M, ΛWδ

). One still needs to prove 
essential surjectivity, which is done in Theorem 6.3.

1.4. Window skeleton and perverse Schober

Perverse schober [18] on a disk is a nice combinatorial book-keeping tool to organize 
several spherical functors, and to localize the categorical computation to small open sets. 

2 Another way of seeing that the yellow sheaf needs to be killed is that, it is the representing object in 
Sh♦(R, Λ{0,1}) of the following contravariant functor,

F �→ Hom(F, )

where the red segment is the same as in Fig. 4 middle panel, and the blue hollow half-dome represents the 
locally constant sheaf supported in its interior with the indicated boundary. Hence, we call the yellow sheaf 
the microlocal ‘co-skyscraper’ for this Lagrangian disk, just as the green sheaf is the microlocal skyscraper. 
This operation is not so natural in a general wrapped Fukaya category, since it is cosheaf-like and one only 
has stop removal; however it might work if the wrapping is fully-stopped.
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Fig. 5. An increasing sequence of open sets Ut (the interior regions of the green curves). See Fig. 2b, where 
we only keep the window Wδ (red dots) and the singular support SS(Cδ) (blue hairy line). This is a non-
characteristic expansion of open sets (since when the green line become tangent to the blue lines, the hairs 
are in opposite direction), hence the categories Cδ(Ut) are invariant.

More generally, perverse schobers with complex hyperplane arrangements [19] can be 
defined. One area of motivation and application is the Fukaya category with coefficients, 
the idea of which has been adopted by [24,23] for example.

The connection with GIT has been made in [6,5], and the connection with quasi-
symmetric window categories has been explained in [30, Proposition 5.1]. There it is 
stated that the window inclusion functors and their right-adjoints between various win-
dow categories Bδ give rises to a perverse schober.

By Theorem 1.14, we automatically have a skeletal realization of the perverse schober, 
using Spenko and Van den Bergh’s result.

A slightly different point of view is to recognize Cδ itself as giving a perverse schober.

Proposition 1.15. For any δ ∈ Rk, Cδ defines a perverse schober on Rk
l that is isomorphic 

to the local schober structure on Rk
δ near δ.

Proof. On the one hand, for δ non-generic, let Sδ denote the stratum in Rk that contain 
δ, and let Sδ = {S | S ⊃ Sδ} denote the neighboring strata. On the other hand, for 
each affine hyperplane H passing through δ in the stratification in Rk

δ , we can assign 
a thickened hyperplane Ĥ = Int(∇δ) + H, and for each stratum S′ ∈ Sδ, there is 
a connected component RS′ in the complement of the jumping loci, made from the 
intersections of thickened hyperplanes.

And one can verify that for any S ∈ Sδ, we have

Cδ(RS) � CS(RS) � CS(Rk)

where CS = Cδ′ for some δ′ ∈ S. Indeed, the first equivalence is seen by considering the 
window skeletons, we have ΛWδ

= ΛWδ′ over RS . And the second equivalence is by non-
characteristic expansion from the open set RS to Rk. See the Fig. 5 for an illustration 
of the expansion.
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And if S1 < S2 for Si ∈ Sδ, i.e. S1 ⊂ S2, we have a commuting diagram

Cδ(RS2) Cδ(RS1)

CS2(Rk) CS1(Rk)

Pγ

� �

ι

where the top row is realized by extension along a path γ from a point p2 ∈ RS2 to a 
point p1 ∈ RS1 , such that γ is monotone in the sense that whenever γ crosses a jumping 
locus, γ̇ pairs positively with the covector in the singular support. We call such functors 
parallel transports along γ, denoted as Pγ . Then since Cδ(RSi

) � Cδ|pi
, this gives the 

desired top arrow. The bottom row is the window inclusion functor. �
1.5. Universal skeleton and local system of categories

Finally, we discuss how to connect to the local system on the ‘stringy Kähler moduli’ 
space. Let

B = Rk
δ ×Rk

l , X = Rk
δ ×RN

x

where the subscripts denote the names of the coordinate variables. Consider the trivial 
fibration

μ̃ : X → B, (δ, x) 	→ (δ, μ(x)).

For any δ ∈ Rk, let

D∇δ
=

⋃
{∇δ + TF | F is a facet of ∇δ containing lattice point} (1.11)

where TF is the tangent space of F , a hyperplane in Rk. Note for generic δ, ∂∇δ does 
not contain any lattice point, and D∇δ

= ∅. Consider all δ together, we define

D =
⋃

δ∈Rk

{δ} × D∇δ
.

Define

Bo = B\D, X o = μ̃−1(Bo).

Proposition 1.16. There is a universal skeleton Λ define over X o, such that for any 
(δ, l) ∈ Bo,

Λ|(δ,l) = Λδ,l.
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Fig. 6. Rl ×Rδ\{[k, k + 1] ×{k}}k∈Z for the (1,-1) action of C∗. Quotient by the diagonal Z-action on this 
space gives a cylinder with a slit, which is homotopic to a 3 punctured sphere.

Proof. For any (δ, l) ∈ Bo, there is a small product neighborhood Uδ × U ′
l of (δ, l), such 

that l ∈ U ′
l ⊂ Rk

l \D∇δ
and Uδ is small enough that it is contained in the link of the 

strata that δ belongs to. One can show that, as δ′ moves in Uδ, ΛWδ′ remains constant 
over Rk

l \D∇δ
, hence one can define skeleton on Uδ ×μ−1(U ′

l ) by T ∗
Uδ
Uδ × (ΛWδ

|U ′
l
). This 

universal skeleton is the unique skeleton such that when restricted to Bo|δ, it agrees with 
ΛWδ

. �
Theorem 1.17. The variation of Lagrangian skeletons Λ for μ̃ : X o → Bo is non-
characteristic, i.e., the assignment

(δ, l) 	→ Sh♦(Rn,Λ(δ,l)), ∀δ, l ∈ Bo

is a local system of categories. The same is true for the wrapped sheaf version and the 
non-equivariant version.

Let Zk acts on B diagonally, then D is preserved under this action. The universal 
skeleton is also Zk-invariant. We can consider the quotient base Bo = Bo/Zk, with trivial 
Rn fibration over it, and the family of skeleton Λδ,l over the fiber μ̃−1(δ, l) = μ−1(l).

If C is a GKZ chamber and Ĉδ ⊂ Rk
l is the quantized GKZ chamber for ∇δ, then if 

l ∈ Ĉδ ∩ Zk, we may identify Λδ,l with the FLTZ skeleton for the toric GIT quotient 
corresponding to C. For any q ∈ Zk, the segment from (δ, l) to (δ + q, l + q) does not 
meet any discriminant locus. Λδ,l is locally independent of δ (unless one passes through 
the discriminant locus), hence the local variation is the same as keeping δ and changing l
to l+q. By inspecting the universal FLTZ skeleton ΛC , we see this is mirror to tensoring 
by a line bundle labeled by the Chern character q ∈ Zk � H2(XC), thus monodromies 
of the local system of categories are automatic.

Example 1.18 ((1,-1) action of C∗). We draw the base for the universal skeleton Λ for 
the C∗ action by weights (1,-1). Λ is a 2 dimensional skeleton over the complement of 
the red colored slits in Rδ ×Rl drawn in Fig. 6. �
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1.6. Related works

1.6.1. Mirror symmetry for toric Calabi-Yau
Let P ⊂ {1} ×Rk−1 be a bounded convex polytope with vertices in {1} ×Zk−1, and 

let P̂ = conv({0 ∈ Rk} ∪P ). From this data we can construct a collection of toric Calabi-
Yau XP,T depending on subdivision T of P as B-model, and a mirror Landau-Ginzburg 
A-model WP : (C∗)k → C.

On the B-side, XP and XP,T are defined as following. Let Σ ⊂ Rk be a fan consisting 
of a single top dimensional cone σP = R≥0 · P generated by P and its faces, then XP is 
the toric stack associated to Σ. More generally, for any polyhedral subdivision T of P , 
we can get a refinement ΣT of Σ, and correspondingly, we get a (partial) resolution of 
toric Calabi-Yau XP,T → XP . The stack XP and its resolutions XP,T have equivalent 
derived categories of coherent sheaves.

On the A-side, we may consider a k-variable Laurent polynomial WP (z1, · · · , zk) as-
sociated with P ∩Zk with generic coefficients of the monomials. Then, we may consider 
the wrapped Fukaya category on (C∗)k with stop given by W−1

P ({w ∈ C : Re(w) ≥ 1}). 
Thus, one get a local system of category as the coefficients of WP moves away from 
some discriminant locus. We may compactify (C∗)k to a smooth projective toric variety 
YP whose moment polytope is P , then WP compactify to a pencil wP : YP ��� P 1, 
with base loci B in the divisor DP corresponding to the facet P ⊂ P̂ . The genericity 
condition of WP is that we require B to be smooth, and the intersection of B with all 
the boundary strata of DP to be smooth. The wrapped Fukaya category is defined by 
removing a tubular neighborhood of all the toric boundary divisor in YP , the stop is the 
subset of arg(wP ) = 0 in the boundary of the tubular neighborhood of DP .

Example 1.19. (1) Let k = 1 and P = {1}. Then XP = C and WP = z : C∗ → C.
(2) Let k = 2 and P = conv{(0, 1), (1, 1)}. Then XP = C2 and WP = z1(1 + z2) :

(C∗)2 → C, which after reparamerization x = z1, y = z1z2 of (C∗)2, we have WP = x +y. 
YP = CP 2, and wP ([T0 : T1 : T2]) = [T0 : T1 + T2].

(3) Let k = 2 and P = conv{(0, 1), (n, 1)}, then XP = [C2/Zn] as a stack, and WP =
z2(anzn1 + an−1z

n−1
1 + · · · + a0) for generic coefficients ai ∈ C. Then YP is the weighted 

projective space P 2
n,1,1 = [C3\{(0, 0, 0)}/(n,1,1)C

∗], and wP ([T0 : T1 : T2]) = [T0 : anTn
1 +

an−1T
n−1
1 T2+· · ·+a0T

n
2 ]. Here (ai)i is generic if the polynomial anzn1 +an−1z

n−1
1 +· · ·+a0

has no multiple roots. The moduli space of ai is the same as configuration of n distinct 
points in C∗. �

Borisov and Horja studied on the level of K-theory, the shadow of the equivalences 
of categories between A-model and B-models, in particular, one perform period integral 
on the mirror Lagrangian cycles and get GKZ hypergeometric functions. [14,2,3].

The K-theory still loses information. For example, Seidel and Thomas shows that 
given a chain of exceptional collection, the braid group acts faithfully on certain derived 
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category of coherent sheaves [28], but not so on the K-theory level. The window approach 
for braid group action is also considered by Segal and Donovan [7].

1.6.2. Windows and quasi-symmetric GIT
We first recall the notion of a B-side window subcategory in GIT problem. Rouhgly 

speaking, if Y is a GIT quotient stack of Y = [Xss
L /G] determined by some G-ample 

equivariant line bundle L, then one has a restriction functor on the derived category of 
coherent sheaves r : Coh[X/G] → Coh[Xss

L /G]. A window subcategory for Y is the image 
of a fully faithful embedding Coh[Xss

L /G] back into Coh[X/G]. In the case of C∗-action 
on linear space Cn with weights (a1, · · · , an), such that η =

∑
i:ai>0 ai =

∑
i:ai<0 |ai|, 

the subcategory in [Cn/C∗] is given by [a, a + η] ∩ Z for some a ∈ R\Z, hence the 
terminology of ‘window’.

The notion of window, or ‘grade restriction rules’ was first discovered by physicists 
[11], then imported to math by the seminal work of Ed Segal [27]. The work in [1]
and [12] then shows that window subcategories exist for a general GIT setup. There 
the window subcategories are constructed by first stratifying the unstable locus by the 
Kempf-Ness (KN) strata ordered Morse theoretically via the Hilbert-Mumford function 
and then eliminating the obstruction to extend coherent sheaves on Xss to the KN strata 
iteratively. A choice is made in each extension step, and the final result of the composition 
of embeddings depends on the many choices made thus can be complicated, even for a 
general toric Calabi-Yau setting where (C∗)k acts on CN preserving the volume form.

The quasi-symmetric case is much simpler and sufficiently rich to be interesting. It is 
simple because one can choose the window to be defined by a polytope; it is interesting 
since it includes the case of symplectic representation T ∗V of a reductive group G, and 
the adjoint representation g of G is also quasi-symmetric. The quasi-symmetric case is 
studied by [29,30] and [13]. For quasi-symmetric torus actions, a mirror calculation to 
the window theorem in [13] is carried out by the first author in her PhD thesis [15] using 
periodic FLTZ skeletons.

Another important feature of quasi-symmetry pertains to mirror symmetry expecta-
tions. It was shown in [16] that the complex moduli space of the A-model mirror of a 
quasi-symmetric GIT quotient admits a combinatorial description as the complement 
of the complexified Zk-periodic hyperplane arrangement parallel to facets of ∇, which 
agrees topologically with Bo where the universal skeleton Λ lives over.

1.7. Outline

In section 2, we study how the geometry of a general window skeleton in the asymptotic 
regions relate to the periodic skeletons for the various GIT quotients.

In section 3, we study the local behavior of the window skeleton near any point 
x ∈ RN (lattice point or not). This give rises to a class of bi-conic skeleton in T ∗RN , 
termed rectlinear skeleton. We proved a few lemmas in preparation for later.
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In section 4, we study the local obstruction for the uniqueness of extending an object 
in Cδ. This boils down to a local calculation done in section 3.

The section 5 is the heart of this paper, in which we proved the existence of extension 
of object (or the co-restriction functor is fully-faithful) for the sheaf of category Cδ on 
Rk, for any δ.

Finally, in section 6 we study the parallel transport, the jumping loci and microlocal 
stalk for Cδ, and we show that any sheaf admissible for the window skeleton are generated 
by the window objects.
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1.9. Notation and conventions

Let Z ⊂ RN be a locally closed subset Z = A ∩ U for U open and A closed. We let 
CZ denote the locally constant sheaf CZ = j!i∗CA∩U , where A ∩U

i−→ U
j−→ RN . We will 

further abuse notation, and write Z for CZ .
Let (C∗)k acts on CN quasi-symmetrically. In other words, the cocharacter map μZ :

ZN → Zk factorizes as

m⊕
i=1

ZNi
πZ=(π1,Z,··· ,πm,Z)−−−−−−−−−−−−→ Zm qZ−→ Zk,

where πi,Z is balanced, i.e., πi,Z(1, · · · , 1) = 0.
For each i ∈ [m], let ei,1, · · · , ei,Ni

denote the basis of RNi , and βi,1, · · · , βi,Ni
∈ Z

the corresponding image under πi,Z. By assumption, 
∑Ni

j=1 βi,j = 0. We denote ηi =∑
j:βi,j>0 βi,j the ‘window size’ of πi,Z.
We consider the image of the half unit cube under πR : RN → Rm, namely

B = 1
2πR([0, 1]N ) = 1

2

m∏
i=1

πi,R([0, 1]Ni) =
m∏
i=1

[−ηi/2, ηi/2].

This is a ‘box’ in Rm which projects to the zonotope qR(B) = (1/2)μR([0, 1]N ) = ∇.
For any I ⊂ [N ], we define the following open regions in RN ,

QI = {x ∈ RN | xi < 0 if i ∈ I;xi > 0 if i ⊂ Ic}
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PI = {x ∈ RN | xi ∈ R if i ∈ I;xi > 0 if i ⊂ Ic}.

And we define a Lagrangian

ΛI = SS(PI).

(1) Let {ei : i ∈ [N ]} be the standard basis of ZN . For any I ⊂ [N ], let τI = cone(ei, i ∈
I). Dually, let {e∨i : i ∈ [N ]} be the dual basis in (ZN )∨. For any I ⊂ [N ], let 
σI = cone(e∨i , i ∈ I).

(2) For any I ⊂ [N ], let RI denote the subspace of RN generated by ei, i ∈ I, and [0, 1]I
be the unit cube in RI .

(3) For any subset A ⊂ Rk, we denote Ã = μ−1
R (A); and if A ⊂ Zk, we overload the 

notation and denote Ã = μ−1
Z (A).

(4) If Λ ⊂ T ∗M is a Lagrangian skeleton, U ⊂ M an open set, we let Λ|U = Λ ∩ T ∗U

be the restriction of Λ to U . If we are given a map f : M → N , and V ⊂ N an open 
set, we sometimes abuse notation and write Λ|V := Λ|f−1(V ).

(5) A sign is an element in {+, −, 0}. An n-dimensional sign vector is an n-tuple s =
(s1, · · · , sn) ∈ {+, −, 0}n. We endow {+, −, 0} with a partial ordering 0 < +, 0 <
−.

If s ∈ {+, −, 0}, we define cone σs ⊂ R∨ by

σ+ = R∨
≥0, σ− = R∨

≤0, σ0 = {0}.

For s = (s1, · · · , sn) ∈ {+, −, 0}n, we have cone

σs = σs1 × · · · × σsn ⊂ (R∨)n.

We define τs in Rn similarly. We define the obvious map

sign : R → {+,−, 0}.

And we generalize it to R∨ and Rn, (Rn)∨.
All categories are dg derived categories. All functors are derived functors.

2. Geometry of the window skeleton: stable region

Here we consider (C∗)k acting on CN such that the cocharacter maps fits into short 
exact sequences (1.1) and (1.2), without any further assumptions.

For any I ⊂ [N ], we define the I-box as the unit cube [0, 1]I ⊂ RI , and its image 
under μR the I-zonotope

∇I = μR([0, 1]I) =
∑

[0, βi].

i∈I
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Remark 2.1. This general I-zonotope ∇I is not to be confused with the zonotope ∇
defined in the introduction for the quasi-symmetric case, where ∇ can be realized as ∇I

for certain subset I ⊂ [N ] corresponding to weights βi in a generic half-space in Rk.

2.1. GKZ fan and GIT skeleton

The closed positive quadrant RN
≥0 and its faces (in various dimensions) project to Rk, 

and their intersections induces a fan structure on Rk, called GKZ fan ΣGKZ . We call 
the interior of the top dimensional cones in ΣGKZ GKZ chambers.

Let C be a GKZ chamber, and p ∈ C any point. Then the fiber μ−1
R (p) intersects all 

the faces of RN
≥0 transversally if the intersection is non-empty. We define

IC = {I ⊂ [N ] | τI ∩ μ−1
R (p) �= ∅}.

Then IC satisfies the following property, if I ∈ IC and J ⊃ I, then J ∈ IC . Recall that 
CI = μR(τI), hence I ∈ IC if and only if CI ⊃ C.

There is a sub-fan Σ̃C ⊂ ΣCN in the fan of CN , given by

Σ̃C = {σI : Ic ∈ IN}.

The image of Σ̃C under the map νR defines a simplicial stacky fan ΣC in NR. More 
precisely, the stacky fan is given by

(1) a simplicial fan ΣC = {σI : I ∈ SC} where σI = νR(σI);
(2) and for each ray ρi ∈ ΣC , an integral vector αi ∈ ρi.

Definition 2.2. From GIT data giving rise to a simplicial stacky fan ΣC , we define several 
versions of FLTZ-skeletons for a fixed chamber C, with various levels of equivariance.
(1)

ΛC = ΛΣ̃C
=

⋃
I∈SC

{x ∈ RN | xi = 〈x, e∨i 〉 ∈ Z, ∀i ∈ I} × (−σI) ⊂ RN × (RN )∨

= T ∗RN (2.1)

(2) ΛΣC
=

⋃
I∈SC

{x ∈ MR | 〈x, αi〉 ∈ Z,∀i ∈ I} × (−σI) ⊂ MR × NR = T ∗MR. (2.2)

(3) ΛΣ̃C
/ZN ⊂ T ∗TN , ΛΣ̃C

/M ⊂ T ∗(RN/M), ΛΣC
= ΛΣC

/M ⊂ T ∗MT . (2.3)

We recall the definition of the specialization of a conical Lagrangian L ⊂ T ∗X to a 
submanifold S ⊂ X transverse to L, i.e., T ∗

SX ∩ L ⊂ T ∗
XX:
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L|S = (T ∗X|S ∩ L)/T ∗
SX ⊂ T ∗X|S/T ∗

SX � T ∗S.

If f : X → Y is a smooth submersion, and L is transverse to all the fibers of f , then we 
say L is transverse to f , or f is non-characteristic to L.

Proposition 2.3. ΛΣ̃C
is transverse to μR : RN → Rk. And for any v ∈ Zk and ṽ ∈

μ−1
Z (v), if we identify (μ−1

R (v), ̃v) with (MR, 0), then the specialization ΛΣ̃C
to the fiber 

μ−1
R (v) is the same as ΛΣC

on T ∗MR.

Proof. The fiber of conormal bundle to μ−1
R (p) can be identified with cotangent fiber 

T ∗
pR

k � (Rk)∨. Since by construction, σI maps to σI bijectively, hence σI ∩ (Rk)∨ = 0.
To see the matching of Lagrangians, it suffices to note that if x ∈ μ−1

R (v), then for 
any i ∈ [N ]

〈x, ei〉 ∈ Z ⇔ 〈x− ṽ, ei〉 ∈ Z ⇔ 〈x− ṽ, αi〉 ∈ Z

where in the last step x − ṽ ∈ MR, and 〈x − ṽ, ei〉 = 〈x − ṽ, αi〉. �
2.2. Window skeleton over stable regions

Let P ⊂ Rk be a bounded convex polytope, W = P ∩Zk. For each GKZ chamber C, 
we will compare

ΛW =
⋃

w∈W̃

Λw, and ΛC = ΛΣ̃C
.

We will show that if P is large enough (see Definition 2.5), then the two Lagrangians 
agrees over certain asymptotic (i.e. stable) regions in the direction of C.

First we define the notion of a ‘large enough’ polytope. Let H be a generic (closed) 
half space in Rk, ‘generic’ meaning ∂H does not contain any βi. Then we define the 
zonotope for H by

∇H =
∑
βi∈H

[0, βi].

There are only finitely many possible such zonotopes as H varies.

Lemma 2.4. In the quasi-symmetric case, there is only one ∇H up to translation, which 
is exactly the zonotope ∇ defined before.

Proof. Let R be the collection of rays in Rk containing some βi. For each ρ ∈ R, let 
βρ =

∑
βi
βi. By quasi-symmetric condition, if ρ ∈ R, then −ρ ∈ R, and βρ = −β−ρ. 

Since for any generic choice of half space H, one and exactly one of ±ρ is in H, hence 
the resulting Minkowski sum is the same up to translation. �
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Let A, B are subsets of RN , we say ‘A fits in B’ and ‘B contains a translate of A’, if 
there exists s ∈ RN such that s + A ⊂ B. We denote this by A � B.

Definition 2.5. Let P be a polytope. We say P is large enough, if for all generic closed 
half space H, ∇H fits in P .

Next, we define the asymptotic region in the direction of C.

CP :=
⋂
p∈P

p + C = {x ∈ Rk | P ⊂ x− C}.

The rest of the section is devoted to prove the following theorem

Theorem 2.6. Let P a large enough bounded convex polytope, and W = P ∩Zk. Then for 
any GKZ chamber C, ΛW and ΛC agree over CP , i.e. ΛW |CP

= ΛC |CP
.

This has an immediate corollary.

Corollary 2.7. Assume we have the quasi-symmetric condition. For any δ ∈ Rk and any 
GKZ chamber C, the window skeleton ΛWδ

and the GIT skeleton ΛC agree over C∇δ
.

2.3. Proof of Theorem 2.6

Recall the definitions of ΛW and ΛC :

ΛW =
⋃

w∈W̃

Λw =
⋃

w∈W̃

⎛⎝w + (
⋃

I⊂[N ]

τI × (−σIc))

⎞⎠
and

ΛC = ZN +
⋃

I∈IC

(RI) × (−σIc),

where the addition is done in the base direction RN ⊂ T ∗RN .

2.3.1. We first show that ΛW ⊂ ΛC over CP . This follows from the following lemma.

Lemma 2.8. For any w ∈ ZN , Λw ⊂ ΛC over w + C.

Proof. Since ΛC is translation invariant by ZN , it suffices to check the case w = 0. Since 
τI ∩ C̃ �= ∅ if and only if I ∈ IC , and since τI ⊂ RI , we have

Λ0 ∩ C̃ ⊂
⋃

(RI) × (−σIc) ⊂ ΛC . �

I∈IC
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Since for each w ∈ W̃ , w + C ⊃ CP , hence ΛW ⊂ ΛC over CP .

2.3.2. We then show that ΛW ⊃ ΛC over CP .

Lemma 2.9. If P is large enough, then for any I ⊂ [N ] such that CI is a proper cone 
containing C, P contains a translate for all the zonotope ∇I .

Proof. If CI is a proper cone, then by definition it is contained in a generic half space 
H. And we have C ⊂ CI ⊂ H. Let J = {i ∈ [N ] : βi ∈ H}, then CJ is the maximal 
proper cone in H, and ∇H = ∇J . Since I ⊂ J , ∇J ⊃ ∇I . Hence, up to a translate, P
contains ∇J hence ∇I . �
Proof of the Theorem 2.6. For any x ∈ C̃P , we have

ΛC |x = ∪{−σIc | I ∈ IC , x ∈ ZN + RI}, ΛW |x = ∪{−σIc | I ⊂ [N ], x ∈ W̃ + τI}

Hence, to show ΛC |x ⊂ ΛW |x, it suffices to show that for any I ∈ IC such that 
x ∈ ZN + RI , we have w ∈ W̃ , such that x ∈ w + τoI .

case (a): CI is a proper cone. Let x ∈ a +RI for some a ∈ ZN . Define the affine space 
RI = a + RI , and affine lattice ZI = a + ZI . Since CI is a proper cone, by Lemma 2.9, 
P contains a translate of ∇I . Since ∇I and −∇I differ by a translation, P � −∇I , i.e.
there exists s ∈ Rk, such that

s− ∇I ⊂ P ⊂ x− CI .

Lift s to s̃ ∈ x − τoI , and since −[0, 1]I ⊂ −τI , we have

s̃− [0, 1]I ⊂ x− τoI .

Intersecting both with ZI , we have (s̃ − [0, 1]I) ∩ ZI �= ∅. Let w ∈ (s̃ − [0, 1]I) ∩ ZI ⊂
P̃ ∩ ZN = W̃ , we have w ∈ x − τoI , or x ∈ w + τoI .

case (b): CI is not a proper cone. Let J ⊂ I be a maximal subset such that CJ

contains C and is proper. Then for any i ∈ I\J , βi ∈ −CJ , since otherwise, one can add 
i to J , and keep CJ∪{i} as a proper cone, contradicting with the maximality of J . Let 
l =

∑
i∈I\J βi, then l ∈ −CJ hence l + CJ ⊃ CJ .

Recall that we need to find a w ∈ W̃ , such that w ∈ x − τI . Define y = x −
∑

I\J ei, 
then y = x − l ∈ x + CJ . Hence, suffice to find a w ∈ W̃ , such that w ∈ y − τoJ , which 
reduces to case (a). �
3. Rectilinear skeletons

In this section, we setup some notations and establish some basic properties of 
constructible sheaves in Euclidean space adapted to the coordinate hyperplane strat-
ifications.
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Let N be any positive integer, [N ] = {1, 2, · · · , N}. Let {ei} be the standard basis of 
RN . For I ⊂ [N ], we define eI =

∑
i∈I ei, RI = spanR〈ei, i ∈ I〉, τI = cone〈ei, i ∈ I〉. 

Let (RN )∨ be the dual space of RN , with dual basis e∨i . For I ⊂ [N ], we define σI =
cone(e∨i , i ∈ I).

Consider a stratification SN of RN generated by the coordinate hyperplanes and their 
intersections, where the largest strata are n-dimensional open quadrants in RN . We call 
SN quadrants stratification of RN . Let sign : R → {+, 0, −} be the sign map. For each 
strata s ∈ SN , we have a sign vector sign(s) ∈ {+, 0, −}N , and we sometimes write 
si = sign(s)i the i-th component of the sign vector.

Recall that we defined two types of open sets in RN : quadrants QI and wedges PI

QI :
{
xi < 0 if i ∈ I

xi > 0 if i /∈ I
, and PI :

{
xi free if i ∈ I

xi > 0 if i /∈ I
.

We also use PI and QI to denote constructible sheaves in ShSN
(RN ) with non-zero stalk 

C over PI and QI respectively.
We define a skeleton ΛN ⊂ T ∗RN by

ΛN =
⋃

I⊂[N ]

RI × (−σIc).

Then ΛN is adapted to the stratification SN . Then the sheaf PI has ΛI = SS(PI) ⊂ ΛN , 
and in fact ΛN can be written as

ΛN =
⋃

I⊂[N ]

ΛI . (3.1)

Let Pn = {I ⊂ [N ]} be the power set of [N ]. For any index subset I ⊂ Pn, we have a 
sub-skeleton

ΛI =
⋃
I∈I

ΛI ⊂ ΛN .

We call ΛI a rectilinear skeleton in RN . We also define the sheaf categories CI =
Sh♦(RN , ΛI), and Cw

I the wrapped constructible sheaves, i.e. compact objects in CI. 
If I = Pn, we omit the subscript I.

3.1. Probe sheaves for stalks on quadrants

Fix an index set I, and consider category CI. For any I ⊂ [N ], we consider the stalk 
functor

ΦI,I : CI → Vect, G 	→ Hom(QI , G) = stalk of G at xI ∈ QI .
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As explained in [22], the functor ΦI,I admits left adjoint, hence has co-representing 
objects FI,I ∈ Cw

I , i.e.

Hom(FI,I,−) = ΦI,I(−) : CI → Vect .

We FI,I the probe sheaf for quadrants QI with respect to skeleton ΛI.
We first study the category C.

Proposition 3.1. (1) For each I ∈ Pn, the probe sheaf

FI,Pn
= PI .

That is, for any G ∈ C, we have Hom(QI , G) � Hom(PI , G).
(2) For each I ∈ Pn, PI is a projective object in C, in the sense that Hom(PI , −) is 

an exact functor.
(3) {PI , I ∈ Pn} forms a compact generator in C, in the sense that if G ∈ C such that 

Hom(PI , G) � 0 for all I ∈ Pn, then G � 0.

Proof. (1) We can define a non-characteristic deformation of open sets from QI to PI

with respect to ΛN . For example, for t ≥ 0, let PI(t) = QI − teI , then PI(0) = QI , 
PI = ∪∞

t=0PI(t), and Hom(PI(t), G) is independent of t.
(2) This follows since the stalk functor is an exact functor.
(3) Suppose Hom(PI , G) = 0 for all I ∈ Pn, then G has vanishing stalk in all open 

quadrants. Then Supp(G) is in the union of coordinate hyperplane, hence SS(G) contains 
conormal of some strata s ∈ SN which cannot be contained in ΛN . Hence Supp(G) = ∅
and G = 0. �
Corollary 3.2. The category C is equivalent to the category of presheaves on Pn

Φ : C ∼−→ Psh(Pn) := Fun(Pop
n ,Vect), G 	→ (I 	→ Hom(PI , G)),

where Pn is viewed as a partially ordered set and hence a category.

Proof. The full subcategory of Cn with objects {PI , I ∈ Pn} is equivalent to the C-
linearization of Pn where if I < J in P, we define HomPn

(I, J) = C. Then the result 
follows since {PI , I ∈ Pn} compactly generates C. �

Next, for any ΛI, we consider the closed subskeleton ΛI ⊂ ΛN and full subcategory 
ιI : CI ↪→ C. We have analogous results.

For any I ⊂ [N ], if there is J ∈ I such that I ⊂ J , we say I is dominated by I.

Proposition 3.3. (1) For any I ∈ I, the probe sheaf

FI,I = PI .
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That is, for any G ∈ CI, we have Hom(QI , G) � Hom(PI , G).
(2) For any I ⊂ [N ], if I is not dominated by I, then FI,I = 0.
(3) For any I ⊂ [N ], I /∈ I and I is dominated by I, then the following complex is 

acyclic

FI,I →
⊕

J⊂Ic,|J|=1

FI�J,I →
⊕

J⊂Ic,|J|=2

FI�J,I → · · · → F[N ],I

(4) {PI , I ∈ I} forms a compact generator in CI, in the sense that if G ∈ CI such 
that Hom(PI , G) � 0 for all I ∈ I, then G � 0.

(5) The category CI is equivalent to the category of presheaves on I

Φ : CI ∼−→ Psh(I) := Fun(Iop,Vect), G 	→ (I 	→ Hom(PI , G)).

Proof. (1) The proof is the same as Proposition 3.1(1).
(2) If I is not dominated by I, then the skeleton ΛI is not supported on QI , hence 

FI,I = 0.
(3) If s = − Int(τI) is a strata of SN , then Int(ΛN |s) ∩ (ΛI)s = ∅, since only ΛI

contribute to Int(ΛN |s). Hence we have an exact sequence of stalk functors

ΦI,I ←
⊕

J⊂Ic,|J|=1

ΦI�J,I ←
⊕

J⊂Ic,|J|=2

ΦI�J,I ← · · · ← Φ[N ],I.

Translate the above relation to co-representing objects, we get the desired claim.
(4) By (3) and induction on |I| from n to 0, we see for each I ⊂ [N ], FI,I can be 

expressed as a finite complex using {PJ , J ∈ I}. Since {FI,I, I ∈ [N ]} forms a set of 
compact generators of CI, hence {PI , I ∈ I} also generates.

(5) The proof is the same as in Corollary 3.2. �
We have seen that {FI,I, I ⊂ [N ]} can be expressed using {PI , I ∈ I}. The following 

is a more explicit (but maybe huge) formula. Let I≥I = {J : J ∈ I, J ≥ I}. We recall 
the following definition.

Definition 3.4. For any poset P , we define a simplicial complex Δ(P ), where a k-chain 
is of the form [p] = (p0 < p1 < · · · < pk) in P . We call Δ(P ) the order complex of P .

Proposition 3.5. Let Δ = Δ(I≥I) be the order complex of I≥I and let [J ] = (J0 < · · · <
Jk) denote an element in Δk. Then the probe sheaf FI,I for quadrant QI in ΛI can be 
resolved as

FI,I �
⊕

PJ0 →
⊕

PJ1 → · · · . (3.2)

[J]∈Δ0 [J]∈Δ1
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Proof. We will prove that

FI,I �
∫

J∈I

Hom(QI , PJ)∨ ⊗ PJ � holimJ∈I≥I
PJ

then the desired result follows as a concrete realization of homotopy limit over a poset.
Let Î = Psh(I) and h : I ↪→ Î be the Yoneda embedding. Then h(J) = PJ under 

identification of Psh(I) � CI. For any I ⊂ [N ], we have a functor ϕ≥I : I → Vect, 
sending J ∈ I to C if J ⊃ I and to 0 if J �⊃ I. Then, we can realize the left-adjoint 
ΦL

I,I as a right Kan extension (see the first diagram below). Since I generates Î, one can 
compute the right Kan extension using the second diagram below.

Vect

Î Î

ΦL
I,I

Id

ΦI,I

Vect

I Î

ΦL
I,I

h

ϕ≥I

Hence, we get the co-representing object as

FI,I = ΦL
I,I(C) =

∫
J∈I

(Hom(C, ϕ≥I(J))∨ ⊗ h(J) = holimJ∈I≥I
PJ . �

Recall that ιI : CI → C is the inclusion functor induced by the closed embedding of 
skeleton ΛI ⊂ ΛN . It has a left adjoint

ιLI : C → CI.

Since for any G ∈ CI, we have

ΦI,I(G) = Hom(QI , ιI(G)) � Hom(PI , ιI(G)) = Hom(ιLIPI , G)

we have

FI,I = ιLI (PI).

Remark 3.6. Geometrically, ιLI is obtained by wrapping using geodesic flow stopped by 
ΛI. Here we use the (covariant) equivalence between wrapped Fukaya category on T ∗RN

and constructible sheaf on RN , where the sign convention of ω identifies the negative 
Reeb flow on the Fukaya side with the geodesic flow on the constructible sheaf side.

3.2. Support of probe sheaves and topology of poset

In this section, we study the support of the probe sheaf, or equivalently, the hom 
between probe sheaves. This turns out to be related to the topology of the poset I and 
its various subsets I≥I .
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Let P be a finite poset, Δ(P ) be its order complex (Definition 3.4) and |Δ(P )| be its 
geometric realization.

We define the cochain complex of a partially ordered set P as

C0(P ) → C1(P ) → · · ·

where Ck(P ) = CΔ(P )k = Map(Δ(P )k, C) is the C-vector space with basis in Δ(P )k, 
and the differential is pull-back along the face map. And we define the cohomology H•(P )
as the cohomology of the above cochain complex. Clearly, we have

H•(P,C) = H•(|Δ(P )|,C).

If P → Q is a map of posets, then we have the corresponding maps of its geometric 
realizations |Δ(P )| → |Δ(Q)|. In particular, if P ↪→ Q is an inclusion, then |Δ(P )| →
|Δ(Q)| is a closed embedding.

Proposition 3.7. Let P be a poset and P1, P2 ⊂ P be sub-posets. Then the following 
definition of Hom(P1, P2) ∈ Vect are equivalent.

(1) Consider the following cochain complex

Ck(P1, P2) =
⊕

[p]∈Δ(P2)k

δP1([p]), δP1([p]) =
{
C [p] ∩ P1 �= ∅
0 otherwise

The differential is defined in the usual way. We define

HomI(P1, P2) = C∗(P1, P2).

(2) For i = 1, 2, consider the locally constant sheaf CZi
supported on the closed subset 

Zi = |Δ(Pi)| in Z = |Δ(P )|. We define

HomI(P1, P2) := Hom∗(CZ1 ,CZ2) = C∗(Z2, Z2 ∩ (Z1)c)

Proof. Let U1 = Z\Z1. Since we have short exact sequence

0 → CU1 → CZ → CZ1 → 0

hence we have

Hom(CZ1 ,CZ2) � cone(Hom(CZ ,CZ2) → Hom(CU ,CZ2)

We may realize Hom(CZ , CZ2) as C∗(P2) and Hom(CU , CZ2) as C∗(P2\P1) i.e. cochain in 
P2 that avoids P1. Then we have the following short exact sequence of cochain complexes
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0 → C∗(P1, P2) → C∗(P2) → C∗(P2\P1) → 0. �
Fix an index subset I. Let I, J ⊂ [N ]. We have

Proposition 3.8. The stalk of FJ,I in quadrant QI is given by

Hom(FI,I, FJ,I) � HomI(I≥I , I≥J).

Proof.

Hom(FI,I, FJ,I) = Hom(QI , FJ,I)

�
⊕

[L]∈Δ(I≥J )0

Hom(QI , PL0) →
⊕

[L]∈Δ(I≥J )1

Hom(QI , PL1) → · · ·

Since Hom(QI , PLk
) = δI≥I

([L]), the chain complex is the same as C∗(I≥I , I≥J). �
Corollary 3.9. If [N ] ∈ I, then Hom(FI,I, FI,I) = C for all I ⊂ [N ].

Proof. Since I≥I is non-empty and has a final element [N ], its geometric realization is 
contractible. Hence H∗(|Δ(I≥I)|) = C. �
3.3. Hourglass sheaf and microlocal skyscraper

Let I = PN\{∅}, then the skeleton

Λ⧖,N := ΛI =
⋃

∅�=I⊂[N ]

RI × (−σIc) ⊂ T ∗RN .

For any ∅ �= I ⊂ [N ], the wedge sheaf PI has its singular support ΛI ⊂ Λ⧖,N , hence the 
hourglass sheaf ⧖N is admissible for Λ⧖,N . However, over the origin 0 ∈ RN , the open 
cone −σo

[N ] ⊂ T ∗
0 R

N is absent from Λ⧖N
|0, thus the sheaf P∅ on the open quadrant is 

not admissible.
For [N ] ⊃ I �= ∅, we have FI,I = PI . For I = ∅, we have the probe sheaf

⧖N := F∅,I =
⊕

I⊂[N ],|I|=1

PI

�����������

→
⊕

I⊂[N ],|I|=2

PI → · · · → P[N ].

This sheaf has its support only in two quadrants (Fig. 7), the totally positive open 
quadrant Q∅ and the totally negative closed quadrants Q[N ] (hence the name ‘hourglass’). 
More precisely, we have the following exact triangle

Q∅ → ⧖N → Q[N ][−N + 1] +1−−→
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Fig. 7. An hour-glass sheaf supported in the first and third quadrant, namely Q∅ and Q12.

Fig. 8. The microlocal skyscraper sheaf Q12 for the partial cotangent fiber in T ∗
0 R

2 for Λ[N], N = 2.

where the connection morphism corresponds to the extension ExtN (Q[N ], Q∅) � C.
The hour-glass sheaf ⧖ can also be obtained from P∅ by stop removal. For the full 

skeleton Λ[N ], the microlocal skyscraper for the smooth strata {0} × (−σ[N ]) is Q[N ] (up 
to a degree shift ambiguity). It can be proven either by a non-characteristic deformation, 
as shown in Fig. 8, or by a computation using generators.

The probe sheaves can generate all other microlocal skyscrapers. Let Ss ∈ SN be a 
strata labeled by the sign vector s, which we abuse notation and also call s. Then the 
relative interior ΛN |s := ΛN |Ss

is a smooth Lagrangian in the conormal to Ss. For each 
s = +, −, 0, define Is = {i ∈ [N ] : si = s}. We define the following complex of probe 
sheaves

Fs,Pn
� PI+�I−

������
→

⊕
J∈I0,|J|=1

PI+�I−�J →
⊕

J∈I0,|J|=2

PI+�I−�J → · · · → P[N ]. (3.3)

Proposition 3.10. Let G ∈ Sh♦(RN , ΛN ), Ss a strata of SN . Then

Int(ΛN |s) ⊂ SS(G) ⇔ Hom(Fs,Pn
, G) �= 0.

Proof. If we construct a transverse disk to the strata Ss, then the only quadrants involved 
are those QJ with I− ⊂ J ⊂ I− � I0. Hence if we represent the microlocal stalk functors 
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using the stalk functors, and then co-represent the stalk functors in QJ as PJ , we get 
the desired expression. �

One can check that this microlocal stalk is supported in the quadrant QI−�I0 with 
the appropriate boundary faces.

3.4. Leaks and flooded quadrants

Let ΛI be a rectilinear skeleton with zero section, i.e. [N ] ∈ I. In this subsection, we 
try to understand FI,I as obtained from PI by ‘leaking’. We will drop the subscript I if 
the context is clear.

Consider the closed embedding of skeleton ΛI ↪→ ΛN , we have the corresponding fully 
faithful embedding of sheaves

ιI : CI → C

and its left adjoint is the ‘stop removal’ functor

ιLI : C → CI.

We have the co-unit η : 1 → ιI ◦ ιLI . Then we have the probe sheaf

FI = ιI ◦ ιLI (PI)

and using the co-unit map, we define GI as the cone of PI → FI

PI → FI → GI
+1−−→ .

By Corollary 3.9, the stalk of FI in PI is always C, hence the support of GI is disjoint 
from the open set PI . We say a quadrant QJ is flooded by the probe FI , if J � ⊂I but 
FI |QJ

�= 0, or equivalently, QJ ⊂ Supp(GI).

Definition 3.11. A leak in QI for the skeleton ΛI is a face of QI the form L = −τI + τJ
for some J ⊂ Ic, such that ΛI|Int(L) �= ΛN |Int(L).

Lemma 3.12. Let QI be a quadrant, J ⊂ Ic, the face L = −τI + τJ is a leak of QI for 
the skeleton ΛI if and only if for any J ′ ⊂ J , I � J ′ /∈ I.

Proof. The only possible contribution to the skeleton over the face L are from ΛI�J ′ for 
J ′ ⊂ J , hence it is sufficient and necessary for these I � J ′ to be absent in I. �

Using leaks, we can relate the probe sheaf FI to those FI′ where QI′ is adjacent to 
QI at the leaky edge.
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Lemma 3.13. If L = −τI + τI′ is a leak for QI in ΛI, then

FI �
⊕

J⊂(I∪I′)c,|J|=1

FI�J →
⊕

J⊂(I∪I′)c,|J|=2

FI�J → · · · → F(I′)c

Proof. If L is a leak of codimension k, then by examining the k-dimensional transverse 
disk to L, we see the stalks on the 2k quadrants on the disk are related by an acyclic 
Koszul complex, hence one can express FI using FI′ for Q′

I that are adjacent to QI along 
the leak L. �

We may relate the leak and the flooded regions geometrically. The following proposi-
tion describe when the flooded region touches the source quadrant QI .

Proposition 3.14. Let ΛI be a rectilinear skeleton with zero-section. Let I /∈ I, and define 
the following closed subset in RN ,

(1) C1 = ∪{−τI + τJ | J ⊂ Ic and −τI + τJ is a leak for QI}.
(2) C2 = Supp(GI) ∩ Supp(PI) ∩QI = Supp(GI) ∩QI .
(3) C3 = Supp(Hom(GI , PI)) ∩QI .
(4) C4 = Supp(c) ∩QI , where c : GI → PI [1] is the connection homomorphism, and is 

viewed as a section of Hom(GI , PI).

Then we have

C1 = C4 ⊂ C3 = C2.

Proof. Since all three sets can be written as a product form C ′
i × (−τI) ⊂ RIc ×RI , we 

may quotient out the RI factor. This is equivalent of replacing [N ] by Ic and I by I≥I

and I by ∅.
Hence, we only consider the case I = ∅ from now on.
First, we claim that Supp(GI) ∩Supp(PI) = Supp(Hom(GI , PI)), hence C2 = C3. It is 

clear that Supp(GI) ∩Supp(PI) ⊃ Supp(Hom(GI , PI)). Conversely, using I = ∅, if τJ is a 
maximal cone in Supp(G∅) ∩Supp(P∅). For any xJ ∈ Int(τJ), consider B(xJ) small open 
ball around xJ such that B(xJ) ∩ τJ ⊂ Int(τJ ), then we see Hom(G∅|B(xJ ), P∅|B(xJ )) �=
0, hence Int(τJ) ⊂ Supp(Hom(GI , PI)). By considering all such maximal τJ , we have 
Supp(GI) ∩ Supp(PI) = ∪J(Int(τJ)) ⊂ Supp(Hom(GI , PI)). Hence proving C2 = C3.

Next, we note C4 ⊂ C3 automatically since c is a section of Hom(GI , PI).
Finally, suffice to show that C4 = C1. Let L = {J ⊂ [N ] | τJ is a leak for Q∅}, and 

let J ∈ L be a maximal element. Note that since [N ] ∈ I, hence J �= [N ], and τJ is a 
proper face of Q∅. For any xJ ∈ Int(τJ) let B(xJ) be a small enough open ball around xJ

as above, then the probe sheaf F∅ restricted to B(xJ) has the form of an hourglass sheaf 
in the transverse direction of τJ and constant sheaf along τJ , i.e. F∅ locally in B(xJ ) is 
an extension of G∅ and P∅, hence Int(τJ) ⊂ C4. And considering all such maximal J , we 
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have C1 = ∪J Int(τJ) ⊂ C4. Conversely, since F∅ is obtained from P∅ by stop removal 
along the leaks of Q∅, hence the connecting morphism c has support in the leaks, i.e.
C4 ⊂ C1. This proves C1 = C4. �
Remark 3.15. It is possible that the above inclusion C1 ⊂ C2 is strict. Consider the 
example of N = 3, I = {1, 2, 123} (where we use an obvious abuse of notation for 
subsets of [3] = {1, 2, 3}). Then, probe sheaf for Q∅ is

F∅ = P1 ⊕ P2 → P123

and G∅ is supported in Q12, Q3, Q13, Q23, Q123. We note that the quadrant Q3 is adjacent 
to Q∅ through the maximal faces τ3, τ12, i.e.

C2 = C3 = τ3 ∪ τ12

However the leak is only at

C1 = C4 = τ3.

3.5. Singular support of the constructible sheaf of categories

Let ΛI be a rectilinear skeleton in RN . For simplicity, we assume ΛI contains the zero-
section of T ∗RN . For a open convex set U ⊂ RN , we consider the category Sh♦

ΛI
(U). 

These data assemble into a constructible sheaf of categories (or Kashiwara-Schapira 
stack) denoted as Sh♦

ΛI
, and we want to describe SS(Sh♦

ΛI
).

We define three versions of singular supports. For any non-zero covector (x, ξ) ∈
T ∗RN , we let Bx be a small enough open ball around x, and Bx,ξ,− = {x′ ∈ Bx |
〈x′ − x, ξ〉 < 0}, then we have the ‘microlocal restriction functor’

ρx,ξ : Sh♦
ΛI

(Bx) → Sh♦
ΛI

(Bx,ξ,−)

and the ‘microlocal co-restriction functor’

ρLx,ξ : Sh♦
ΛI

(Bx,ξ,−) → Sh♦
ΛI

(Bx).

Let SS(Sh♦
ΛI

) denote the complement of the set of covectors (x, ξ) where there is an 
open neighborhood U of (x, ξ) such that ρx′,ξ′ is an equivalence for any (x′, ξ′) ∈ U . 
Similarly, let SSHom(Sh♦

ΛI
) (resp. SSL

Hom(Sh♦
ΛI

)) be defined by replacing ‘ρx′,ξ′ is an 
equivalence’ with ‘ρx′,ξ′ (resp. ρLx′,ξ′) is fully-faithful’. Since the condition that ρx,ξ is an 
equivalence is equivalent to ρx,ξ and ρLx,ξ are fully-faithful, we have

SS(Sh♦
Λ ) = SSHom(Sh♦

Λ ) ∪ SSL
Hom(Sh♦

Λ ).

I I I
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For simplicity of notation, we will use SS(ΛI) to denote SS(Sh♦
ΛI

) and similar for its 
variants.

Proposition 3.16.

SSHom(ΛI) =
⋃

I,J∈I

SS(Hom(PI , PJ)) ⊂ T ∗RN .

We denote the right hand side of the above equation as Hom(ΛI).

Proof. For any x ∈ RN , the category Sh♦
ΛI

(Bx) is generated by the restriction of {PI :
I ∈ I} to Bx, since the restriction of ΛI to Bx is another rectilinear skeleton centered 
at x indexed by a subset of I. �
Lemma 3.17. For any I, J ⊂ [N ], we have

Hom(PI , PJ) = RI∩J × (R>0)I\J × (R≥0)I
c

,

where we abuse notation and use a locally closed subset A with the locally constant sheaf 
CA supported on A.

Proof. For any I ⊂ [N ], we have

PI = PI,1 � PI,2 � · · ·� PI,N , where PI,i =
{
R>0 i /∈ I

R i ∈ I
.

The hom sheaf in each factor can be computed using

Hom(R>0,R>0) � R≥0,

Hom(R>0,R) � R≥0,

Hom(R,R>0) � R>0,

Hom(R,R) � R �
Lemma 3.18. For any I, J ⊂ [N ], we have

SS(Hom(PI , PJ)) ∩ T ∗
0 R

N = σs(I,J)

where s(I, J) is a sign vector defined by

s(I, J)i =

⎧⎪⎪⎨⎪⎪⎩
+ i ∈ Ic

0 i ∈ I ∩ J

− i ∈ I\J
.
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Moreover, for any x ∈ RN , we have

SS(Hom(PI , PJ)) ∩ T ∗
xR

N ⊂ σs(I,J).

Proof. It suffices to check we have the desired claim for each i ∈ [N ], which is a straight-
forward calculation using Lemma 3.17. �
Remark 3.19. In [31], we give a different approach to compute the hom sheaves singular 
support Hom(ΛI) as

Hom(ΛI) = lim
ε→0+

−ΛI + GεΛI

where Gε is translation by −ε · (1, ..., 1). For general skeleton Λ, Gε is some positive 
isotopy, and the right-hand side is only an upper bound for the singular support of the 
hom sheaf.

3.6. Rectilinear skeleton as family of skeletons

We first recall how singular support behaves under push forward. Let f : M → N be 
a smooth submersion, and Λ ⊂ T ∗M be a conical Lagrangian. We define

f∗Λ = {(x, ξ) ∈ T ∗N | there exists (x̃, ξ̃) ∈ Λ, such that f(x̃) = x, f∗(ξ) = ξ̃.}

We say Λ is f -non-characteristic if f∗Λ is contained in the zero section of T ∗N . In 
general, if F is a constructible sheaf on M , then SS(π∗F ) ⊂ π∗SS(F ) due to possible 
cancellations in pushing forward a sheaf. However, if F ∈ Sh(RN ) is a conic constructible 
sheaf, and π : RN → Rk is a linear surjective map, then SS(π∗F ) = π∗SS(F ). If b ∈ N

and Λ is f -non-characteristic, then we define Mb = f−1(b), and

Λ|b = qb(Λ ∩ T ∗M |Mb
) ⊂ T ∗Mb

where qb is the quotient map in

0 → T ∗
Mb

M → T ∗M |Mb

qb−→ T ∗Mb → 0.

Let ΛI be a rectilinear skeleton, and π : RN → Rk be a linear map. We always assume 
that ΛN (hence the sub-skeleton ΛI) is π-non-characteristic.
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Fig. 9. Global propagation of sections from local extendability.

Lemma 3.20. ΛN is π-non-characteristic if and only if ker(π) intersects the open positive 
quadrant RN

>0.

Proof. If ∅ �= RN
>0 ∩ ker(π) and x = (x1, · · · , xN ) is in the intersection, then xi > 0. For 

any ξ = (ξ1, · · · , ξN ) in some cone of ΣN , we have ξi ≤ 0. Thus 〈ξ, x〉 =
∑

i ξixi < 0, 
hence ξ is not conormal to ker(π). Thus, if ∅ �= RN

>0 ∩ ker(π), we have ΛN is π-non-
characteristic.

If ∅ = RN
>0 ∩ ker(π), γ = π(RN

>0) is an open convex cone in Rk, hence we may lift 
an element ξ̄ the exterior conormal to γ at 0 ∈ Rk, to ξ ∈ T ∗

0 R
N , which would be in 

the singular support of CRN
>0

at 0, hence in the support of the fan ΣN . Thus, ΛN is not 
π-non-characteristic. �

We consider the sheaf of categories π∗Sh
♦
ΛI

on Rk, where for any U convex open set 
in Rk, we have

π∗Sh
♦
ΛI

(U) = Sh♦
ΛI

(π−1(U)).

We define the singular support SS•(π∗Sh
♦
ΛI

) as in section 3.5, where SS• = SS, SSHom,

SSL
Hom.
We have the following relations for SS and its variants,

SS(π∗Sh
♦
ΛI

)) ⊂ π∗SS(Sh♦
ΛI

)),

Proposition 3.21. Let ΛI be a rectilinear skeleton containing zero section. Then the fol-
lowing conditions are equivalent

(1) SSL
Hom(π∗Sh

♦
ΛI

) = T ∗
RkRk,

(2) For any U ⊂ Rk a convex open set, the co-restriction functor

ρLU : π∗Sh
♦
ΛI

(U) → π∗Sh
♦
ΛI

(Rk)

is fully-faithful.
(3) For any I /∈ I, we have

π(QI) ∩ π(Leak(I)) = π(QI) ∩ π(Flood(I)),
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where Leak(I) is the union of leaks of QI , and Flood(I) is the closure of union of 
the flooded region.

Proof. If A ⊂ Rk, we write Ã = π−1(A) for short.
(1) ⇒ (2): Let C(U) = Sh♦

ΛI
(Ũ). Without loss of generality, we may assume U is 

an open convex polytope. Then, we may expand U as increasing family of convex open 
polytope Ut, t ∈ [0, ∞), such that there are finitely many times 0 < t1 < t2 < · · · < tk
when the boundary of the preimage ∂Ũt intersects with some strata in SN of RN non-
transversely. See Fig. 9 for an illustration of how to resolve the critical moment of ‘strata-
passing’ into smaller steps. By the vanishing of the singular support of microlocal co-
restriction functor, we see the co-restriction C(Uti−ε) → C(Uti+ε) is fully faithful. And 
after the last transition, we also have C(Utk+ε) 

∼−→ C(Rk). Since ρLU is the composition 
of fully faithful functors, ρLU is fully-faithful.

(2) ⇒ (1): For any non-zero (x, ξ) ∈ T ∗Rk, the microlocal co-restriction

ρLx,ξ : π∗Sh
♦
ΛI

(Bx,ξ,−) → π∗Sh
♦
ΛI

(Bx)

posted composed with a fully-faithful functor ρLBx
is another fully-faithful functor ρLBx,ξ,−

, 
hence ρLx,ξ is fully-faithful.

(2) ⇒ (3): Suppose (3) fails. Since Leak(I) ⊂ Flood(I) (cf. Proposition 3.14), then 
there exists an I /∈ I, and a point x ∈ π(QI)∩ π(Flood(I)) and x /∈ π(QI)∩ π(Leak(I)). 
Let Bx be a small ball around x, such that Bx ∩ (π(QI) ∩ π(Leak(I))) = ∅. Then we 
claim the co-restriction functor ρLBx

from B̃x = π−1(Bx) to RN is not fully-faithful, 
contradicting with (2). Indeed, consider the probe sheaf FI|Bx

for QI ∩ B̃x. Since there is 
no leak of QI over Bx, we have FI|Bx

= PI∩B̃x. On the other hand, the co-restriction ρLBx

sends FI|Bx
to FI . Then consider certain QJ ⊂ Flood(I), such that x ∈ π(QI) ∩ π(QJ), 

B̃x ∩QJ �= ∅. Hence

Hom(FJ|Bx
, FI|Bx

) = 0, Hom(ρLBx
FJ|Bx

, ρLBx
FI|Bx

) = Hom(FJ , FI) �= 0

thus ρLBx
is not fully-faithful, which is a contradiction to the assumption. Hence (3) holds.

(3) ⇒ (2): We will show that “probe commutes with restriction”, i.e. the probe sheaf 
of QI in the restricted region Ũ := π−1(U) is equal to the restriction of the probe FI to 
Ũ ,

FI|U = FI |Ũ (3.4)

We first observe that if I ∈ I, then the restricted probe sheaf is FI|U = PI |Ũ since 
the sheaf QI |Ũ can expand non-characteristically to PI |Ũ and SS(PI |Ũ ) ⊂ ΛI|Ũ . Hence 
the claim is proven in this case.

Now we assume I /∈ I. We assume by induction that the cases for I ′ with |I ′| > |I|
are proven. We consider two cases.
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case a: If there are leaks of QI over U , i.e., there exists a leak −τI + τI′ of QI and 
−τI + τI′ ∩ Ũ �= ∅, then by Lemma 3.13, we have

FI
∼−→

⊕
J⊂(I∪I′)c,|J|=1

FI�J

����������������

→
⊕

J⊂(I∪I′)c,|J|=2

FI�J → · · · → F(I′)c

and

FI|U
∼−→

⊕
J⊂(I∪I′)c,|J|=1

FI�J |U

������������������

→
⊕

J⊂(I∪I′)c,|J|=2

FI�J|U → · · · → F(I′)c|U .

Since by induction hypothesis, we have FI�J|U � FI�J |Ũ for any non-empty J , we can 
restrict the resolution of FI to Ũ and get the same resolution as FI|U , hence FI|U = FI |Ũ .

case b: If there are no leaks of QI over U , then by condition (3), there is no flooded 
quadrant over U , i.e., no QJ such that QJ /∈ PI and FI |QJ

�= 0 and QJ ∩ Ũ �= ∅. Hence 
FI |Ũ = PI |Ũ , which also shows SS(PI |Ũ ) ⊂ ΛI|Ũ , thus

FI|U = PI |Ũ = FI |Ũ .

This finishes the proof of the claim. �
Since we will only consider skeletons with the above properties, we give it a name.

Definition 3.22. If ΛI is a rectilinear skeleton with zero section, and π : RN → Rk is 
non-characteristic with respect to ΛI. We say ΛI is π-coff if the microlocal co-restriction
functors are always fully-faithful, i.e. SSL

Hom(π∗Sh
♦
ΛI

) = T ∗
RkRk.

Finally, we prove that given a π-coff skeleton ΛI, one can extend a constructible sheaf 
on a fiber on π with respect to the restriction of the skeleton to a tubular neighborhood.

Proposition 3.23. Let ΛI be a π-coff skeleton. Then for any x ∈ Rk, the co-restriction 
functor (left-adjoint to restriction)

ρLx : Sh♦(Xb,ΛI|b) → Sh♦(RN ,ΛI)

is fully-faithful, where Xb = π−1(b), ΛI|b = ΛI|Xb
.

Proof. Suffice to check that, for each I ⊂ [N ], such that QI ∩Xb �= ∅, we have the probe 
sheaf FI|b of region QI ∩Xb for skeleton ΛI|b equal to the restriction of the global probe 
sheaf FI |Xb

. We proceed as the “(3) ⇒ (2)” step in the proof of Proposition 3.21, with 
some modification.

If I ∈ I, then there is nothing to prove, as FI|b = PI |Xb
= FI |Xb

. If I /∈ I, then 
we may prove by induction and assume the case for I ′ with |I ′| > |I| is verified. Since 
π(QI) � b, then b ∈ π(Leak(I)) if and only if b ∈ π(Flood(I)). We have two cases:
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Fig. 10. Example where co-restriction fails to be fully-faithful. U1 is to the right of the blue line, and U2
is to the right of the red line. Here, the hom space between probe sheaves Hom(Fb, Fa) are not preserved 
under co-restriction.

case a: b ∈ π(Leak(I)). However unlike the case with open set, this does not imply that 
Xb contains a transverse disk to the leak of QI . Suppose there exists a leak −τI+τJ , such 
that Xb intersects Int(−τI + τJ) transversely, then the induction step follows as before. 
Now we consider the case that, for all leak L = −τI + τJ of QI , π(Int(L)) does not cover 
an open neighborhood of b. Hence b ∈ ∂(π(Leak(I))) ∩π(QI) = ∂(π(Flood(I))) ∩π(QI), 
which also means there is all the flooded region QJ of QI satisfies QJ ∩Xb = ∅. This is 
then the same as case (b) below.

case b: If b /∈ π(Leak(I)), then Xb does not see any leak and also does not see any 
flooded quadrant, hence we again have FI|b = PI |Xb

= FI |Xb
. �

3.7. Examples for failure of extension of constructible sheaves

Example 3.24. Let N = 2, and consider I = {1, 2}. We can draw the picture of ΛI as 
following Fig. 10. Let U1 = {(x, y) | x − y > 1} and U2 = {(x, y) | x − y > −1}. It is 
impossible to extend the sheaf over U1 supported in the blue region to U2. If we apply 
the co-restriction functor ρL along the inclusion U1 ↪→ U2, then we get the 2d hour-
glass sheaf restricted to U2, which changes the stalk at b. In other words, the hom space 
morphism

0 � HomU1(Fb, Fa) → HomU2(ρLFb, ρ
LFa) � C[−1]

is not a quasi-isomorphism. �

Here is another example in 3-dimension.

Example 3.25. Consider the following rectlinear Lagrangian skeleton in T ∗R3, where 
I = {1, 2, 123}. Consider map π : R3 → R, where π(x1, x2, x3) = x1 + x2 − 2x3. We 
are going to show the restriction of the skeletons over fiber π−1(1) and π−1(−1). Let 
U1 = π−1((1, ∞)) and U2 = π−1((−1, ∞)), and point a = (1, 1, 0.1). Then the probe 
sheaf Fa in U1 is confined in U1 ∩Q∅, where as the probe sheaf Fa in U2 is leaked into 
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Fig. 11. Another example in 3 dimensions, where co-restriction is not fully-faithful. The probe sheaf in a 
slice suffers a sudden leak as one moves from π−1(ε) to π−1(−ε) for small positive ε.

Q12, Q3, Q13, Q23, Q123. In particular, Q3 intersects U1, hence Fa flood into a region that 
is previously inaccessible in U1. What is shown in the Fig. 11 is the fiber-wise probe 
sheaves for the same region (restriction of Q∅, the top wedge), and the sudden leaking 
indicates that the co-restriction is not fully-faithful. �

4. Local window skeleton and the restriction functor

In this section, we will assume quasi-symmetry.
Recall that the zonotope ∇ is a symmetric polytope ∇ = (1/2)μ([0, 1]N ). For a shift 

parameter δ ∈ Rk, we have the shifted zonotope ∇δ = δ+∇ ⊂ Rk and the shifted window 
Wδ = ∇δ ∩ Zk. The function δ 	→ Wδ is locally constant and induces a stratification on 
Rk. We want to describe how the skeleton ΛWδ

changes as δ varies.

4.1. Window skeleton near a point

Let Λ = ΛWδ
be some window skeleton, or any skeleton adapted to the grid stratifi-

cation of RN .
For any x ∈ RN , we consider the specialization Λx ⊂ T ∗(TxRN ) of Λ at x. The 

specialization Λx can be obtained in the following way: take a small ball Bε(x) around 
x so that Bε(x) only intersects with strata that contain x in the closure, then restrict 
Λ to Bε(x), identify Bε(x) with Bε(0) in RN and finally extrapolate Λ from the ball to 
RN as a bi-conical Lagrangian. Here we identified TxRN with RN in the obvious way.

For any x ∈ RN , let nbhd(x) denote the union of strata that contain x in the clo-
sure. One can see nbhd(x) is indeed an open neighborhood of x. The specialization Λx

determines the restriction Λ|nbhd(x). Let ṽ ∈ ZN and v = μZ(ṽ). Then the specialization 
ΛWδ,ṽ only depends on v, since ΛWδ

is invariant under translation by the sub-lattice 
ker(μZ). We thus define ΛWδ,v = ΛWδ,ṽ, and view it as a Lagrangian in T ∗RN .
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4.2. Intermediate level

It turns out many discussions would simplify if we consider the factorization of μ into

RN π−→ Rm q−→ Rk,

and work with the map π first. We separate [N ] = [N1] � [N2] � · · · [Nm], and for each 
i ∈ [m], [Ni] = [Ni]+ � [Ni]−. We also formally define [Ni]0 = ∅. If I ⊂ [N ], we have 
decomposition of I into parts Ii = I∩[Ni], and Ii = Ii,+�Ii,− by intersecting with [Ni]±. 
We say Ii is of mixed type if both Ii,± are non-empty, and we say Ii is of pure-type if 
otherwise. We say I is of mixed type if any Ii is of mixed type, and of pure type if all Ii
are pure type. If Ii ⊂ [Ni] is of pure type, we define sign(Ii) to be 0 if Ii = ∅ = [Ni]0, 
and ± if ∅ �= Ii ⊂ [Ni]±. If I is of pure-type, then there is an associated sign vector 
sign(I) = (sign(Ii))i, and we say I is of pure type sign(I).

We consider the box B = 1
2π([0, 1]N ) =

∏m
i=1[−ηi/2, ηi/2], which maps to q(B) =

∇ = 1
2μ([0, 1]N ). For any closed convex polytope K, define

BK = K + B, ŴK = BK ∩ Zm, W̃K = π−1
Z (ŴK).

We associate to K a Lagrangian skeleton in T ∗RN , defined as

Λ
ŴK

=
⋃

w∈W̃K

Λw.

Remark 4.1. If we let K = q−1(δ), then Λ
ŴK

= ΛWδ
defined before. For now, we allow 

K to be any closed convex polytope to keep the discussion more general and independent 
of the map q.

Let v̂ ∈ Zm and K ⊂ Rm be a closed convex polytope. We first give the combinatorial 
data that describe the skeleton Λ

ŴK ,v̂
. Define an index set

I(ŴK , v̂) = {I ⊂ [N ] | ΛI ⊂ Λ
ŴK ,v̂

}.

Lemma 4.2. I ∈ I(ŴK , ̂v) if and only if there exists a w ∈ W̃K and v ∈ π−1
Z (v̂), such 

that wi = vi for i /∈ I and wi < vi for i ∈ I

Proof. Suffice to consider for all w ∈ ZN , how Λw contribute to skeleton Λw,v near v. The 
contribution is non-empty if and only if wi ≤ vi for all i. If we let I(w, v) = {i : wi = vi}, 
then Λw,v = ΛI(w,v). Hence

Λ
ŴK ,v̂

=
⋃
˜ Λw,v =

⋃
˜ ΛI(w,v) =

⋃
̂ ΛI . �
w∈WK w∈WK I∈I(WK ,v̂)
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Next, we relate the index set I(ŴK , ̂v) to the geometry of K. Recall that ei is a basis 
of RN , eI =

∑
i∈I ei, τI = cone(ei, i ∈ I), γI = τoI ∩ ZN .

Proposition 4.3. I ∈ I(ŴK , ̂v) if and only if K ∩ (v̂ + RI) �= ∅, where

RI = B − π(τI) − π(eI).

Proof. Without loss of generality, we only consider the case v̂ = 0.
By Lemma 4.2, I ∈ I(ŴK , 0) if and only if −π(γI) ∩ ŴK �= ∅. Since ŴK = (B+K) ∩

Zm, then (−π(γI)) ∩ ŴK = (−π(γI)) ∩ (B + K).
If x ∈ (−π(γI)) ∩ (B+K), then x = b +k for some b ∈ B, k ∈ K. Hence −x ∈ π(γI) ⊂

π(eI) + π(τI), and then k = x − b ∈ −B − π(eI) − π(τI) = RI , where we used −B = B. 
Hence I ∈ I(ŴK , 0) implies K ∩RI �= ∅.

If K ∩RI �= ∅, and let δ be in the intersection, then

δ ∈ B − π(τI) − π(eI)

hence

(δ + B) ∩ (−π(τI) − π(eI)) �= ∅.

Therefore, in each direction i ∈ [m], we have

δi + [−ηi/2, ηi/2] ∩ (−π(τIi − π(eIi))) �= ∅.

We claim that

δi + [−ηi/2, ηi/2] ∩ (−π(γIi)) �= ∅.

Indeed, if Ii is of mixed type, then −π(τIi) − π(eIi) = R, and −π(γIi) is a shifted sub-
lattice of Z with step size ≤ ηi, hence intersects with δi + [−ηi/2, ηi/2]. Then assume Ii
is of pure type. If Ii = ∅, then there is nothing to prove. If Ii �= ∅, then vi − π(γIi) is a 
discrete subset in the ray −π(τIi) −π(eIi), which contains the endpoint −π(eIi) and has 
step size ≤ ηi, hence it would intersect δi + [−ηi/2, ηi/2]. �
4.3. Stratification of the shift parameter space

For any δ ∈ Rk, v ∈ Zk, let I(δ, v) denote the collection of subsets I ⊂ [N ], such that 
ΛI ⊂ ΛWδ,v. Then we have ΛWδ,v = ∪I∈I(δ,v)ΛI . We will consider the stratification on 
the parameter space δ induced by the function δ 	→ I(δ, v).

Proposition 4.4. I ∈ I(δ, v) if and only if δ ∈ v + AI , where

AI = q(RI) = −βI − CI + ∇. (4.1)
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Proof. Without loss of generality, set v = 0. Since ΛWδ
= Λ

ŴK
for K = q−1(δ), hence 

by Proposition 4.3, ΛI ⊂ ΛWδ,0 if and only if K ∩ RI �= ∅, which is equivalent to 
δ ∈ q(RI). �
Definition 4.5.

(1) Let Sδ denote the stratification of Rk induced by δ 	→ ΛWδ
.

(2) For any v ∈ Zk, let Sδ
v denote the stratification of Rk induced by δ 	→ ΛWδ,v.

By definition, the strata of Sδ are generated by intersecting AI,v for various I ∈ [N ], 
v ∈ Zk, and the strata of Sδ

v are generated by intersecting AI,v for various I but fixed v.

4.4. Obstruction of fully-faithfulness for the restriction functor

Here we consider the singular support of push-forward of hom sheaves, μ∗Hom(F, G)
for F, G ∈ Sh♦(RN , ΛWδ,v), which is bounded by μ∗SSHom(ΛWδ

) (see section 3.5).
Let Σ∇ be the exterior conormal fan of ∇. For a cone σ ∈ Σ∇, let Fσ denote the 

corresponding (closed) face whose exterior conormal is σ. Let Aff(Fσ) be the affine hull 
of Fσ, i.e., the minimal affine linear space containing Fσ.

For any nonzero ξ ∈ (Rk)∨, we split [N ] into three parts

[N ] = [N ]ξ,− � [N ]ξ,0 � [N ]ξ,+, [N ]ξ,s = {i ∈ [N ] | sign(〈βi, ξ〉) = s}.

Clearly, the splitting is a locally constant function on Σ∇, hence we also label [N ]ξ,s as 
[N ]σ,s if Int(σ) � ξ.

Theorem 4.6. (1) For any nonzero ξ ∈ (Rk)∨, let σ denote the cone of the exterior normal 
fan Σ∇ such that Int(σ) � ξ. Then ξ ∈ μ∗(SSHom(ΛWδ,v))0 if and only if δ ∈ v+Aff(Fσ).

(2) For any v ∈ Zk, δ ∈ Rk, we have

μ∗(SSHom(ΛWδ,v)) = T ∗
RkRk ∪

⋃
0�=σ∈Σ∇

δ∈v+Aff(Fσ)

σ⊥ × σ.

(3) For any δ ∈ Rk,

μ∗(SSHom(ΛWδ
)) = T ∗

RkRk ∪
⋃

σ:(δ+Fσ)∩Zk �=∅
Aff(δ + Fσ) × (−σ)

Proof. (1) Let ξ̃ = μ∗(ξ), and s(ξ) = sign(ξ̃). Suppose ξ ∈ μ∗(SSHom(ΛWδ
))0, then 

there exists I, J ∈ I(δ, v), such that s(ξ) ≤ sign(I, J). This means, for any i ∈ [N ], 
if sign(ξ̃)i = +, then s(I, J)i = +, and if sign(ξ̃)i = −, then s(I, J)i = −. Using 
Lemma 3.18, this is equivalent to



44 J. Huang, P. Zhou / Advances in Mathematics 408 (2022) 108597
Ic ⊃ [N ]ξ,+, and I\J ⊃ [N ]ξ,−,

and in turn, equivalent to

[N ]ξ,− ⊂ I ⊂ [N ]ξ,− � [N ]ξ,0, and J ⊂ [N ]ξ,+ � [N ]ξ,0.

Since δ − v ∈ AI ∩AJ , and

AI ⊂ −β[N ]ξ,− − C[N ]ξ,−�[N ]ξ,0 + ∇ = −β[N ]ξ,−/2 − C[N ]ξ,−�[N ]ξ,0

AJ ⊂ −C[N ]ξ,+�[N ]ξ,0 + ∇ = β[N ]ξ,+/2 − C[N ]ξ,+�[N ]ξ,0

Since β[N ]ξ,+ = −β[N ]ξ,− , we have

AI ∩AJ ⊂ β[N ]ξ,+/2 − C[N ]ξ,0 = Aff(Fσ).

Thus δ ∈ v + Aff(Fσ).
In the other direction, if δ ∈ v + Aff(Fσ), we can choose I = [N ]ξ,− � [N ]ξ,0 and 

J = [N ]ξ,0, then AI ∩ AJ = Aff(Fσ), hence δ ∈ AI,v ∩ AJ,v, i.e. I, J ∈ I(δ, v). Thus 
ξ̃ ∈ SS(Hom(PI , PJ))0 and ξ ∈ μ∗(SSHom(ΛWδ

)).
(2) If δ − v ∈ Aff(Fσ), then σ⊥ × σ ⊂ μ∗(SSHom(ΛWδ

)). If δ − v ∈ Aff(Fσ) and 
0 �= σ′ ⊂ σ, then Aff(Fσ) ⊂ Aff(Fσ′). Finally, since [N ] ∈ I(δ, v), the zero section 
T ∗
RkRk is included. Hence the direction ⊃ is proven. The other direction can also be 

easily checked.
(3) One can verify the statement near each lattice point v ∈ Zk, and the rest follows 

from extrapolation. �
5. Local window skeleton and the co-restriction functor

In this section we prove

Theorem 5.1. For any δ ∈ Rk, we have

SSL
Hom(μ∗Sh

♦
ΛWδ

) = T ∗
RkRk.

In fact, we will factorize μ as RN π−→ Rm q−→ Rk and prove the following general result 
about π.

Theorem 5.2. For any closed convex polytope K ⊂ Rm, we have

SSL
Hom(π∗Sh

♦
Λ

ŴK

) = T ∗
RmRm,

where ŴK = (K + π([0, 1]N )/2) ∩ Zm, W̃K = π−1(ŴK) ∩ ZN and Λ̂ = ∪ ˜ Λw.

WK w∈WK
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Proof of Theorem 5.1. Take K = q−1(δ) in Theorem 5.2, we get ΛWδ
= Λ

ŴK
. Then

T ∗
RkRk ⊂ SSL

Hom(μ∗Sh
♦
ΛWδ

) ⊂ q∗SS
L
Hom(π∗Sh

♦
ΛWδ

) = q∗(T ∗
RmRm) = T ∗

RkRk. �
We will first study the probe sheaf for the localized window skeleton Λ

ŴK ,v̂
in detail. 

We will use notation from Section 4.2. Since we are mainly going to work with π, we will 
drop the hat in ŴK and v̂ and hope there is no confusion incurred.

5.1. Thick coordinate cones and convex polytope

Recall that Σm is the fan in Rm with 2m quadrants as top dimensional cones, and for 
each sign vector s ∈ Sm = {+, −, 0}m we let σs denote the corresponding cone in Σm.

We defined the following closed convex rectilinear regions, which serves as a fattened 
version of σs,

Bs := B + σs + δs, δs := (s1η1, · · · , smηm).

We also denote Bsi as the projection of Bs to the i-th factor.
For any closed convex polytope K, we define a sub-poset SK ⊂ Sm,

SK = {s ∈ Sm | Bs ∩K �= ∅}.

We would like to relate the topology of the geometric realization of the order complex 
of SK to that of K. One possible way is to pick a point ps ∈ K ∩ Bs for each s ∈ S, 
then glue the resulting simplices with vertices ps, however this would make the geometric 
realization non-convex in general. Instead, for each s ∈ SK , we take the constant sheaf 
CKs

supported on the closed set Ks := K ∩Bs. Then for each k-simplex [s] = [s0 < s1 <

· · · < sk] ∈ Δ(SK)k, we consider the intersection K[s] = Ks0 ∩ · · · ∩Ksk . Thus, we have 
a Čech resolution of CK , (abusing notation and denote CK by K, CK[s] by K[s]),

K �
⊕

[s]∈Δ0

K[s] →
⊕

[s]∈Δ1

K[s] → · · · ,

where Δ = Δ(SK).

Example 5.3. Throughout this subsection, we will consider the following example, where 
m = 2 and η1 = 2, η2 = 2. The Bs decomposes R2 into 9 regions with disjoint interiors 
(Fig. 12). The convex set K intersects with the following regions: B++, B+0, B+−, B0−.

The sub-poset SK is then as following

(+0) (++)

(0−) (+−)
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Fig. 12. The intersection pattern of K with Bs.

Then the order complex Δ(SK) has degree 0 corresponding to the vertices and degree 1
corresponding to the arrows{

Δ(SK)0 = {+0,−0,++,+−}
Δ(SK)1 = {[+0,++], [+0,+−], [0−,+−]}

The Čech resolution is then

K[++] ⊕K[+0] ⊕K[+−] ⊕K[0−] → K[+0,++] ⊕K[+0,+−] ⊕K[0−,+−],

where for example K[++] = K ∩B++, and K[+0,++] = K[+0] ∩K[++] is the interface. �

We define the analog of star(σs) for the thick cone Bs:

B≥s :=
⋃
s′≥s

Bs′ .

Proposition 5.4. For any s ∈ Sm, we have

HomSK
((SK)≥s,SK) �

⊕
[t]∈Δ0

1t0≥s ·C →
⊕

[t]∈Δ1

1t1≥s ·C → · · · (5.1)

� HomSh(Rm)(B≥s,K) (5.2)

where Δ = Δ(SK), and 1condition equals 1 or 0 depending on whether the condition is 
satisfied. In particular, we have
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Fig. 13. Computation of Hom(B≥s, K), B≥s is shaded red, and K is shaded in green.

Hom(SK ,SK) � C.

Proof. The proof follows from Proposition 3.7, where we note that if P1 is a sub-poset of 
P given by P1 = P≥a for some element a ∈ P , then for any k-chain [p] in P , [p] ∩P1 �= ∅
if and only if pk ≥ a. And the last statement follows from H∗(K) � C, since K is 
contractible. �
Example 5.5. We compute the hom spaces in following two cases: s = (+0) and s = (+−). 
See Fig. 13.

(1) s = (+0) case. We first compute using combinatorial complex Eq (5.1). We have 
the following cochain complex involving two degrees (first row is degree 0, second row is 
degree 1, and each node represent C). One can see that this complex is acyclic.

(++) (+0) (+−)

(+0,++) (+0,+−) (0−,+−)

We can then compute using Eq. (5.2).

Hom(B≥s,K) = Γ(K ⊗ (B≥s)∨) � H∗(K ∩ B≥s,K ∩ ∂(B≥s)) � 0.

The hair on the boundary shows the direction of singular support of the sheaf. One can 
construct a Morse function f , such that the downward gradient of f is pointing inward 
along the inward hair, and outward along the outward hair, and there exists such an f
without critical point, hence the cohomology relative to the boundary with outward hair 
is zero. See [26, Section 4.5].

(2) s = (+−) case. The B≥s is the closed lower-right quadrant, and the sheaf K ⊗
(B≥s)∨ is of the following form hence we have
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Hom(B≥s,K) � H∗(K ∩ B≥s,K ∩ ∂(B≥s)) � C[−1]. �

We also record a lemma that will be used later. Recall starσs = ∪σs′⊃σs
σs′ .

Lemma 5.6. If for some s �= 0 and for some convex set K, we have HomSK
((SK)≥s,

SK) �= 0, then (K − δs/2) ∩ −(B≥s − δs/2) = ∅, or equivalently K ∩ (−starσs + B) = ∅.

Proof. We can compute Hom(B≥s, K) by pushforward along the map πs = πσs
: Rm →

span(σs) = R|s|. Indeed, B≥s = (πs)∗(πs)∗B≥s, hence

HomSK
((SK)≥s,SK) � HomRm(B≥s,K) � HomR|s|((πs)∗B≥s, (πs)∗K))

� HomR|s|(πsB≥s, πsK)

where the middle term is to push-forward the constant sheaves, and the last term is 
claiming the push-forward sheaves equal to the constant sheaves on the image of πs, 
since the fibers of πs on B≥s and K are convex thus contractible.

Let B = πs(B≥s − δs/2), C = πs(K − δs/2), where the shift is to make sure the 
quadrant B has vertex at 0. Then from previous arguments we have

H∗(B ∩ C, ∂B ∩ C) � Hom(CB ,CC) � HomR|s|(πsB≥s, πsK) �= 0. (5.3)

The claim is equivalent to −B ∩ C = ∅. Suppose not, then let x ∈ −B ∩ C, and let

Sx = {y ∈ ∂B ∩ C | the segment xy intersects B only at y},

then both B∩C and ∂B∩C deformation retract to Sx along rays emitted from x, hence 
they are all contractible. Hence the relative cohomology H∗(B ∩ C, ∂B ∩ C) = 0, which 
contradicts with Eq (5.3). �
5.2. Sign pattern and probe sheaf

Recall that for v ∈ Zm, we have the localized window skeleton ΛWK ,v and index set 
I(K, v) containing those subset I ⊂ [N ] such that ΛI ⊂ ΛWK ,v. From Proposition 4.3, 
we know if I ∈ I(K, v) if and only if (K + π(eI) + π(τI)) ∩ (v + B) �= ∅.

From the general discussion of probe sheaf in Section 3.1, in particular Proposition 3.5, 
we can express FI as a homotopy limit, or more concretely

FI := FI,I(K,v) �
⊕

[J]∈Δ0

PJ0 →
⊕

[J]∈Δ1

PJ1 → · · · ,

where Δ is the order complex of the poset I(K, v)≥I . We can also compute which quad-
rant is in the support of FI by computing the hom of sub-posets, cf. Proposition 3.8.
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Our goal in this section is to find a simpler presentation of FI , using the sign pattern 
of some convex set KI,v.

For any I ⊂ [N ], let

K(I) = K + π(eI) + π(τI).

Definition 5.7. For any I ⊂ [N ], v ∈ Zm and convex polytope K ⊂ Rk, we define the 
sign pattern SK,I,v ⊂ Sm, where s ∈ SK,I,v if and only if

(1) K(I) ∩ (v + Bs) �= ∅.
(2) For each i ∈ [m], if Ii,+ �= ∅ then si �= −, and if Ii,− �= ∅ then si �= +.

We also define ΣK,I,v = {σs | s ∈ SK,I,v}.

Remark 5.8. The condition (2) is equivalent to the following list

• If Ii = ∅, then si ∈ {−, +, 0}.
• If ∅ �= Ii ⊂ [Ni]+, then si ∈ {−, 0}.
• If ∅ �= Ii ⊂ [Ni]−, then si ∈ {+, 0}.
• If I is of mixed type, then si = 0.

If we drop condition (2), one can still define the simplified resolution of FI (cf. Eq (5.4)), 
but it would involve sheaves not admissible for the skeleton ΛWK ,v.

Proposition 5.9. There exists a closed convex polytope KI,v, such that

s ∈ SK,I,v ⇔ KI,v ∩ Bs �= ∅.

Furthermore, KI,v satisfies the property that

KI,v ∩ Bs �= ∅ ⇒ KI,v ∩ Int(Bs) �= ∅.

Proof. We define KI,v,ε = (K(I) − v) ∩BI,ε for small enough positive ε, where

BI,ε =
m⋂
i=1

⋂
si=+,−

BIi,si,ε, Bi,si,ε =
{
{x ∈ Rm | sixi ≥ −ηi/2 + ε} Ii,si �= ∅
Rm Ii,si = ∅

.

We will consider small enough ε and drop ε in the notation KI,v,ε.
For the direction ⇐, if KI,v∩(v+Bs) �= ∅, then K(I) ∩(v+Bs) �= ∅ since K(I) ⊃ KI,v, 

hence condition (1) is satisfied. For each i ∈ [m], s′i ∈ {+, −}, if Ii,s′i �= ∅, then si �= −s′i
since otherwise BIi,si,ε ∩ Bsi = ∅, hence condition (2) is satisfied. Thus ⇐ is proven.

For the direction ⇒, if σs ∈ ΣK,I,v, we just need to prove that (K(I) − v) ∩ Bs ∩
Int(BI,0) �= ∅, since Int(BI,0) = ∪ε>0BI,ε. Set v = 0 for simplicity. Since Bs ⊂ BI,0, we 
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have (K(I) − v) ∩ Bs ∩ BI,0 �= ∅. Let E1, · · · , Em be basis of Rm. Let x ∈ K(I) ∩ Bs, 
then x + ε 

∑
i,s′i:x∈∂Bi,s′i,0

s′iEi will be in the interior of BI,0 and remain in K(I).
We may replace KI,v by KI,v + [−δ, δ]m for small enough δ to achieve the second 

property. �
Lemma 5.10. If s ∈ −SK,I,s, and J ⊂ [N ] is of pure-type s, then J ∩ I = ∅ and I � J ∈
I(K, v).

Proof. From condition (2) in the definition of ΣK,I,s, we see I ∩ J = ∅. Also note that 
K(I) ∩ (v − Bs) �= ∅, and π(τJ) = σs,

K(I) ∩ (v + B + σ−s + δ−s) �= ∅ ⇔ (K(I) + π(τJ) + δs) ∩ (v + B) �= ∅,

and

K(I�J) = K+π(τI+τJ)+π(eI)+π(eJ) ⊃ K+π(τI+τJ)+π(eI)+δs = K(I)+π(τJ)+δs.

Hence K(I � J) ∩ (v + B) �= ∅, and I � J ∈ I(K, v). �
Proposition 5.11. The probe sheaf FI is quasi-isomorphic to the following complex

F̃I :=
⊕

[σ]∈Δ0

FI,σ0

���������

→
⊕

[σ]∈Δ1

FI,σ1 → · · · ,

Δ = Δ(−ΣK,I,v), [σ] = (σ0 < · · · < σk) ∈ Δk, (5.4)

where

• For each σ ∈ −ΣK,I,v, FI,σ is a sheaf in Sh(
∏m

i=1 R
[Ni], ΛWK,v

)

FI,σ = FI1,s1 � FI1,s1 � · · ·� FIm,sm , σ = σs, s = (s1, · · · , sm),

and for each i ∈ [m], FIi,si is a sheaf in Sh(R[Ni]+ ×R[Ni]−)

FIi,si
Ii = ∅ ∅ �= Ii = Ii,+ ∅ �= Ii = Ii,− I is mixed

si = 0 P∅ � P∅ PIi,+ � P∅ P∅ � PIi,− PIi,+ � PIi,−

si = + ⧖[Ni]+ � P∅ —– ⧖[Ni]+ � PIi,− —–
si = − P∅ � ⧖[Ni]− PIi,+ � ⧖[Ni]− —– —–

• For each σ < σ′, the morphism FI,σ′ → FI,σ is a product of FIi,s′i
→ FIi,si for 

s′i < si, using the inclusion P∅ ↪→ ⧖ and identity maps.
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Proof. By the Koszul resolution of the hourglass sheaves ⧖ (Section 3.3), we note that 
FI,σs

can be resolved using sheaves of type PI�J where J is pure of type s. Since σs ∈
−ΣK,I,v, by Lemma 5.10, we have SS(PI�J) ⊂ ΛWK ,v, hence SS(FI,σs

) ⊂ ΛWK ,v.
Next, suffice to prove that for any J ∈ I(K, v), we have

Hom(F̃I , PJ) =
{

0 if I � ⊂J

C if I ⊂ J
.

If I � ⊂J , then for any I ′ ⊃ I we have I ′ � ⊂J . Since F̃I can be resolved with PI′ with 
I ′ ⊃ I, we have Hom(FI , PJ) = 0.

If I ⊂ J and J ∈ I(WK , v), then K(J) ∩ (v + B) �= ∅. Let J ′ = J\I, then K(J) =
K(I) + π(τJ ′) + π(eJ ′), and K(J) ∩ (v +B) �= ∅, which is equivalent to K(I) ∩ (v +B−
π(τJ ′) − π(eJ ′)) �= ∅. Since (v + B − π(τJ ′) − π(eJ ′)) ⊂ v + B − π(τJ ′), hence

K(I) ∩ (v + B − π(τJ ′)) �= ∅.

Let ΣJ ′ := {σ ∈ Σm | σ ∈ −π(τJ ′)}, then ΣJ ′ closed under taking sub-cone. We then 
define

ΣJ ′

K,I,v = ΣJ ′ ∩ ΣK,I,v.

Lemma 5.12. Let KI,v be given as in Proposition 5.9, and let KJ ′

I,v = KI,v ∩ (B−π(τJ ′)), 
then

ΣJ ′

K,I,v = {σs | KJ ′

I,v ∩ IntBs �= ∅}.

Proof. We note that

KI,v ∩ (B − π(τJ ′)) ∩ IntBs �= ∅ ⇔
{
KI,v ∩ IntBs �= ∅
IntBs ⊂ B − π(τJ ′)

⇔
{
σs ∈ ΣK,I,v

σs ∈ ΣJ ′ . �
Lemma 5.13. For any σ ∈ −ΣK,I,v, we have

Hom(FI,σ, PJ) =
{
C if σ ∈ −ΣJ ′

K,I,v

0 otherwise
.

Proof. Write ΣJ ′

K,I,v as Σ′ for short. If σs ∈ −Σ′, then suffice to check that for each 
i ∈ [m], Hom(FIi,si , PJi

) = C. If FIi,si = PIi , then since Ii ⊂ Ji, this is verified. If 
FIi,si = ⧖[Ni]+ � PIi in the case of si = + and Ii ⊂ [Ni]−, then J ′

i,+ �= ∅, otherwise 
(v +B− π(τJ ′))) ∩ (v +B−s) = ∅ by examining the projection to the i-th direction, thus 
contradicting with the requirement of Σ′. Thus
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Hom(FIi,si , PJi
) = Hom(⧖[Ni]+ , PJ ′

i,+
) ⊗ Hom(PIi , PJi,−) � C.

The case for si = − and Ii ⊂ [Ni]+ is similar.
If σs /∈ −ΣK,I,v\ − Σ′, then σs � ⊂π(τJ ′), thus there exists one i ∈ [m], such that 

σsi � ⊂π(τJ ′
i
). Then J ′

i is not of mixed type, since that would make π(τJ ′
i
) = R, and 

si �= 0 since that would make σsi = 0. In all cases, J ′
i,si

= ∅. Take si = + for example, 
then

Hom(FIi,si , PJi
) = Hom(⧖[Ni]+ , PJ ′

i,+
) ⊗ Hom(PIi , PJi,−) = 0 ⊗C = 0,

where we used Hom(⧖, P∅) = 0. The other case si = − is similar. �
Lemma 5.14. The geometric realization of ΣJ ′

K,I,v is contractible, hence its homology and 
cohomology are C in degree 0.

Proof. If π(τ ′J) = Rm we let K ′ = KJ ′

I,v, otherwise we pick a unit vector v in the interior 
of −π(τ ′J) and let K ′ = εv+KJ ′

I,v. Then, one may check that ΣJ ′

K,I,v = {σs | K ′∩Bs �= ∅}
and K ′ is a convex closed set, the result then follows from Proposition 5.4. �

Now we are ready to prove that if I ⊂ J and J ∈ I(K, v), then Hom(F̃I , PJ) = C. 
Define Δ′ = Δ(−ΣJ ′

K,I,v). We have

Hom(F̃I , PJ) =
⊕

[σ]∈Δ′
0

C ←
⊕

[σ]∈Δ′
1

C ← · · · = H∗(−ΣJ ′

K,I,v) � C. �

Next, we use the better presentation of FI Eq (5.4) to find the support of FI . For any 
sign vector s, we define a maximal subset of pure-type s

[N ]s = �m
i=1[Ni]si

where we set [Ni]0 = ∅. We also define

deg(s) =
∑

i,si �=0

(Ni,si − 1), Ni,s = |[Ni]s|.

Lemma 5.15. For any J ⊂ [N ] and any σs ∈ −ΣK,I,v,

Hom(QJ , FI,σ) =
{
C[− deg(s′)] if J\I = [N ]s′ for some s′ ≤ s

0 else

Proof. This can be verified using the table of the definition of FIi,si .
Let J ′ = J\I. Assume Hom(QJ , FI,σ) is non-zero. If si = 0, then FIi,si = PIi , then 

one needs to have J ′
i = ∅. If si = +, then FIi,si = ⧖[Ni]+ � PIi,− , hence J ′

i = ∅ or [Ni]+. 
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Similarly, if si = −, then J ′
i = ∅ or [Ni]−. Conversely, suppose J ′ satisfies the condition, 

then note that for any n ≥ 1 the hourglass sheaf ⧖[N ] is supported only on Q∅ with stalk 
C and Q[n′] with stalk C[−n′ + 1], we have the desired value of the hom. �
Proposition 5.16. For any I, J ⊂ [N ], Hom(QJ , FI) is zero unless J\I = [N ]s for some 
sign vector s, in which case

Hom(QJ , FI) � Hom((−ΣK,I,v)≥σs
,−ΣK,I,v)[− deg(s)] � Hom(B≥s,−KI,v)[− deg(s)].

In particular, if J ⊂ I, then Hom(QJ , FI) = C.

Proof. If J\I �= [N ]s for some sign vector s, then all the terms in Hom(QJ , FI) vanish, 
hence we have the first claim.

If J\I = [N ]s, then let Δ = Δ(−ΣK,I,v),

Hom(QJ , FI) =
⊕

[σ]∈Δ0

1σs⊂σ0C[− deg(s)] →
⊕

[σ]∈Δ1

1σs⊂σ1C[− deg(s) + 1] → · · ·

= Hom((−ΣK,I,v)≥σs
,−ΣK,I,v)[− deg(s)]

where 1... is the indicator function, valued in 1 or 0. The next equality comes from 
Proposition 5.4.

If J ⊂ I, then J\I = ∅ and s = 0, hence Hom(B≥0, −KI,v) � H∗(−KI,v) = C. �
5.3. Leaks and flooded quadrants for localized window skeleton

Let Σ ⊂ Σm be a sub-poset. We define the upper closure and lower closure of Σ in 
Σm as

�Σ� =
⋃
σ∈Σ

(Σm)≥σ, �Σ =
⋃
σ∈Σ

(Σm)≤σ.

We also denote the underlying geometric representation of Σ as

|Σ| =
⋃
σ∈Σ

Int(σ).

The reason we only use the relative interior of each cone in Σ is that it does not lose any 
information of Σ.

If A ⊂ Rm, we denote ΣA = {σ | σ ⊂ A} as the fan generated by A.
Recall that a leak for QI in ΛI is of the form −τI + τJ for some J disjoint from I and 

satisfies I ∪ J ′ /∈ I for any J ′ ⊂ J . We say J labels a leak for QI (in ΛI). We now give 
a bound for the π(τJ).
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Proposition 5.17. (1) If J labels a leak for QI , then for any cone σs ⊂ π(τJ), we have 
σs /∈ �−ΣK,I,v�.

(2) Conversely, if σs is a cone such that σs /∈ �−ΣK,I,v�, then for any J of pure-type 
s and disjoint from I, J labels a leak for QI .

Proof. (1) We prove by contradiction. Suppose that σs ∈ −ΣK,I,v and σs ⊂ π(τJ), then 
we can lift σs to a pure-type subset J ′ ⊂ J . Then by Lemma 5.10, I ∪ J ′ ∈ I(K, v)
contradicting with the requirement of a leak (Lemma 3.12).

(2) It suffices to prove that, for any σs /∈ �−ΣK,I,v� and any J of pure type s and 
disjoint from I, we have I � J /∈ I(K, v). For simplicity of notation, set v = 0. We let 
ΣK(I) = {σs | Bs ∩ K(I) �= ∅}, then ΣK,I,v ⊂ ΣK(I). We may check that �ΣK,I,v� =
�ΣK(I)�. Then we have

I ∪ J /∈ I(K, v) ⇔ K + π(τI + τJ) + π(eI + eJ) ∩ B = ∅
⇐ (K(I) + σs) ∩ B = ∅
⇔ K(I) ∩ (B − σs) = ∅
⇔ ΣK(I) ∩ Σσ−s

= ∅
⇔ �ΣK(I)� ∩ {σ−s} = ∅
⇔ σ−s /∈ �ΣK,I,v� �

Corollary 5.18. For any subset I /∈ I(K, v) and open set U ⊂ Rm, the following are 
equivalent:

• there is no leak of QI over U , i.e. for all leak L = −τI + τJ of QI , π(L) ∩ U = ∅
• U + π(τI) ⊂ |�−ΣK,I,v�|.

Proof. There is no leak of QI over U if and only if for all s such that σs /∈ �−ΣK,I,v�, 
we have (π(−τI) + σs) ∩ U = ∅, which is in turn equivalent to

⇔ σs ∩ (U + π(τI)) = ∅, ∀σs /∈ �−ΣK,I,v�
⇔ U + π(τI) ⊂ |�−ΣK,I,v�|. �

Next, we bound the π-image of flooded quadrants of FI. If QJ is flooded by FI , then 
by Proposition 5.16, we have

J = I ′ � J ′, I ′ = I ∩ J, J ′ = J\I = [N ]s

for some sign vector s.

Proposition 5.19. With the above notation, QJ is a flooded quadrant of FI only if

�−ΣK,I,v� ∩ �{σ−s}� = ∅
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Proof. QJ is a flooded quadrant if and only if Hom(B≥s, −KI,v) �= 0. From Lemma 5.6, 
a necessary condition is

Hom(B≥s,−KI,v) �= 0 ⇒ −KI,v ∩ (B − starσs) = ∅
⇔ −ΣK,I,v ∩ ��{σ−s}� = ∅
⇔ �−ΣK,I,v� ∩ �{σ−s}� = ∅ �

Proposition 5.20. For any subset I /∈ I(K, v), we have

π(QI) ∩ π(Leak(I)) = π(QI) ∩ π(Flood(I)),

where Leak(I) is the union of leaks of QI , and Flood(I) is the closure of the union of 
flooded regions.

Proof. Since the ⊂ direction is automatic by Proposition 3.14, it suffice to show that for 
any open subset U ⊂ Rm, such that U ∩π(QI) �= ∅, if there is no leak of QI over U , then 
there is no flooded quadrant of FI over U . In other words, for any flooded quadrant QJ , 
π(QJ) ∩ U = ∅.

We partition [m] into three parts,

[m] = [m]0 � [m]± � [m]+−,

where ⎧⎪⎪⎨⎪⎪⎩
[m]0 = {i ∈ [m] : Ii = ∅}
[m]± = {i ∈ [m] : Ii �= ∅, Ii ⊂ [Ni]+ or Ii ⊂ [Ni]−}
[m]+− = {i ∈ [m] : Ii ∩ [Ni]+ �= ∅ and Ii ∩ [Ni]− �= ∅}

.

For • ∈ {0, ±, +−}, we define subspaces R[m]• , and projections π[m]• : R[m] → R[m]• .
Since there is no leak of QI over U , we have U +π(τI) ⊂ |�−ΣK,I,v�|. Since both sides 

are translation invariant by R[m]+− , we may quotient out R[m]+− , and assume [m]+− = ∅. 
Now that π(τI) is a proper cone, we note that |�−ΣK,I,v�| is invariant by translation 
−π(τI), and U + π(τI)) invariant by translation π(τI), hence we have

U + π(τI)) ⊂ |�−ΣK,I,v ∩R[m]0�|,
where − ΣK,I,v ∩R[m]0 = {σ ∈ −ΣK,I,v | σ ⊂ R[m]0}. (5.5)

This also shows that [m]0 �= ∅, since otherwise −ΣK,I,v ∩ R[m]0 ⊂ {σ0} the origin, and 
σ0 /∈ −ΣK,I,v since I /∈ I(K, v).

We also note that Eq (5.5) is equivalent to

π[m]0(U) ⊂ |�π[m]0(−ΣK,I,v ∩R[m]0)�|. (5.6)
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Suppose QJ is a flooded quadrant, with J = I ′ � J ′, I ′ = J ∩ I and J ′ = J\I = [N ]s, 
then by Proposition 5.19, we have �−ΣK,I,v� ∩ �{σ−s}� = ∅. If Ii = ∅, then Ji = [Ni]si , 
hence under πi : RNi → R, we have

πi(Q[Ni]si ) =

⎧⎪⎪⎨⎪⎪⎩
R si = 0
R≤0 si = +
R≥0 si = −

= star(σ−si)

Hence we have

π(QJ) ∩ U = ∅ ⇔ π(−τI′ − τ[N ]s + τJc) ∩ U = ∅
⇐ π[m]0π(−τI′ − τ[N ]s + τJc)) ∩ π[m]0(U) = ∅
⇔ (−star(π[m]0σs)) ∩ π[m]0(U) = ∅
⇐ (−star(π[m]0σs)) ∩ |�π[m]0(−ΣK,I,v ∩R[m]0)�| = ∅
⇔ �{π[m]0σ−s}� ∩ �π[m]0(−ΣK,I,v ∩R[m]0)� = ∅

where in the next to last step, we used Eq (5.6).
We note that, for any cone σs ∈ Σm,

π[m]0�{σs}� = {π[m]0(σ
′) | σ′ ≥ σs} = {σ′ ∈ Σm0 | σ′ ≥ π[m]0σs} = �{π[m]0σs}�,

and similarly

�π[m]0(−ΣK,I,v ∩R[m]0)� = π[m]0�−ΣK,I,v ∩R[m]0�.

Hence, we have

�{π[m]0σ−s}� ∩ �π[m]0(−ΣK,I,v ∩R[m]0)� = ∅
⇔ π[m]0�{σ−s}� ∩ π[m]0�−ΣK,I,v ∩R[m]0� = ∅
⇔ �{σ−s}� ∩ π−1

[m]0π[m]0�−ΣK,I,v ∩R[m]0� = ∅

⇔ �{σ−s}� ∩ �−ΣK,I,v ∩R[m]0� = ∅
⇐ �{σ−s}� ∩ �−ΣK,I,v� = ∅

where in the next to last step, we used that �−ΣK,I,v ∩ R[m]0� is translation-invariant 
by ker(π[m]0), to get π−1

[m]0π[m]0�−ΣK,I,v ∩R[m]0� = �−ΣK,I,v ∩R[m]0�. �
5.4. Proof of Theorem 5.2

Since the claim depends on the local behavior of ΛWK
, we only need to check locally 

near each lattice point ṽ ∈ ZN . Let v = π(ṽ) ∈ Zm, and denote as before ΛWK ,v the 
specialization of ΛWK

to ṽ. It suffices to prove that
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SSL
Hom(π∗Sh

♦
ΛWK,v

) ⊂ T ∗
RmRm.

From Proposition 5.20, we see ΛI(K,v) satisfies condition (3) in Proposition 3.21, hence 
satisfies condition (1) there.

6. Global window skeleton and sheaf-theoretic parallel transport

In this section, we mainly consider the global window skeleton Λδ = ΛWδ
⊂ T ∗RN for 

a fixed shift parameter δ ∈ Rk. We will show that for generic δ, the family of skeleton 
Λδ,l = Λδ|l parametrized by l ∈ Rk forms a non-characteristic deformation. It is more 
interesting when δ is non-generic, when the constructible sheaf of category Cδ = Sh♦

ΛWδ

has singular support on the discriminant locus (not just on the boundary, but also in 
the interior). Roughly speaking, the jumping loci are on the affine hull of the faces of ∇δ

that contains lattice points, and the ‘jump amount’ is associated to the semi-orthogonal 
decomposition.

We establish some notation that will be used throughout this section. Let Σ∇ be the 
exterior conormal fan of ∇, and for a cone σ ∈ Σ∇, let Fσ denote the corresponding face 
in ∇ whose exterior conormal is σ. Define the tangent cone of ∇ to the face Fσ as

CFσ,∇ = R≥0 · (∇− Fσ). (6.1)

Define the index subset

Iσ = {i ∈ [N ] | βi /∈ CFσ,∇}, (6.2)

and the shifted tangent cone

Cδ,σ = δ + Fσ + CFσ,∇

adjacent to δ + Fσ.
For ṽ ∈ ZN , we define Lṽ = Cṽ+RN

>0
.

6.1. Generic shifted zonotope

Theorem 6.1. If δ ∈ Rk is generic, then for any l ∈ Rk, the restriction to the fiber 
Xl = μ−1(l) induces an equivalence of categories

ρδ,l : Sh♦(RN ,ΛWδ
) → Sh♦(Xl,ΛWδ

|l)

Proof. Let Cδ = Sh♦(RN , ΛWδ
) and Cδ,l = Sh♦(Xl, ΛWδ

|l). To show the equivalence, it 
suffices to show that ρδ,l and its left-adjoint is fully-faithful.

First, we show ρδ,l is fully-faithful. For any two objects F, G in Cδ, we have 
μ∗Hom(F, G) being a local system on Rm. Hence
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Γ(RN ,Hom(F,G)) = Γ(μ−1(l), ρδ,lHom(F,G)) = Γ(μ−1(l),Hom(ρδ,lF, ρδ,lG))

where the last step is because SS(F ), SS(G), SS(Hom(F, G)) are non-characteristic with 
respect to μ.

Next, we show the left-adjoint ρLδ,l is fully-faithful. We may first co-restrict from Xl

to a tubular neighborhood of it. Let Bl be a small enough ball around l, then by Propo-
sition 3.23, we have the co-restriction functor

ρLδ,l,Bl
: Sh♦(Xl,ΛWδ

|l) → Sh♦(μ−1(Bl),ΛWδ
|μ−1(Bl))

being fully-faithful. By further composition with the co-restriction from Bl to Rk, we 
see ρLδ,l is fully-faithful. �

From this theorem, we can already deduce the main theorem in the introduction, 
which we restate here.

Theorem 6.2. The universal window skeleton Λ over the punctured base Bo = Rk
δ ×Rk

l \D
defines a local system of categories whose value over (δ, l) is Sh♦(Rn, Λδ,l), where we 
identified Rn = RN−k with the fiber over μ̃−1((δ, l)).

Proof. By the construction of Λ, Λδ,l is locally constant in δ. By Theorem 6.1, for generic 
δ (hence for all δ), Cδ,l is independent of l. Hence we have a local system of categories 
as claimed. More concretely, given an embedded smooth path in Bo, we may straighten 
it to a piecewise linear path with each segment constant in δ or l, then the parallel 
transport along the constant l segment is the identity, and the parallel transport along 
the constant δ path is by co-restriction then restriction. �
6.2. Window objects as generators

Let Λfull ⊂ T ∗RN be the full skeleton

Λfull = ZN + SS(CRN
>0

),

which can also be described as the equivariant FLTZ skeleton for CN . For any δ ∈ Rk, 
let ∇δ, Wδ, ̃Wδ be given as before, then we define the equivariant ‘window subcategory’

Aδ = 〈{Lw | w ∈ W̃δ}〉 ⊂ Sh♦(RN ,Λfull)

as the full triangulated subcategory generated by the window objects. This is a direct 
translation of the B-model window subcategory. We show that the window subcategory 
is precisely the constructible sheaves on RN admissible for the window skeleton.

Theorem 6.3. The canonical fully-faithful embedding A → Sh♦(RN , Λδ) is an equivalence 
of categories.
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Proof. We only need to prove that {Lw | w ∈ W̃δ} generate the category Sh♦(RN , Λδ). 
Let Qw = w + (0, 1)N be the open cell, and Fw be the probe sheaf for Qw for skeleton 
Λδ. It suffices to prove that Fw can be generated using window objects {Lw | w ∈ W̃δ}.

We will prove this by induction. First, for any r ∈ R, r ≥ 1 we defined the rescaled 
zonotope and windows

∇δ,r = δ + r∇, Wδ,r = Zk ∩ ∇δ,r, W̃δ,r = μ−1
Z (Wδ,r).

As r increases, only for r in a sequence of 1 = r0 < r1 < r2 · · · does Wδ,r change. 
Assume for r ≤ rk, Fw with w ∈ W̃δ,r is generate by the window objects. Then the case 
for k = 0, r ≤ r0 = 1 is clear, since Fw = Lw for w ∈ W̃δ,1. We now prove the hypothesis 
for r ≤ rk+1. Suppose w ∈ W̃δ,rk+1\W̃δ,rk , then v = μ(w) is on the boundary of ∇δ,r. 
Let Fσ be the minimal face of ∇ such that δ + rFσ contains v, and CFσ,∇, Iσ be defined 
as in Eqs. (6.1) and (6.2). Then, τIc

σ
is a leak for Q∅ in the local skeleton ΛWδ,v, since 

there is no points in Wδ that is contained in v− τIc
σ
. Thus, we have the acyclic complex

Fw →
⊕

I⊂Iσ,|I|=1

Fw−eI →
⊕

I⊂Iσ,|I|=2

Fw−eI → · · ·

Since for any I ⊂ Iσ, |I| > 0, we have

μ(w − eI) ∈ (v +
∑
i∈Iσ

[0,−βi])\{v} ∩ Zk ⊂ Int(∇δ,rk+1) ∩ Zk ⊂ Wδ,rk

hence Fw can be generated by Fw′ with w′ ∈ W̃δ,rk hence by induction hypothesis can 
be generated by the window objects Lw for w ∈ W̃δ,1. �
Remark 6.4. The induction is in a similar fashion as [13] and [29], using rescaled zonotope 
and induction on the radius.

6.3. Microlocal stalk and jumping loci

Next, we consider the case where δ is fixed and non-generic. Recall that in general

SS(μ∗Sh
♦
Λδ

) = SSHom(μ∗Sh
♦
Λδ

) ∪ SSL
Hom(μ∗Sh

♦
Λδ

).

By Theorem 5.1, we have SSL
Hom(μ∗Sh

♦
Λδ

) is just the zero section. By Theorem 4.6, we 
have SSHom(μ∗Sh

♦
Λδ

) = μ∗SSHom(Sh♦
Λδ

) is given explicitly. Here we describe the jump 
associated to 0 �= (x, ξ) ∈ SS(μ∗Sh

♦
Λδ

).

Proposition 6.5. Let (x, ξ) ∈ T ∗Rk be a non-zero covector in the smooth part of the 
singular support SS(μ∗Sh

♦
Λδ

).
(1) Then there is a unique face Fσ of the zonotope ∇ with exterior conormal the cone 

σ, such that x ∈ Aff(δ + Fσ) and ξ ∈ Int(−σ).
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(2) Let Bx and Bx,ξ,− be given by Bx = {x′ | |x′ − x| < ε}, Bx,ξ,− = {x′ ∈ Bx |
〈x′ − x, ξ〉 < 0}, where ε is small enough. Denote the sheaf of categories μ∗Sh

♦(Λδ) as 
Cδ, then we have fully-faithful co-restriction

ρLx,ξ : Cδ(Bx,ξ,−) → Cδ(Bx).

If we identity Cδ(Bx,ξ,−) as the full subcategory in Cδ(Bx), then we have a semi-orthogonal 
decomposition

Cδ(Bx) = 〈Cδ(Bx,ξ,−)⊥, Cδ(Bx,ξ,−)〉,

where Cδ(Bx,ξ,−)⊥ is the full subcategory of Cδ(Bx) consisting of sheaves that vanish 
under restriction to Bx,ξ,−.

Proof. (1) The geometric statement follows from the vanishing (away from zero-section) 
of SSL

Hom(μ∗Sh
♦
Λδ

) (Theorem 5.1), and the explicit description of SSHom(μ∗Sh
♦
Λδ

) (The-
orem 4.6 (3)).

(2) If F ∈ Cδ(Bx,ξ,−)⊥, then for any G ∈ Cδ(Bx), we have

0 = Hom(ρLx,ξG,F ) = Hom(G, ρx,ξF )

Hence ρx,ξF has to vanish. �
In fact, more is true. These microlocal stalks or vanishing cycles Cδ(Bx,ξ,−)⊥ form a 

constructible sheaf of categories as x varies on Aff(δ+Fσ). In the following, we fix a face 
Fσ, such that (δ + Fσ) ∩ Zk �= ∅. Our goal is to describe the sheaf of categories Cδ,σ on 
the affine space Vδ,σ, such that for any x ∈ Vδ,σ and ξ ∈ Int(−σ), and Bx, Bx,ξ,− as in 
Proposition 6.5, we have Cδ,σ(Bx) = Cδ(Bx,ξ,−)⊥.

Define the face zonotope, and its affine hull

∇δ,σ = δ + Fσ, Vδ,σ = Aff(∇δ,σ).

Define a partition of [N ] = Iσ,+ � Iσ,0 � Iσ,−, by fixing any element ξ in the interior of 
σ, and let

Iσ,s := {i ∈ [N ] | sign(〈βi, ξ〉) = s} for s = +, 0,−.

Define an affine lattice and a lattice that acts on it

V Z
δ,σ = Vδ,σ ∩ Zk, UZ

σ = Z · {βi : i ∈ Iσ,0}, UR
σ = R · {βi : i ∈ Iσ,0}.

Upstairs in RN and ZN , we define

Ṽδ,σ = μ−1(Vδ,σ), Ṽ Z
δ,σ = μ−1(V Z

δ,σ)
Z
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and ZIσ,0 acts on Ṽ Z
δ,σ by translation.

Let RIσ,0 act on Ṽδ,σ by translation, and for any ṽ ∈ Ṽ Z
δ,σ, consider the orbit Oṽ =

ṽ + RIσ,0 . Let O = Oṽ, and define the following partial conormal

ΛO := O × (R∨
<0)Iσ,+�Iσ,− ⊂ RN × (R∨)N = T ∗RN .

Lemma 6.6. For any RIσ,0 orbit O in Ṽδ,σ that passes through a lattice point in Ṽ Z
δ,σ, the 

Lagrangian ΛO ⊂ Λδ.

Proof. Suffice to check at every lattice point w̃ ∈ O ∩ ZN , that the specialization Λδ,w̃

contains the ΛIσ,0 . This is equivalent to

w̃ − eIσ,0 − τIσ,0 ∩ W̃δ �= ∅

⇔ w − Uσ ∩Wδ �= ∅

⇔ Vδ,σ ∩Wδ �= ∅

which holds since ∇δ,σ ∩ Zk �= ∅. �
We are interested in the restriction of Λδ to a small Weinstein neighborhood ΩO of ΛO, 

or equivalently the specialization Λδ|ΛO
⊂ T ∗(ΛO). Then only Lagrangian component 

of the form A × B in Λδ will contribute, where A ⊂ O ⊂ RN and (R∨)N ⊃ B ⊃
(R∨

<0)Iσ,+�Iσ,− .
The following is a description of the specialization Λδ|ΛO

.

Proposition 6.7. Let OZ = O∩ZN , consider the restriction μO,Z of μZ to OZ with image 
OZ. Then OZ is a UZ

σ orbit in V Z
δ,σ. Let Λ∇δ,σ,O ⊂ T ∗O be the window skeleton associated 

to the map μO,Z : OZ → OZ and the shifted zonotope ∇δ,σ. Then we have

Λδ|ΛO
� Λ∇δ,σ,O × (R∨

<0)Iσ,+�Iσ,− .

In other word, Λδ|ΛO
is Λ∇δ,σ,O up to ‘stabilization’ by multiplying the zero-section of 

T ∗(R∨
<0)Iσ,+�Iσ,− .

Proof. Suffice to verify this locally at each lattice point ṽ ∈ O. Consider the specialization 
to point ṽ, Λδ,ṽ, then ΛO specializes to ΛIσ,0 . We note that only ΛI with I ⊂ Iσ,0 will 
contribute to the specialization to ΛIσ,0 . The condition that I ⊂ Iσ,0 and ΛI ⊂ Λδ,ṽ is 
equivalent to

(μ(ṽ) − βI − μ(τI)) ∩ W̃δ �= ∅ ⇔ (μ(ṽ) − βI − μ(τI)) ∩ (∇δ,σ ∩ Zk) �= ∅

which is equivalent to ΛI (in T ∗O) is in the specialization Λ∇δ,σ,O,ṽ. �
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Lemma 6.8. Let ṽ ∈ Ṽ Z
δ,σ ⊂ ZN be a lattice point, and let Λδ,ṽ and Λ∇δ,σ,O,ṽ be special-

ization of Λδ and Λ∇δ,σ,O at ṽ. Let F be a constructible sheaf in Sh(RN , Λδ,ṽ), such that 
μ(Supp(F )) ⊂ CFσ,∇. Then there exists a constructible sheaf F0 in Sh(TṽO, Λ∇δ,σ,O,ṽ), 
such that

F = (ṽ+ + (R≤0)Iσ,+) � (ṽ− + R
Iσ,−
>0 ) � F0.

Conversely, for any F0 in Sh(TṽO, Λ∇δ,σ,O,ṽ), the above construction for F satisfies the 
support condition that μ(Supp(F )) ⊂ CFσ,∇.

Proof. We note that any sheaf in Sh♦(RN , ΛN ) such that μ(Supp(F )) ⊂ CFσ,∇ has to 
be of the form (R≤0)Iσ,+ �R

Iσ,−
>0 � F0 for some sheaf F0 on TṽO � RIσ,0 . Now suffice to 

show that SS(F0) ⊂ Λ∇δ,σ,O,ṽ. Let

I0 = {I ⊂ Iσ,0 | ΛI ⊂ Λ∇δ,σ,O,ṽ}, I = {I ⊂ [N ] | ΛI ⊂ Λδ,ṽ}.

First we note that for any I+ ⊂ Iσ,+ and I0 ∈ I0, we have I+ � I0 ∈ I. Indeed, 
∇δ + βI+�I0 + μ(τI+�I0) contains v = μ(ṽ). Conversely, if there is an I0 ⊂ Iσ0 , such that 
for any I+ ⊂ Iσ,+ we have I+�I0 ∈ I, then I0 ∈ I0. Indeed, taking I+ = ∅ will show. �

For any RIσ,0 orbit O in Ṽδ,σ that passes through a lattice point in Ṽ Z
δ,σ, we define a 

sheaf of categories on O,

Cδ,σ,O := Sh♦
Λ∇δ,σ,O

.

And we define the sheaf of vanishing cycles Cδ,σ along Vδ,σ ⊂ Rk as a sub-sheaf of Cδ, 
such that for any x ∈ Vδ,σ and small ball Bx around x, we have

Cδ,σ(Bx ∩ Vδ,σ)

= full subcategory of Cδ(Bx) consisting of

object F such that μ(Supp(F )) ⊂ Cδ,σ ∩Bx.

For each RIσ,0 orbit O that passes a lattice point, we define the microlocal stalk 
functor between the two sheaves on Vδ,σ:

ψO : Cδ,σ → Cδ,σ,O.

Here we abuse notation and identify the sheaf μ∗Cδ,σ,O on Vδ,σ as the sheaf on Cδ,σ,O
on O since Vδ,σ � O by μ. For any x ∈ Vδ,σ and small ball Bx around x, and for any 
F ∈ Cδ,σ(Bx ∩ Vδ,σ) = Sh♦(μ−1(Bx), Λδ), we define

ψO(F ) = p∗ψΛO
(F ) ∈ Sh♦(O|Bx

,Λ∇δ,σ,O)
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where the specialization ψΛO
(F ) values in Sh♦(ΛO|Bx

, Λδ|ΛO
) and p : ΛO → O is the 

projection map, quotient out the stabilization factor. Equivalently, up to a degree shift, 
ψO(F ) is the restriction of F to O + ε(eIσ,− − eIσ,+).

We also define the fully-faithful embedding

ιO : μ∗Cδ,σ,O → Cδ,σ

where in the setup as above, we send FO ∈ Sh♦(O|Bx
, Λ∇δ,σ,O) to the germ of (x̃+ +

R
Iσ,+
≤0 )[−|Iσ,+|] � (x̃− + R

Iσ,−
>0 ) � FO near O, where x̃ is the unique μ-preimage of x to 

O, and x̃± are the components of x̃ in the decomposition RN � RIσ,+ ×RIσ,− ×RIσ,0 .

Theorem 6.9. Taking microlocal stalk along all orbits O is an equivalence of categories

ψδ,σ =
⊕
O

ψO : Cδ,σ →
⊕
O

Cδ,σ,O.

In other words, for any convex open U ∈ Vδ,σ, F ∈ Cδ,σ(U), we have

F �
∑
O

ιO(ψO(F ))

where the summation is over each RIσ,0 orbit O that passes a lattice point in Ṽ Z
δ,σ.

Proof. Indeed, for any convex open U ⊂ Vδ,σ, if F ∈ Cδ,σ(U), then F is a germ of 
sheaves on RN whose support is contained in the disjoint union of neighborhood of 
lattice RIσ,0 orbit O. In particular, since μ(Supp(F )) ⊂ Cδ,σ, along any O orbit and any 
x̃ ∈ O ∩ μ−1(U), F has a common factor in the RIσ,+ × RIσ,− direction, namely the 
constant sheaf supported on RIσ,+

≤0 × R
Iσ,−
>0 translated by (x̃+, ̃x−), which is a constant 

shift depending only on O. The specialization ψO(F ) amounts to factoring out this 
common factor. Hence the total ψδ,σ is an equivalence. �

Finally, we take global sections and describe some global generators using window 
objects.

We need to introduce certain global vanishing cycles associated to the data (δ, σ, ̃v), 
where δ ∈ Rk, σ is a cone in the exterior conormal fan of the zonotope ∇ corresponding 
to the face Fσ, and ṽ ∈ μ−1

Z ((δ + Fσ) ∩ Zk). Then we define

Lσ,ṽ = Lṽ
��

→
⊕

I⊂Iσ,|I|=1

Lṽ−eI →
⊕

I⊂Iσ,|I|=2

Lṽ−eI → · · · . (6.3)

Lemma 6.10. Lσ,ṽ is an object in Sh♦(RN , Λδ). Up to a degree shift, it is quasi-
isomorphic the product of constant sheaf

Lσ,ṽ[|Iσ,+|] � (ṽ+ + (−1, 0]Iσ,+) � (ṽ− + R
Iσ,−
>0 ) � (ṽ0 + R

Iσ,0
>0 ).
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�

And its support and μ-image are

Supp(Lσ,ṽ) = ṽ + [−1, 0]Iσ + τIc
σ
, μ(Supp(Lσ,ṽ)) = δ + Fσ + CFσ,∇.

Proof. For the first statement, suffice to note that for any I ⊂ Iσ, μ(ṽ − eI) = v − βI is 
contained in δ+∇, hence Lṽ−eI is in Sh♦(RN , Λδ). For the support, we note that in the 
RIσ factor, we have a cube in [−1, 0]Iσ , and for the remaining factor, it is RIc

σ

≥0. Then its 
image under μ is

μ(Supp(Lσ,ṽ)) = v +
∑
i∈Iσ

[0,−βi] +
∑
i/∈Iσ

R≥0βi = v + CFσ,∇ = δ + Fσ + CFσ,∇ = Cδ,σ.

Lemma 6.11. For any convex open set U ⊂ Vδ,σ, the restriction functor Cδ,σ(Vδ,σ) →
Cδ,σ(U) is essentially surjective.

Proof. We define the extension functor using co-restriction along the O direction.

Cδ,σ(U) ↪→ Cδ,σ(Rk), F 	→
∑
O

ιO ◦ ρLUO
◦ ψO(F ),

where UO = μ−1(U) ∩O, and ρLUO
: Cδ,σ,O(UO) → Cδ,σ,O(O) is the co-restriction. �

Proposition 6.12. The collection of global vanishing cycles {Lσ,ṽ | ṽ ∈ μ−1
Z ((δ+Fσ) ∩Zk)}

generates Cδ,σ(Vδ,σ). Furthermore, for any convex open U ⊂ Vδ,σ, the restriction of these 
generators to U generates Cδ,σ(U).

Proof. The first statement follows from the decomposition Theorem 6.9, and the global 
generation Theorem 6.3 for window skeletons Λ∇δ,σ,O. The second statement follows 
from the essential surjectivity of restriction in Lemma 6.11. �

Since the singular support in SS(Cδ) has ‘hair’ pointing inward towards the zonotope, 
namely for any non-zero (x, ξ) ∈ SS(Cδ), we have 〈x − δ, ξ〉 < 0, the restriction to the 
stalk at a point x ∈ Int(∇δ) in the interior of the zonotope is an equivalence

ρx : Cδ(Rk) → Cδ(Bx),

where Bx is a small enough ball at x. Furthermore, since there exists fully-faithful co-
restriction from the category of constructible sheaves on the fiber to the germ of the 
fiber (Proposition 3.23), and restriction is also fully-faithful since x is in the interior of 
∇δ, we have Cδ(Bx) � Sh♦(μ−1(x), Λδ|x).

If γ : [0, 1] → Rk is a smooth path in Rk, such that whenever γ crosses a jumping 
locus in Rk for Λδ, γ̇ points in the direction of the hair, 〈γ̇, ξ〉 > 0, and the endpoints of 
γ are not in the jumping loci, then we have an fully-faithful embedding
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ρL : Cδ(γ(0)) → Cδ(γ(1))

which is independent of the choice of γ, since ρL is the composition of co-restriction to 
Rk and restriction to γ(1). And there is a semi-orthogonal decomposition that depends 
on γ

Cδ(γ(1)) = 〈Tk, Tk−1, · · · , T1, Cδ(γ(0))〉

where Ti = Cδ,σ(γ(tk))(γ(tk)), and 0 < t1 < t2 < · · · < tk < 1 are times γ crosses the 
jumping loci.
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