
Selecta Mathematica (2021) 27:32
https://doi.org/10.1007/s00029-021-00652-3

SelectaMathematica
New Series

Zero loci of Bernstein-Sato ideals-II

Nero Budur1 · Robin van der Veer1 · Lei Wu2 · Peng Zhou3

Accepted: 18 April 2021 / Published online: 17 May 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
We have recently proved a precise relation between Bernstein-Sato ideals of collec-
tions of polynomials and monodromy of generalized nearby cycles. In this article we
extend this result to other ideals of Bernstein-Sato type.
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1 Introduction

1.1 Analytic invariants

Let

F = ( f1, . . . , fr ) : X → C
r

be a morphism of smooth complex affine irreducible algebraic varieties, or the germ
at x ∈ X of a holomorphic map on a complex manifold. Let

a = (a1, . . . , ar ) ∈ N
r .

One defines an ideal of Bernstein-Sato type

B a
F = {b ∈ C[s1, . . . , sr ] | b

r∏

i=1

f sii = P ·
r∏

i=1

f si+ai
i for some P ∈ DX [s1, . . . , sr ]},

where DX is the ring of linear differential operators on X and si are independent
variables. The zero locus of this ideal is denoted

Z(B a
F ) ⊂ C

r .

In this article we address the structure and the precise topological information con-
tained by Z(B a

F ). Our first main result is:

Theorem 1.1.1 Let F = ( f1, . . . , fr ) : X → C
r be a morphism of smooth complex

affine irreducible algebraic varieties, or the germ at x ∈ X of a holomorphic map on
a complex manifold. Let a ∈ N

r such that fa = ∏r
i=1 f aii is not invertible. Then:

(i) Every irreducible component of Z(B a
F ) of codimension 1 is a hyperplane of type

l1s1 + . . .+ lr sr + b = 0 with li ∈ Q≥0, b ∈ Q>0, and for each such hyperplane
there exists i with ai �= 0 such that li > 0.

(ii) Every irreducible component of Z(B a
F ) of codimension > 1 can be translated

by an element of Z
r inside a component of codimension 1.

The first claim without the strict positivity of li is due to Sabbah [15] and Gyoja
[11]. The second claim was proven by Maisonobe [14] for the usual Bernstein-Sato
ideal

BF = B1
F

with 1 = (1, . . . , 1).
The proof of Theorem 1.1.1 is obtained by extending arguments from [14] and [7].
The connection with topology is via the exponential map

Exp : C
r → (C∗)r , (α1, . . . , αr ) �→ (exp(2π iα1), . . . , exp(2π iαr )).
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For i ∈ {1, . . . , r} we define

BF,i = B ei
F

with ei = (0, . . . , 0, 1, 0, . . . , 0) the i-th standard basis vector. If fi is invertible,
BF,i = (1) and Z(BF,i ) = ∅. We recall here that

Exp(Z(B a
F )) =

⋃

i

Exp(Z(BF,i )) (1.1)

where the union is taken over all 1 ≤ i ≤ r with ai �= 0 and fi not invertible, by [5,
Lemma 4.17].

1.2 Topological invariants

Let ψFCX be Sabbah’s specialization complex, see [7, §2] for definition. This is
a generalization of Deligne’s nearby cycles complex, the monodromy action being
replaced by r simultaneous monodromy actions, one for each function fi . Let

S(F) ⊂ (C∗)r

be the support of this monodromy action on ψFCX . When r = 1, this is the set of
eigenvalues of the monodromy on the nearby cycles complex. The support S(F) has a
few other topological interpretations, one being in terms of cohomology support loci
of rank one local systems, see [7, §2].

If fi is not invertible, we let

Si (F) = Supp((ψFCX )| f −1
i (0)) ⊂ (C∗)r

be the support of the monodromy action on the restriction of ψFCX to the zero locus
of fi .

More generally, if fa is not invertible, we let

Sa(F) ⊂ (C∗)r

be the support of the monodromy action on the restriction of ψFCX to the zero locus
of fa, so that

Sa(F) =
⋃

i

Si (F) (1.2)

where the union is taken over all 1 ≤ i ≤ r with ai �= 0 and fi not invertible. With
the same assumptions as in Theorem 1.1.1, we have:

Theorem 1.2.1 Sa(F) underlies a scheme defined over Q and is a finite union of
torsion-translated complex affine algebraic subtori of codimension 1 in (C∗)r .
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The case a = 1 is due to [6,8]. We give two proofs of this result, one of them by
adapting the argument from [6]. A second proof follows directly from Theorem 1.1.1
together with the next theorem.

1.3 The connection

Theorem 1.3.1 With the same assumptions as in Theorem 1.1.1 we have

Exp(Z(B a
F )) = Sa(F).

In particular, Exp(Z(BF,i )) = Si (F) if fi is not invertible.
This refines the corresponding statement for the ideal BF , in which case the inclu-

sion of the topological side in the algebraic side was shown in [5], and the reverse
inclusion was finally shown in [7]. The proof is by extension of arguments from
[5,7,16].

1.4 Outline

In Sect. 2 we give the first proof of Theorem 1.2.1 and give aD-module interpretation
of the restricted support loci. This relies on an explicit case of the Riemann-Hilbert
correspondence, Proposition 2.4.1,whose proofwepostpone to the last section, Sect. 5.
In Sect. 3 we show how Theorems 1.1.1 and 1.3.1 follow from a technical result on
D-modules, Theorem 3.2.1. Section 4 is the core of the article and is devoted to the
proof of Theorem 3.2.1.

2 The restricted support loci

In [7, §2] we gave various interpretations of the support locus S(F). In this section
we refine these descriptions to address Si (F) and we prove Theorem 1.2.1.

2.1 Notation

Throughout the article we use the notation and definitions from [7, §2 ]. We let F =
( f1, . . . , fr ) : X → C

r be as in Theorem 1.1.1. We let n = dim X , f = ∏r
i=1 fi ,

D = f −1(0), Di = f −1
i (0), U = X \ D, i : D → X is the closed embedding, and

j : U → X is the open embedding.
We let s = (s1, . . . , sr ), fs = ∏r

i=1 f sii , and in general tuples of numbers will be
in bold, e.g. 1 = (1, . . . , 1), α = (α1, . . . , αr ), etc.

We denote by Db
c (CX ) the bounded derived category of constructible sheaves on

X , and by Perv(X) the category of perverse sheaves on X .
If λ ∈ (C∗)r , we let Lλ be the rank one C-local system on U obtained as the

pullback via F : U → (C∗)r of the rank one local system on (C∗)r with monodromy
λi around the i-th missing coordinate hyperplane.

We fix for the rest of the section i in {1, . . . , r} such that fi is not invertible.
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2.2 Non-simple extension loci

We give a refinement in terms of Si (F) of the following description of S(F) as a locus
of rank one local systems on U with non-simple higher direct image to X from [6,
§1.4]:

Proposition 2.2.1

S(F) = {λ ∈ (C∗)r | Cone( j!Lλ[n] → R j∗Lλ[n]) �= 0 in Db
c (CX )}.

From the description of Sabbah’s complex ψFCX from [6], one has the following
equivalent definition for Si (F):

Lemma 2.2.2

Si (F) = {λ ∈ (C∗)r | Cone( j!Lλ[n] → R j∗Lλ[n])|Di �= 0 in Db
c (CDi )}.

A more useful description for us will be the following. Let g and h be the open
embeddings

U
g−→ X \ Di

h−→ X (2.1)

so that j = h ◦ g. The result we are after in this subsection is the following:

Proposition 2.2.3 We have

Si (F) =
{
λ ∈ (C∗)r | R j∗Lλ[n]

h!∗Rg∗Lλ[n] �= 0 in Perv(X)

}
,

or equivalently,

Si (F) =
{
λ ∈ (C∗)r | Cone(h!Rg∗Lλ[n] → R j∗Lλ[n]) �= 0 in Db

c (CX )
}

.

Proof Set V = X \ Di . One has in Db
c (CX ) two distinguished triangles, namely the

adjunction triangles corresponding to U and V ,

j!Lλ[n] → R j∗Lλ[n] → i∗i−1R j∗Lλ[n] [1]−→ (2.2)

and

h!Rg∗Lλ[n] → Rh∗Rg∗Lλ[n] → ι∗ι−1Rh∗Rg∗Lλ[n] [1]−→, (2.3)

where i : D → X and ι : Di → X are the closed embeddings. In both cases, the first
two terms are perverse, and the images as perverse sheaves of the left-most maps in
the two complexes are the intermediate extensions.
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By taking the long exact sequence of perverse cohomology of (2.3), we have an
exact sequence in Perv(X)

0 → K → h!Rg∗Lλ[n] → R j∗Lλ[n] → C → 0

with

K = pH−1(ι∗ι−1R j∗Lλ[n]) and C = pH0(ι∗ι−1R j∗Lλ[n]),

where pH∗ are the perverse cohomology sheaves. On the other hand, K and C have
an alternative description, namely they fit into an exact sequence of perverse sheaves

0 → K → pψ fi Rg∗Lλ[n] T−id−−−→ pψ fi Rg∗Lλ[n] → C → 0,

where pψ fi = ψ fi [−1] is the perverse nearby cycles functor of fi and T is the
monodromy action around Di , see [9, 5.8]. In particular, K and C have same length
as perverse sheaves, and so they vanish or not simultaneously. Thus

K = 0 ⇐⇒ C = 0 ⇐⇒ ι−1R j∗Lλ[n] = 0

in the derived category. This is further equivalent to

Cone( j!Lλ[n] → R j∗Lλ[n])|Di = 0.

by (2.2), since

ι−1R j∗Lλ[n] = ι−1(i∗i−1R j∗Lλ[n]).

Hence the proposition follows from the previous lemma. ��

2.3 Proof of Theorem 1.2.1

By (1.2), it is enough to consider Si (F).
The description of Si (F) from Proposition 2.2.3 allows one to apply the general

results of [8] to conclude that Si (F) is the set of complex points of a Q-scheme, and
it is a finite union of torsion-translated complex affine algebraic subtori of (C∗)r .

It remains to prove that each irreducible component of Si (F) has codimension
one. It was proved in [6, Theorem 1.3] that S(F) satisfies this property by showing
that it is the union over points x in D of the hyperplanes appearing as zero or polar
loci of the monodromy zeta function Zmon

F,x (t1, . . . , tr ) of F at x . By definition S(F)

contains this locus. For the other inclusion, it is enough to take a torsion point in the
support of (ψFCX )x and show that it lies on a hyperplane in the zero or polar locus
of Zmon

F,y (t1, . . . , tr ) for some y in D. The proof is by reduction to the case r = 1. The
reduction step uses the comparison due to Sabbah

Zmon
F,x (tm1, . . . , tmr ) = Zg,x (t)
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for integers mi > 0 carefully chosen in terms of the torsion point, and g =
f m1
1 . . . f mr

r . The r = 1 case is a result of Denef stating that an eigenvalue of the
monodromy on (ψgCX )x always appears as zero or pole of Zmon

g,y (t) for some y ∈ D
close to x , this result depending only on the perversity of ψgCX [n − 1].

The proof from loc. cit. thus extends word-by-word to prove our claim if one
replaces ψFCX by (ψFCX )|Di , ψgCX by (ψgCX )|Di , since in this case Denef’s
theorem for the perverse sheaf (ψgCX )|Di [n−1] gives that one can find such y in Di .

�

Remark 2.3.1 A completely different proof of Theorem 1.2.1 will follow directly from
Theorems 1.1.1 and 1.3.1.

2.4 D -module theoretic interpretation

We have the following complement to [7, Theorem 2.5.1] whose proof we will post-
pone to the last section:

Proposition 2.4.1 Let F = ( f1, . . . , fr ) : X → C
r be a morphism from a smooth

complex algebraic variety of dimension n. Let α ∈ C
r and λ = exp(−2π iα). Let Lλ

be the rank one local system on U defined as in 2.1, and let Mλ = Lλ ⊗C OU the
corresponding flat line bundle, so that

DRU (Mλ) = Lλ[n]

as perverse sheaves on U. Let i be such that fi is not invertible. There exists kα ∈ Z

depending on α such that for all integers k, l with kα ≤ k � l and k = (k, . . . , k) ∈
Z
r , there is a natural quasi-isomorphism in Db

rh(DX )

DX [s]fs−k+l·ei ⊗C[s] Cα = h!g∗Mλ,

where Cα is the residue field of α in C
r , and g and h are as in (2.1).

This gives a D-module theoretic interpretation of Si (F).

Proposition 2.4.2 With F and kα as in Proposition 2.4.1,

Si (F) = Exp

{
α ∈ C

r | DX [s]fs−k

DX [s]fs−k+lei
⊗C[s] Cα �= 0 for some k ≥ kα and for all l � k

}

Proof The proof is the same as the proof of [7, Proposition 2.5.2], after replacing
DX [s]fs+k with DX [s]fs−k+lei , for which we use now the more refined Proposi-
tion 2.2.3 and Proposition 2.4.1. ��

The last proposition holds in the local analytic case as well, cf. [7, Remark 2.5.3].
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3 Relative holonomicmodules

In this section we recall some results on relative holonomic modules from [7, §3].
Then we prove the main results of the article, up to a technical result which will be
the focus of the next section.

3.1 Relative holonomic modules

Let X be a smooth complex affine irreducible algebraic variety of dimension n. By
DX we denote the ring of linear algebraic differential operators on X . For a regular
commutative C-algebra integral domain R, we write

AR = DX ⊗C R and A = AC[s] = DX [s].

The order filtration from DX extends R-linearly to filtration of AR , called the
relative filtration. For a left (or right) AR-module N , we can then talk about good
filtrations and of the induced relative characteristic variety Chrel(N ), the support of
gr N in T ∗X × Spec R.

For a finitely generated left AR module N , one defines the dual in the derived
category of left AR-modules by

D(N ) := RHomAR (N ,AR) ⊗OX ω−1
X [n],

where ωX is the dualizing module of X , and the twist by ω−1
X is needed only to pass

from right AR-modules to left ones. If N is a finitely generated right AR-module,
then

D(N ) := RHomAR (N ,AR) ⊗ ωX [n]

is a complex of right AR-modules.

Definition 3.1.1 A finitely generated AR-module N is relative holonomic over R if

Chrel(N ) =
⋃

w

�w × Sw

for some irreducible conic Lagrangian subvarieties �w in T ∗X , and some irreducible
closed subvarieties Sw of Spec R.

The notion of relative holonomicity seems to have considered firstly by Sabbah,
see for example [15, II, Théorème 3.2].

Note that if R is a field extension of C, then N being relative holonomic over
R is equivalent to N being holonomic in the usual sense over DXR = AR , where
XR = X ×C R, and therefore equivalent to Hi (D(N )) = 0 if i �= 0. If R is not a
field, then in general, relative holonomicity does not imply that the derived AR-dual
has only one cohomology sheaf. This leads one to the following definition cf. [7, 3.3]:
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Definition 3.1.2 A non-zero finitely generated AR-module N is j -Cohen-Macaulay
if ExtkAR

(N ,AR) = 0 if k �= j .

Recall the following terminology from [1, A. IV]. The main properties we need are
summarized in [7, §4. Appendix].

Definition 3.1.3 For a non-zero finitely generated AR-module N , the grade number
of N is

j(N ) = min{k | ExtkAR
(M,AR) �= 0}.

The module N is pure, or k-pure, if j(N ) = j(N ′) = k for every non-zero submodule
N ′.

For a finitely generated AR-module N , we write

BN = AnnR(N )

and denote by

Z(BN ) ⊂ Spec R

the reduced subvariety defined by the radical ideal of BN .
The Cohen-Macaulay property holds at least generically in the following situation,

cf. [7, Lemma 3.5.2]:

Proposition 3.1.4 Let N be a finitely generated DX [s]-module with grade number
j(N ) = n+1, and relative holonomic overC[s]. Then there exists an open affine subset
V = Spec R in C

r such that the intersection of V with each irreducible component
of codimension one of Z(BN ) is not empty, and the module N ⊗C[s] R is relative
holonomic over R and (n + 1)-Cohen-Macaulay over AR.

Then one can apply the followingNakayama-type lemma, cf. [7, Proposition 3.4.3]:

Proposition 3.1.5 Let Spec R be a nonempty open subset of C
r . Let N be an AR-

module that is relative holonomic over R and (n + l)-Cohen-Macaulay over AR for
some 0 ≤ l ≤ r . Then

α ∈ Z(BN ) if and only if N ⊗R Cα �= 0,

where Cα is the residue field of the closed point α ∈ Spec R.

3.2 Bernstein-Sato ideals

We let F = ( f1, . . . , fr ) : X → C
r be a morphism. Let a ∈ N

r be such that fa is not
invertible. We consider now the left DX [s]-module

M = DX [s]fs
DX [s]fs+a .
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We will prove in Sect. 4 the following:

Theorem 3.2.1

(i) TheDX [s]-module M has grade number j(M) = n+1, and is relative holonomic
over C[s].

(ii) Every irreducible component of Z(BM ) of codimension one is a hyperplane in
C
r of type l1s1 + . . . + lr sr + b = 0 with li ∈ Q≥0, b ∈ Q>0, and for each such

hyperplane there exists i with ai �= 0 such that li > 0.
(iii) Every irreducible component of Z(BM ) of codimension > 1 can be translated

by an element of Z
r into a component of codimension one.

For DX [s]fs/DX [s]fs+1, Theorem 3.2.1 (i) and (iii) are due to Maisonobe [14,
Résultat 2], and Part (ii) without the strict positivity of li is due to Sabbah and Gyoza
[11].

Granted this theorem, we can prove all the theorems from the introduction.

3.3 Analytic case

All the above results hold in the local analytic case as well, by appropriately adapting
the arguments, cf. [7, 3.6].

3.4 Proof of Theorem 1.1.1

Let M be as in Theorem 3.2.1. Then

BM = BF,i ,

as in the introduction, since M is a cyclic DX [s]-module generated by the class of fs.
Hence the claim is equivalent to Theorem 3.2.1 (ii) and (iii). �

3.5 Proof of Theorem 1.3.1 – reduction.

It is enough to prove the claim for BF,i with fi not invertible. Indeed, this follows
from (1.1) and (1.2).

3.6 Proof of Theorem 1.3.1 – one inclusion

We prove first that Si (F) is a subset of Exp(Z(BF,i )). The proof is a slight general-
ization of the proof that S(F) ⊂ Exp(Z(BF )) from [5].

Take λ in (C∗)r but not in Exp(Z(BF,i )). Fix α ∈ Exp−1(λ). Then α + k does not
lie in Z(BF,i ) for any k ∈ Z

r . So, fixing k ∈ Z
r , there exists b(s) ∈ C[s] such that

b(α + k) �= 0 but

b(α + k)fα+k = P · fα+k+ei
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for some P ∈ DX . Hence there is an equality

DX · fα+k = DX · fα+k+ei

for all k ∈ Z
r , as DX -submodules of OX [ f −1]fα where f = ∏r

j=1 fr . In particular,
for any fixed k ∈ Z

r ,

DX · f −l
i fα+k = DX · f li f

α+k

for all integers l � 0. Thus for integers k j � 0 for j �= i and l � 0, we have the
equality

DX · f αi−l
i

∏

j �=i

f
α j−k j
j = DX · f αi+l

i

∏

j �=i

f
α j−k j
j .

Taking the analytic de Rham complex on both sides, we obtain using Proposition 2.4.1
an isomorphism of perverse sheaves on X ,

R j∗Lλ−1 [n] = h!∗Rg∗Lλ−1[n] (3.1)

where g and h are as in 2.1, and Lλ−1 is the local system onU defined as in 2.1. Thus
λ−1 is not inSi (F) by Proposition 2.2.3. Then alsoλ is not inSi (F), by Theorem1.2.1.

�

3.7 Proof of Theorem 1.3.1 – the other inclusion

Conversely, we show now that Exp(Z(BF,i )) is a subset of Si (F).
By Theorem 1.1.1 it is enough to show that for a generic point α of a hyperplane

L · s + b = 0 contained in Z(BF,i ), the image Exp(α) is in Si (F).
Fix an integral k > 0 divisible by L ·ei , whichwe know to be> 0 by Theorem 1.1.1,

and let k = (k, . . . , k) ∈ Z
r . Define l0 = (L ·k)/(L ·ei ), so that l0 is a positive integer.

Then

L · (s + k) + b = L · (s + l0 · ei ) + b

and hence

α − k ∈ (Z(BF,i ) − l0 · ei ).

By [5, Proposition 4.7], for any l ∈ Z>0 we have

Z(B l·ei
F ) =

l−1⋃

l ′=0

(Z(BF,i ) − l ′ · ei ).
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Hence

α − k ∈ Z(B l·ei
F )

for all l > l0. Thus α − k is a generic point on a hyperplane in Z(B l·ei
F ) for all

l � k � ‖α‖ with k divisible by L · ei .
Consider the DX [s]-module

M = DX [s]fs−k

DX [s]fs−k+lei
.

Since M is a cyclic DX [s]-module, BM is up to a shift k in s equal to B l·ei
F . Thus, α

is a generic point on a hyperplane in Z(BM ).
Now we can apply Theorem 3.2.1 (i) to M , since shifting the variables s by k is

harmless. This gives that M satisfies the conditions of Proposition 3.1.4, and thus by
Proposition 3.1.5,

M ⊗C[s] Cα �� 0,

since α is generic on a codimension-one irreducible component of Z(BM ). Then, by
Proposition 2.4.2 we have that Exp(α) is in Si (F). �

4 RefiningMaisonobe’s theorem

This section is devoted to the proof of Theorem 3.2.1 by extending the arguments
fromMaisonobe [14, Résultat 2]. We keep the same notation as in Theorem 3.2.1. We
also provide extensions from reduced characteristic varieties to characteristic cycles
of some results of [14] of independent interest.

4.1 Filtrations

Besides the relative filtration on DX [s], which we denote now by F rel, we will also
use the filtration F	 which on DX agrees with the usual filtration by the order of the
operators, and such that the order of all si is 1. That is,

F rel
p (DX [s]) = (FpDX )[s] and F	

p(DX [s]) =
∑

q+|i|=p

FqDX · si.

By

gr, grrel, gr	, Ch,Chrel,Ch	, CC,CCrel,CC	,

we will denote the operations of taking the associated graded objects, characteristic
varieties, and characteristic cycles (that is, the sumof the irreducible components of the



Zero loci of Bernstein-Sato... Page 13 of 30 32

characteristic varieties together with their multiplicities) with respect to the filtrations

F•DX , F rel• (DX [s]), F	• (DX [s]),

respectively.
Note that for a finitely generated DX [s]-module N , Ch	(N ) is conic in T ∗X × C

r ,
that is, homogeneous along the fibers over the projection to X .

The following is straight-forward:

Lemma 4.1.1 Let p2 : T ∗X × C
r → C

r be the second projection. For any finitely
generated DX [s]-module N,

p2(Ch
	(N )) = suppC[s](gr	N ).

4.2 Specializations of cycles

We address a generalization of the specializations from [10, §1.4-1.7]. We consider
a flat morphism p : X → S between two smooth irreducible varieties over C, and
let 0 ∈ S be a point locally given by a regular sequence {s1 = . . . = sr = 0}. Let
X0 = p−1(0) and let i : X0 → X be the closed embedding. We setX o = X \X0.

Let N be a coherent OX -module N . Define

lim
s→0

N = [Li∗N ] ∈ K (X0)

in the Grothendieck group of coherent OX0 -modules.
We let supp(N ) denote the cycle given by the sum of the irreducible components

of the support ofN withmultiplicities.We let suppk(N ) be the purely k-dimensional
part. One can extend this association to a surjective group homomorphism

supp : Kk(X ) → Zk(X )

where Kk(X ) is the subgroup Kk(X ) of K (X ) generated by modules with support
of dimension ≤ k, and Zk(X ) is the group of pure k-dimensional cycles on X .

For a reduced subvariety Z of X intersecting X0 properly, we define

lim
s→0

Z , (4.1)

its specialization atX0, to be the algebraic cycle onX0 givenby the scheme-theoretical
intersection of Z and X0.

Iteratively applying [10, Proposition 1.5.3] one obtains:

Lemma 4.2.1 Let k ≥ r . Suppose that each irreducible component of supp(N ) is
purely of dimension k and intersects X0 properly. Then, in Zk−r (X0),

lim
s→0

supp(N ) = supp lim
s→0

N .
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4.3 Characteristic cycles

For a conic irreducibleLagrangian subvariety� ⊂ T ∗U , define an (n+r)-dimensional
subvariety of T ∗U × C

r by

�	 := {(x, ξ +
r∑

i=1

αi d log fi (x),α)|(x, ξ) ∈ �,α = (α1, . . . , αr ) ∈ C
r }.

This operation can be naturally generalized to conic Lagrangian cycles in T ∗U .

Theorem 4.3.1 For any a ∈ Z
r , there is an equality of cycles on T ∗X × C

r ,

CC	(DX [s]fs+a) = (T ∗
UU )	,

where T ∗
UU is the zero section of T ∗U and the closure is taken inside T ∗X × C

r .

Proof The equality for the underlying sets is proved in [12], [4]. When r = 1, the
equality for cycles is [10, Proposition 2.5]. The arguments in [4] indeed prove the
equality for cycles in general. ��

We write (T ∗
UU )	|s=0 for the algebraic cycle of the scheme theoretical intersection

of (T ∗
UU )	 and p−1

2 (0). The following generalizes [10, Theorem 3.2]; the statement
for characteristic varieties is due to [3].

Corollary 4.3.2 There is an equality of cycles on T ∗X,

CC(OX (∗D)) = lim
s→0

(T ∗
UU )	 = (T ∗

UU )	|s=0.

Proof The second equality is just the statement that every irreducible component of
(T ∗

UU )	 intersects p−1
2 (0) properly. By definition, the support of (T ∗

UU )	 is irreducible,
being the closure of the graph of a function defined onU×C

r . Hence it is of dimension
n+r . We will simply refer to [3] for the fact that it intersects the special fiber properly.

Now, for some fixed k > 0, we let k = (k, . . . , k) and we fix a filtered free
resolution

P• → DX [s]fs−k

with respect to the 	-filtration. By definition, Pk are finite direct sums of free DX [s]-
modules of rank one equipped with the filtration F	 possibly up to a shift, and the
differentials are strict with respect to the filtration; see [1, A.IV, Proposition 4.1] where
is it also shown that filtered free resolutions exists at least locally on X .

By strictness, we obtain a free resolution of the associated graded module

gr	P• → gr	(DX [s]fs−k).
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Let

i : T ∗X � T ∗X × {0} → T ∗X × C
r

be the closed embedding. Then the complex Li∗gr	(DX [s]fs−k) is quasi-isomorphic
to i∗gr	P•. Thus

lim
s→0

gr	(DX [s]fs−k) = [i∗gr	P•]

in Kn(T ∗X). ByTheorem4.3.1 and the abovediscussion, the support of gr	(DX [s]fs−k)

intersects p−1
2 (0) properly. Then we can apply Lemma 4.2.1 to obtain that

lim
s→0

(T ∗
UU )	 = supp [i∗gr	P•]

as n-cycles in T ∗X .
On the other hand, while i∗ and gr	 do not necessarily commute, they do so in

K (T ∗X), that is,

[i∗gr	P•] = [gr(i∗P•)].

To see this, note that the derived pullback of the filtered complex (P•, F	•P•) gives
us a filtered complex of DX -modules and hence a convergent spectral sequence

H•(i∗gr	P•) ⇒ gr(H•(i∗P•)),

see for example [13, §3].
Now, by [16, Corollary 5.4, Theorem 1.3], we know that for k � 0

Li∗(DX [s]fs−k) � OX (∗D).

Therefore, we have

[gr(i∗P•)] = [gr(OX (∗D))],

the support of which as a cycle is CC(OX (∗D). ��
Remark 4.3.3 Suppose N is a regular holonomic DX -module and consider its local-
ization N (∗D) along D, which is also regular holonomic. We can assume that N (∗D)

is generated by a coherent OX -submodule N0, that is, N (∗D) = DX · N0. Then
we have the coherent DX [s]-module DX [s]fs · N0. By [3] and [16, Corollary 5.4],
Theorem 4.3.1 and Corollary 4.3.2 hold in this more generalized setting, proven for
characteristic varieties in [3], that is,

CC	(DX [s]fs · N0) = �
	
U and CC(N (∗D)) = lim

s→0
�

	
U = (�

	
U )|s=0,
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where �U = CC(N |U ).

The next theorem slightly generalizes the second statement of [14, Résultat 6] to
characteristic cycles:

Theorem 4.3.4 For every a ∈ Z
r ,

CCrel(DX [s]fs+a) = CC(OX (∗D)) × C
r .

Proof We prove the case a = 0, the general case is similar. By [3] and [14], the
required equality is true for the underlying sets. We now prove that they are the same
as cycles.

We first observe that

CC(DX [s]fs ⊗L
C[s] Cα) = lim

s→α
CCrel(DX [s]fs) (4.2)

for every α ∈ C
r , where Cα = C[s]/(s − α) is the residue field at α. This follows by

the same argument as in the proof of Corollary 4.3.2, replacing 	-filtration with the
relative filtration and specializing to p−1

2 (α).
By [16, Corollary 5.4, Theorem 1.3], we have for integral k � 0 and k =

(k, . . . , k),

DX [s]fs ⊗L
C[s] C−k � OX (∗D)

and hence

CC(OX (∗D)) = lim
s→−k

CCrel(DX [s]fs).

Since we know the required equality is true for the underlying sets, the above limit
as s → −k is just taking the fiber at s = −k. Then the required equation for cycles
follows. ��

We will use the following due to Maisonobe [14, Proposition 14]:

Proposition 4.3.5 Let a ∈ Z
r . Every non-zero DX [s]-submodule of DX [s]fs+a has

grade number equal to n. Equivalently, DX [s]fs+a is n-pure over DX [s].
Next statement for characteristic varieties for the case a = 1 is due to [4]:

Corollary 4.3.6 Let a ∈ N
r such that fa is not invertible. Then

CC	

(
DX [s]fs
DX [s]fs+a

)
= (T ∗

UU )	|{fa=0}.

Proof Let b = fa. By {b = 0} in the statement wemean the effective divisor on T ∗X×
C
r , with possibly non-trivial multiplicities, defined by b. Note that (T ∗

UU )	|{b=0} is a
well-defined cycle, since b restricts to a non-trivial Cartier divisor on (T ∗

UU )	, and it
equals the limit construction from (4.1) applied to the flat map b : T ∗X × C

r → C.
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Write N = DX [s]fs and N1 = DX [s]fs+a for this proof. By Proposition 4.3.5, N is
n-pure over DX [s]. We apply the argument similar to the proof of [7, Lemma 3.4.2].
The outcome is that the gr	 of N1 → N is given by

gr	N
b−→ gr	N ,

which is injective (since gr	N is pure by [7, Proposition 4.4.1]). Considering the

induced filtration on N/N1, the injectivity of gr	N
b−→ gr	N gives an isomorphism

gr	(N/N1) � (gr	N )/b(gr	N ), (4.3)

see also [7, (3.3)].
Then we obtain equalities of cycles

(T ∗
UU )	|{b=0} = CC	(N )|{b=0} = supp((gr	N )|{b=0}) = supp(gr	(N/N1)),

where the first equality is by Theorem 4.3.1, the second equality is by Lemma 4.2.1
which in this case is the same as [10, Proposition 1.5.3], and the third equality is by
(4.3). ��
Proposition 4.3.7 Let a ∈ N

r such that fa is not invertible. Let

M = DX [s]fs
DX [s]fs+a .

Then j(M) = n + 1 and M is relative holonomic over C[s].
Proof ByTheorem4.3.4,DX [s]fs is relative holonomic overC[s]. Since every nonzero
subquotient is also relative holonomic by [7, Lemma 3.2.4], it follows that M is also
regular holonomic.

By [1, A.IV 4.15], the grade number of M overDX [s] is the grade number of gr	M
over gr	(DX [s]). Since the latter is the codimension of Ch	(M) in T ∗X ×C

r , we have
j(M) = n + 1 by Corollary 4.3.6. ��

4.4 Maximal pure tame extension

For every finitely generated DX [s]-submodule N of DX [s, 1/ f ]fs there exists some
k ∈ Z

r≥0 such that

N ⊆ DX [s]fs−k.

Thus byProposition 4.3.5, all N aren-pure.Consider the family of all finitely generated
DX [s]-submodules N ofDX [s, 1/ f ]fs such thatDX [s]fs ⊂ N and the grade number

j(N/DX [s]fs) ≥ n + 2.
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This family always has a unique maximal member L, called the maximal tame pure
extension of DX [s]fs, by [2, Proposition A.IV 2.10].

We extend slightly the properties of L proven in [14].

Lemma 4.4.1 Let a ∈ N
r such that fa is not invertible. Let

t : DX [s, 1/ f ]fs → DX [s, 1/ f ]fs.

be the action defined by substituting s by s + a. Then:

(i) tL ⊂ L,
(ii) L/tL is (n + 1)-pure over DX [s] and relative holonomic over C[s].
Proof (i) We have that tL is themaximal tame pure extension ofDX [s]fs+a and hence

over DX [s] the grade number j(tL/DX [s]fs+a) ≥ n + 2. Since

tL
DX [s]fs+a � tL

tL⋂
DX [s]fs � tL + DX [s]fs

DX [s]fs ,

and the grade number of a quotient can only increase (cf. [7, Theorem 3.2.2]), we
have

j

(
tL + DX [s]fs

DX [s]fs
)

≥ n + 2.

By maximality, tL + DX [s]fs ⊂ L and hence tL ⊂ L.
(ii) SinceL/tL is a subquotient ofDX [s]fs−k for some k ∈ Z

r , it is relative holonomic
over C[s] by Theorem 4.3.4 and by [7, Lemma 3.2.4].
Next we prove that every nonzero DX [s]-submodule of L/tL has grade number

≤ n + 1. Assume on the contrary there exists L′ such that

tL ⊂ L′ ⊂ L

and j(L′/tL) ≥ n + 2. Since L ⊂ t−1L′, we have j(t−1L′/DX [s]fs) ≤ n + 1 by
maximality. Considering the short exact sequence

0 → L
DX [s]fs → t−1L′

DX [s]fs → t−1L′

L → 0

we hence have j(t−1L′/L) ≤ n + 1, applying [7, Theorem 3.2.2] again. However,
since t−1L′/L � L′/tL, we get a contradiction.

By [2, Proposition A. IV. 2.11], not all quotients t lL/t l+1L with l ≥ 0 have the
same grade number as L. Since t lL/t l+1L � L/tL for all l ≥ 0 as DX [s]-modules
via a translation in s, we then must have j(L/tL) ≥ n + 1. ��
Lemma 4.4.2 With the same notation as in the previous lemma, we have:

(i) CC	(L) = CC	(DX [s]fs).
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(ii)

CC	(L/tL) = (T ∗
UU )	|{fa=0} = CC	

(
DX [s]fs
DX [s]fs+a

)
.

(iii) Every irreducible component of the zero loci of

AnnC[s](L/tL) and AnnC[s](gr	(L/tL))

is a hyperplane the type l1s1 + . . . lr sr + b = 0 with li ∈ N.

Proof (i) Let k ∈ Z
r be such thatDX [s]fs ⊂ L ⊂ DX [s]fs−k. By Theorem 4.3.1, we

know CC	(DX [s]fs−k) = CC	(DX [s]fs). This implies the claim.
(ii) Since tL ⊂ L, it follows that tL = faL. Since CC	(L) = CC	(DX [s]fs), applying

the same proof as for Corollary 4.3.6 for the multiplication map fa : L → L gives
the claim.

(iii) By [2, Theorem A:IV 4.15], grrel(L/tL) is also (n + 1)-pure after choosing a
suitable goodfiltration. Then purity in the commutative case gives thatChrel(L/tL)

is pure of dimension n + r − 1, cf. [2, Theorem A:IV 3.7]. Since L/tL is a
subquotient of DX [s]fs−lei , it is relative holonomic over C[s] by Theorem 4.3.4
and [7, Lemma 3.2.4]. Thus we can apply [7, Lemma 3.4.1] to obtain that

Z(BL/tL) = p2(Ch
rel(L/tL))

is pure of codimension 1. Now we know by [11,15], with L instead of DX [s]fs,
that each hyperplane in Z(BL/tL) has slopes in N

r as required. Since the zero
locus of AnnC[s](gr	(L/tL)) is contained in the zero locus of the initial term of
the product of polynomials of degree 1 defining Z(BL/tL), the last claim follows
as well.

��
Definition 4.4.3 We denote by

Ha,H	
a,Ha(F),H	

a(F),

the sets of primitive slopes L = (l1, . . . , lr ) ∈ N
r of hyperplanes of type L · s+b = 0

appearing as irreducible components of the support over C[s] of

L/tL, gr	(L/tL),
DX [s]fs
DX [s]fs+a , gr	

(
DX [s]fs
DX [s]fs+a

)
,

respectively. Note that all four slope sets do not change if a is replaced by a multiple
la with l ∈ Z>0.

The following extends slightly [14, Résultat 6]:
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Proposition 4.4.4 With the same notation as in Lemma 4.4.1,

H	
a(F) = H	

a = Ha = Ha(F).

Proof The first equality is by Lemma 4.4.2 (ii).
Since t lL ⊂ DX [s]fs ⊂ L ⊂ DX [s]fs−la for some l ∈ Z≥0, we have

suppC[s]
( L
t lL

)
⊂ suppC[s]

(
DX [s]fs−la

DX [s]fs
)

∪ suppC[s]
(

DX [s]fs
DX [s]fs+la

)
(4.4)

and

suppC[s]
(
DX [s]fs−la

DX [s]fs
)

⊂ suppC[s]
(
t−lL
L

)
∪ suppC[s]

( L
t lL

)
. (4.5)

Since s · t l = t l · s − la for every l ∈ Z, both supports on the right-hand side of
(4.4) have the same slope setHla(F) = Ha(F). HenceHa, the slope set of L/t lL, is
included inHa(F). From (4.4), we get now the third claimed equalityHa = Ha(F).

It remains to prove the second equality.
If p is an associated prime of grrel(L/tL), then

p = pX ⊗ pCr

where pCr is an ideal generated by some hyperplane in C
r with slope L ∈ Ha, and

pX is the prime ideal in T ∗X of an irreducible Lagrangian subvariety, by relative
holonomicity of L/tL from Lemma 4.4.1. Then we define

in(p) := pX ⊗ in(pCr )

where in(pCr ) is the initial homogenous ideal generated by L ·s.We claim that the set of
associated primes of gr	(L/tiL) is the union of all in(p). Together with Lemma 4.1.1,
the claim impliesHa = H	

a.
Now we prove the last claim. We assume bL is the generator of the radical ideal of

BL/tL. Since the support of Z(BL/tL) is pure of codimension 1, we know that

bL =
∏

L∈Ha

(L · s + rL)

for some rL . If bL is of degree 1, then the claim follows since Ch	(L/tiL) is pure of
dimension n + r − 1. In general, we pick the smallest k so that bkL ∈ BL/tL. Picking
a slope L ∈ Ha, we consider the short exact sequence

0 → bkL
L · s + rL

· L/tL → L/tL → Q → 0,
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where Q is the quotient module. Doing induction on the degree of bkL, the proof of
the claim is done. ��
Proposition 4.4.5 Let a ∈ N

r such that fa is not invertible. Let

M = DX [s]fs
DX [s]fs+a .

Then every irreducible component of Z(BM ) of codimension > 1 can be translated
by an element of Z

r into a component of codimension one.

Proof First note that s · t = t · s − a implies that

suppC[s]
(

tL
t2L

)
= T

(
suppC[s]

( L
tL

))
,

where T : C
r → C

r is translation by a. Then the exact sequence

0 → tL
t2L → L

t2L → L
tL → 0

implies that

suppC[s]
( L
t2L

)
= suppC[s]

( L
tL

)
∪ T

(
suppC[s]

( L
tL

))
.

Iterating this argument we obtain that

suppC[s]
( L
t lL

)
=

l−1⋃

j=0

T j
(

(suppC[s]
( L
tL

))

and

suppC[s]
(
t−lL
L

)
=

0⋃

j=−l+1

T j
(
suppC[s]

( L
tL

))
.

With this description of the supports in mind, (4.5) implies that all components of
Z(BM ) are contained in translates of the some of the components of Z(BL/tL). On
the other hand, (4.4) implies that all of the components of Z(BL/tL) are contained in
translates of the codimension 1 components of Z(BM ). These two statements com-
bined imply the claim. ��
Lemma 4.4.6 Let μ : Y → X be a log-resolution of the pair (X,D) that is an isomor-
phism above U = X \ D. Let gi = fi ◦ μ and G = (g1, g2, . . . , gr ). Let a ∈ N

r such
that fa is not invertible. Then

Ha(F) ⊂ Ha(G).
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Proof We write Ha(F) for the union of all the hyperplanes defined by the slopes in
Ha(F). Clearly it is enough to show that Ha(F) ⊂ Ha(G).

We have shown above that Ha(F) equals the reduced support over C[s] of

gr	
( L
tL

)
and gr	

(
DX [s]fs
DX [s]fs+a

)
.

Let (x j ,α j ) = (x1, j , . . . , xn, j , α1, j , . . . , αr , j ) with j ≥ 1 be a sequence of points
in U × C

r such that

(1) lim x j exists and it is a point of {fa = 0}, and
(2) lim

(
x j , (d log fα j )(x j ),α j

)
converges in T ∗X × C

r .

By Lemma 4.1.1 and Corollary 4.3.6, we have for any such sequence that lim α j ∈
Hi (F), and conversely, for any α ∈ Hi (F) there exists such a sequence with lim α j =
α.

Write

ω j =
r∑

l=1

αl, j · d log fl = d log fα j .

Since μ is an isomorphism over U and a proper map, there is a subsequence x jk of
x j , such that μ−1(x jk ) converges on Y . Replace x j by this subsequence, and α j by
the corresponding subsequence consisting of the α jk . Clearly (x j ,α j ) still satisfies
conditions (1) and (2) above. Denote y = limμ−1(x j ). Clearly ga(y) = 0.

Let D′ = μ−1(D). Choose coordinates on a small open V around y and trivializa-
tions of the cotangent bundles fitting in a commutative diagram of isomorphisms:

T ∗(μ(V \ D′)) T ∗(V \ D′)

μ(V \ D′) × C
n (V \ D′) × C

n .

μ∗

For ω j (x j ) ∈ T ∗(μ(V \ D′)), denote by (x j , p j ) the corresponding point in μ(V \
D′) × C

n . Then under this diagram,

ω j (x j ) μ∗
μ−1(x j )

ω j (x j )

(x j , p j ) (μ−1(x j ), M(x j )p j )

where

M(x) =

⎛

⎜⎜⎝

∂μ1
∂ y1

|μ−1(x) · · · ∂μn
∂ y1

|μ−1(x)
...

. . .
...

∂μ1
∂ yn

|μ−1(x) · · · ∂μn
∂ yn

|μ−1(x)

⎞

⎟⎟⎠ = Jacμ(μ−1(x)).
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Then

lim
j→∞(μ−1(x j ), M(x j )p j ) = (y, Jacμ(y) lim

j→∞ p j ),

which shows that this limit exists, since lim j→∞ p j exists by condition (2) above.
Combining this with the fact that

μ∗
μ−1(x j )

ω j (x j ) =
r∑

l=1

αl, j · (d log gl)(μ
−1(xj)),

it follows that the sequence (μ−1(x j ),α j ) satisfies:

lim
j→∞

(
μ−1(x j ),

r∑

l=1

sl, j d log(gl)(μ
−1(xj)),α j

)
converges in T ∗Y × C

r .

which concludes the proof. ��
Proposition 4.4.7 Let a ∈ N

r such that fa is not invertible. Let

M = DX [s]fs
DX [s]fs+a .

Then:

(i) Every irreducible component of Z(BM ) of codimension one is a hyperplane in
C
r of type l1s1 + . . . + lr sr + b = 0 with l j ∈ Q≥0 for all 1 ≤ j ≤ r , and

b ∈ Q>0.
(ii) Moreover, for each such component there exists j with a j �= 0 such that l j > 0.

Proof Part (i) is due to [11,15]. The strict positivity in part (ii) is new. Let μ : Y → X
be a log-resolution of the pair (X , D), let g j = μ∗ f j , and let G = (g1, . . . , gr ). By
Lemma 4.4.6,Ha(F) ⊂ Ha(G). Hence it suffices to prove the statement for the tuple
G and locally at a point y ∈ Y above x , since the global Bernstein-Sato ideal is the
intersection of the local ones.

Chose coordinates on small open ball V centered at y and write

g j = u j y
l j,1
1 . . . y

l j,n
n

where u j is a unit on V and l j,k ∈ Z≥0. Write

Lk = (l1,k, . . . , lr ,k).

Thus l j,k > 0 if and only if the divisor {yk = 0} is a component of {g j = 0} in V . Set

K =
⋃

j with a j �=0

{k | l j,k > 0}.
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By assumption, K is non-empty. Note that Lk ·a > 0 for every k ∈ K and that locally
at y

us∂Ln ·a
yn · · · ∂L1·a

y1 u−s · gs+a =
∏

k∈K

Lk ·a∏

j=1

(Lk · s + j)gs.

This shows that

∏

k∈K

Lk ·a∏

j=1

(Lk · s + j) ∈ BN ,y

where

N = DY [s]gs
DY [s]gs+a .

It follows that locally at y,

Ha(G) ⊂ {Lk | k ∈ K }

as claimed. (One can further show that the last inclusion is an equality of sets.) ��

4.5 Proof of Theorem 3.2.1

This is now covered by Propositions 4.3.7, 4.4.5, 4.4.7. �

5 Proof of Proposition 2.4.1

The proof is an adjustment of that of [16, Theorem 5.4].

5.1 Reduction

We keep the notation as in Proposition 2.4.1. We write

Nk,l,α := DX [s]fs+α−k+lei ⊆ j∗(Mλ[s]fs)

and set

N := N0,0,α

where

Mλ[s]fs = Mλ ⊗OU OU [s]fs
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with the natural left DX [s]-module structure. Then it is enough to prove that

Nk,l,α ⊗L
C[s] C0 = h!g∗Mλ

for l � k � 0, where C0 is the residue field at the origin in C
r .

By [14, Résultat 1], the DX [s]-module Nk,l,α is relative holonomic over C[s] and
has grade number n. We will need in addition the following lemma, analogous to
Proposition 3.1.4, and which can be proved similarly:

Lemma 5.1.1 For each j > n, if Ext jDX [s](N ,DX [s]) �= 0, the support of

Ext jDX [s](N ,DX [s]) as a C[s]-module is a proper algebraic subset � C
r .

5.2 Function fields

Let V = X \ Di , and let g and h be defined as in (2.1), so that j = h ◦ g. Let

DX (s) = DX [s] ⊗C[s] C(s).

For a holonomic DX (s)-module M, we have the functor

h!(M|V ) = D ◦ h∗ ◦ D(M|V )

which is also a holonomicDX (s)-module since the base field C(s) is of characteristic
zero. Similarly for any other open embedding, such as g and j . By using the adjoint
pairs (h−1, h∗), we have a natural morphism

h!(M|V ) → h∗(M|V ),

whose image is h!∗(M|V ) by definition. We then have natural morphisms

j!(M|U ) → h!g∗(M|U ) → h∗g∗(M|U ) = j∗(M|U ).

5.3 Localizations

Now note that Nk,l,α ⊗C[s] C(s) is a holonomic DX (s)-module, so in particular it is
n-Cohen-Macaulay. Moreover, the morphism

j!(Nk,l,α ⊗C[s] C(s)|U ) → j∗(Nk,l,α ⊗C[s] C(s)|U )

is an isomorphism, both being isomorphic to Nk′,l ′,α ⊗C[s] C(s) for every k′, l ′; see
the proof of [16, Theorem 5.3]. The same argument proves that

h!g∗(Nk,l,α ⊗C[s] C(s)|U ) → h∗g∗(Nk,l,α ⊗C[s] C(s)|U )

is an isomorphism, and both are isomorphic to Nk′,l ′,α ⊗C[s] C(s).
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We now take k0 � 0 such that

Nk0,0,α ⊗C[s] C[s]m = (DX [s]
r∏

i=1

f −ki
i · fs−k+α) ⊗C[s] C[s]m = j∗(N |U ⊗C[s] C[s]m)

for all k ≥ k0 and all ki ≥ 0 with i = 1, . . . r , wherem is the maximal ideal of 0 ∈ C
r .

Such k0 exists, by the existence of multivariate b-functions.
Write

Kα := Z
r \

⋃

j>n

suppC[s](Ext
j
DX [s](N ,DX [s])).

By Lemma 5.1.1, we can choose some k ≥ k0 and some ki ≥ 0 with i = 1, . . . , r
satisfying

−(k + k1, . . . , k + kr ) ∈ Kα.

That is, −(k+ k1, . . . , k+ kr ) is not in suppC[s](Ext
j
DX [s](N ,DX [s])) for each j > n.

Equivalently, by using substitution, for each j > n

0 /∈ suppC[s](Ext
j
DX [s](DX [s]

r∏

i=1

f −ki
i · fs−k+α,DX [s])).

Therefore, j∗(N |U ⊗ C[s]m) is n-Cohen Macaulay over

DX [s]m = DX [s] ⊗C[s] C[s]m,

as Ext modules localize. In particular, g∗(N |U ⊗ C[s]m) is n-Cohen Macaulay over
DV [s]m .
Lemma 5.3.1

D(N |U ) = D(Mλ[s]fs) = D(Mλ)[s]f−s = M−λ[s]f−s � M−λ[s]fs

asDU [s]-modules, where the third D is theDU -dual, and where the last isomorphism
is not canonical being given by the substitution −s by s.

Proof Only the second isomorphism needs a proof. We actually prove a slightly more
general statement. Let fs· be the functor from the category of coherent left DU [s]-
modules to itself that acts on objects as

M �→ fs · M := fsOU [s] ⊗OU [s] M

and acts on a morphism ϕ : M → N by

1 ⊗ ϕ : fsOU [s] ⊗OU [s] M → fsOU [s] ⊗OU [s] N , fs ⊗ m �→ fs ⊗ ϕ(m).
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Then, we claim that

D(fs · M) = f−s · D(M).

Then the original statement follows from takingM = Mλ ⊗C C[s], and noting that

D(M ⊗C C[s]) = D(M) ⊗C C[s].

Now we prove the claim. Since the statement is local, we may assume U is a
coordinate chart, and we abuse notation and letDU [s] also denote (U ,DU [s]). Take
a free resolution ofM.

. . . → DU [s]m1
d1−→ DU [s]m1

d0−→ DU [s]m0 → M.

where the differential di is right multiplication by a mi+1 ×mi matrix Pi of operators
in DU [s] . Then, we apply the functor fs·, and get a resolution

. . . → fs · DU [s]m1
1⊗d1−−−→ fs · DU [s]m1

1⊗d0−−−→ fsDU [s]m0 → fs · M.

For any differential operator P(s) ∈ DU [s], we let fs · P(s) · f−s denote the
conjugation by invertible function fs. Then we have the following isomorphism

fs · DU [s] fs · DU [s]

DU [s] DU [s]

(−)·P(s)

ψ ψ

(−)·fs·P(s)·f−s

whereψ is an isomorphismof leftDU [s]-modules, and it sends fs⊗Q(s) to fsQ(s)f−s.
Applying the isomorphism ψ to the resolution, we have

. . . → DU [s]m1
(−)·fs·P0(s)·f−s

−−−−−−−−−→ DU [s]m0 → fs · M.

Then we can take the dual, and get a quasi-isomorphism

D(fs · M) � [0 → DU [s]m0
(−)[fs·P0(s)·f−s]∗−−−−−−−−−−→ DU [s]m1 → . . .]

where [−]∗ is the formal adjoint in the coordinate chart U , and 0 is sitting at degree
−n.

Now, we consider f−s · D(M), and we get

f−s · D(M) � [0 → DU [s]m0
(−)·f−sP0(s)∗fs−−−−−−−−−→ DU [s]m1 → . . . .]

It remains to observe that

[fs · P(s) · f−s]∗ = f−s · P(s)∗ · fs
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to see that the two chain complexes are identical. This proves the claim. ��

Since the duality functor commutes with localization, and the substitution −s �→ s
takes 0 to 0, we further have

D(N |U ⊗ C[s]m) � M−λ[s]fs ⊗ C[s]m

as DU [s]m-modules. Then we apply [16, Theorem 5.3(ii)] and conclude that

h∗D(g∗(N |U ⊗ C[s]m)) = h∗g!(D(N |U ⊗ C[s]m)) � h∗(DV [s]fs+k′−α) ⊗ C[s]m

and

D( j∗(N |U ⊗ C[s]m)) = j!(D(N |U ⊗ C[s]m)) � (DX [s]fs+k′−α) ⊗ C[s]m

for some k′ � k0. Using the existence of multivariate b-functions annihilating the
quotient

DX [s]fs+k′−α/DX [s]fs+k′−α+ei ,

we further know that

h∗(DV [s]fs+k′−α) ⊗ C[s]m = DX [s]fs+k′−α−lei ⊗ C[s]m

for all l � k′. Moreover, we can assume that

k′ − lei ∈ K−α,

by Lemma 5.1.1. That is, h∗D(g∗(N |U ⊗ C[s]m)) is n-Cohen Macaulay.
We hence conclude by taking theDX [s]-dual that the complex h!g∗(N |U ⊗C[s]m)

is a n-Cohen Macaulay module. In particular, it is also n-pure over DX [s]m , see for
example [7, 3.3]. We then can define

h!∗g∗(N |U ⊗ C[s]m)

to be the image of the natural morphism

h!g∗(N |U ⊗ C[s]m) → h∗g∗(N |U ⊗ C[s]m).

Then by duality, h!∗g(N |U ⊗ C[s]m) is the minimal extension of g∗(N |U ⊗ C[s]m).
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5.4 Injectivity

We next prove that the natural morphism

η : h!g∗(N |U ⊗ C[s]m) → h!g∗(N |U ⊗ C(s))

is injective. It is enough to prove that for every b ∈ m, the morphism

h!g∗(N |U ⊗ C[s]m)
·b−→ h!g∗(N |U ⊗ C[s]m)

is injective. But, as in the proof of [7, Lemma 3.4.2], the kernel of this morphism for
every b ∈ m must be 0, because of purity. Hence η is injective.

5.5 Residue fields

Now we look at the commutative diagram

h!g∗(N |U ⊗ C[s]m) h!g∗(N |U ⊗ C(s))

h∗g∗(N |U ⊗ C[s]m) j∗(N |U ⊗ C(s)).

η

The second horizontal morphism is injective by definition and the second vertical
morphism is identity as both modules are equal to Nk,l,α ⊗ C(s) for every k and l.
Since η is also injective, the natural morphism

h!g∗(N |U ⊗ C[s]m) → h∗g∗(N |U ⊗ C[s]m)

is also injective and hence

h!∗g(N |U ⊗ C[s]m) = h!g(N |U ⊗ C[s]m)

Since

h∗g∗(N |U ⊗ C[s]m) = j∗(N |U ⊗ C[s]m) = Nk,0,α ⊗ C[s]m

for k > k0, by minimality

h!∗g(N |U ⊗ C[s]m) = h!g(N |U ⊗ C[s]m) = Nk,l,α ⊗ C[s]m

for all l � k > k0.
Since C0 � C[s]/m is supported at 0 in C

r , we have

Nk,l,α ⊗L
C[s] C0 � Nk,l,α ⊗ C[s]m ⊗L

C[s]m C0 � h!g∗(Nk,l,α ⊗ C[s]m |U ) ⊗L
C[s]m C0
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for l � k � 0. One can easily check D and • ⊗L
C[s]m C0 commute, and hence the

required statement follows by substitution. �
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