

Zero loci of Bernstein–Sato ideals

Nero Budur1 · Robin van der Veer1 · Lei Wu2 · Peng Zhou³

Received: 22 July 2019 / Accepted: 26 November 2020 / Published online: 4 January 2021 © Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract We prove a conjecture of the first author relating the Bernstein– Sato ideal of a finite collection of multivariate polynomials with cohomology support loci of rank one complex local systems. This generalizes a classical theorem of Malgrange and Kashiwara relating the *b*-function of a multivariate polynomial with the monodromy eigenvalues on theMilnor fibers cohomology.

Mathematics subject classification 14F10 · 13N10 · 32C38 · 32S40 · 32S55

 \boxtimes Nero Budur nero.budur@kuleuven.be Robin van der Veer robin.vanderveer@kuleuven.be Lei Wu lwu@math.utah.edu Peng Zhou pzhou.math@gmail.com ¹ KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium ² Department of Mathematics, University of Utah, 155 S. 1400 E, Salt Lake City, UT 84112, USA ³ Institut des Hautes Études Scientifiques, 35 Route de Chartres, Le Bois-Marie, 91440 Bures-sur-Yvette, France

Contents

1 Introduction

1.1.

Let $F = (f_1, \ldots, f_r) : (X, x) \rightarrow (\mathbb{C}^r, 0)$ be the germ of a holomorphic map from a complex manifold *X*. The *(local) Bernstein–Sato ideal* of *F* is the ideal B_F in $\mathbb{C}[s_1,\ldots,s_r]$ generated by all $b \in \mathbb{C}[s_1,\ldots,s_r]$ such that in a neighborhood of *x*

$$
b\prod_{i=1}^{r}f_{i}^{s_{i}}=P\cdot\prod_{i=1}^{r}f_{i}^{s_{i}+1}
$$
\n(1.1)

for some $P \in \mathscr{D}_X[s_1,\ldots,s_r]$, where \mathscr{D}_X is the ring of holomorphic differential operators. Sabbah $[22, 23]$ $[22, 23]$ $[22, 23]$ $[22, 23]$ showed that B_F is not zero.

1.2.

If $F = (f_1, \ldots, f_r) : X \to \mathbb{C}^r$ is a morphism from a smooth complex affine irreducible algebraic variety, the *(global) Bernstein–Sato ideal BF* is defined as the ideal generated by all $b \in \mathbb{C}[s_1,\ldots,s_r]$ such that [\(1.1\)](#page-1-1) holds globally with \mathscr{D}_X replaced by the ring of algebraic differential operators. The global Bernstein–Sato ideal is the intersection of all the local ones at points *x* with some $f_i(x) = 0$, and there are only finitely many distinct local Bernstein–Sato ideals, see $[1,8]$ $[1,8]$.

1.3.

It was clear from the beginning that B_F contains some topological information about *F*, e.g. [\[18](#page-27-3), 19, 22, 23]. However, besides the case $r = 1$, it was not clear what precise topological information is provided by *BF*. Later, a conjecture based on computer experiments was formulated in [\[10\]](#page-27-5) addressing this problem. In this article we prove this conjecture.

1.4.

Let us recall what happens in the case $r = 1$. If $f : X \to \mathbb{C}$ is a regular function on a smooth complex affine irreducible algebraic variety, or the germ at $x \in X$ of a holomorphic function on a complex manifold, the monic generator of the Bernstein–Sato ideal of *^f* in ^C[*s*] is called the *Bernstein–Sato polynomial*, or the *b*-*function*, of *f* and it is denoted by $b_f(s)$. The non-triviality of $b_f(s)$ is a classical result of Bernstein [\[5](#page-26-2)] in the algebraic case, and Björk [\[6\]](#page-27-6) in the analytic case. One has the following classical theorem, see [\[16](#page-27-7)[,17](#page-27-8),[21\]](#page-27-9):

Theorem 1.4.1 *Let* $f: X \to \mathbb{C}$ *be a regular function on a smooth complex affine irreducible algebraic variety, or the germ at* $x \in X$ *of a holomorphic function on a complex manifold, such that f is not invertible. Let* $b_f(s) \in \mathbb{C}[s]$ *be the Bernstein–Sato polynomial of f . Then:*

(i) (Malgrange, Kashiwara) The set

$$
\{exp(2\pi i\alpha) \mid \alpha \text{ is a root of } b_f(s)\}\
$$

is the set of monodromy eigenvalues on the nearby cycles complex of f .

- *(ii) (Kashiwara) The roots of b ^f* (*s*) *are negative rational numbers.*
- *(iii) (Monodromy Theorem) The monodromy eigenvalues on the nearby cycles complex of f are roots of unity.*

The definition of the nearby cycles complex is recalled in Sect. [2.](#page-4-0) In the algebraic case, $b_f(s)$ provides thus an algebraic computation of the monodromy eigenvalues.

1.5.

We complete in this article the extension of this theorem to a finite collection of functions as follows. Let

$$
Z(B_F) \subset \mathbb{C}^r
$$

be the zero locus of the Bernstein–Sato ideal of *F*. Let $\psi_F C_X$ be the specialization complex¹ defined by Sabbah $[24]$ $[24]$; the definition will be recalled in Sect. [2.](#page-4-0) This complex is a generalization of the nearby cycles complex to a finite collection of functions, the monodromy action being now given by *r* simultaneous monodromy actions, one for each function *fi* . Let

$$
\mathcal{S}(F) \subset (\mathbb{C}^*)^r
$$

¹ This is called "le complexe d'Alexander" in [\[24](#page-27-10)].

be the support of this monodromy action on $\psi_F C_X$. In the case $r = 1$, this is the set of eigenvalues of the monodromy on the nearby cycles complex. The support $S(F)$ has a few other topological interpretations, one being in terms of cohomology support loci of rank one local systems, see Sect. [2.](#page-4-0) Let $Exp: \mathbb{C}^r \to (\mathbb{C}^*)^r$ be the map $Exp(_) = exp(2\pi i _).$

Theorem 1.5.1 *Let* $F = (f_1, \ldots, f_r) : X \to \mathbb{C}^r$ *be a morphism of smooth complex affine irreducible algebraic varieties, or the germ at* $x \in X$ *of a holomorphic map on a complex manifold, such that not all fi are invertible. Then:*

- (i) Exp $(Z(B_F)) = S(F)$.
- *(ii) Every irreducible component of Z*(*BF*) *of codimension 1 is a hyperplane of type* $a_1s_1 + \ldots + a_r s_r + b = 0$ *with* $a_i \in \mathbb{Q}_{\geq 0}$ *and* $b \in \mathbb{Q}_{\geq 0}$ *. Every irreducible component of* $Z(B_F)$ *of codimension* > 1 *can be translated by an element of* Z*^r inside a component of codimension 1.*
- *(iii) S*(*F*) *is a finite union of torsion-translated complex affine subtori of codimension 1 in* $(\mathbb{C}^*)^r$.

Thus in the algebraic case, B_F gives an algebraic computation of $S(F)$.

Part (*i*) was conjectured in [\[10](#page-27-5)], where one inclusion was also proved, namely that $Exp(Z(B_F))$ contains $S(F)$. See also [\[11](#page-27-11), Conjecture 1.4, Remark 2.8].

Regarding part (*iii*), Sabbah [\[24](#page-27-10)] showed that $S(F)$ is included in a finite union of torsion-translated complex affine subtori of codimension 1. Here a complex affine subtorus of $(\mathbb{C}^*)^r$ means an algebraic subgroup $G \subset (\mathbb{C}^*)^r$ such that $G \cong (\mathbb{C}^*)^p$ as algebraic groups for some $0 \leq p \leq r$. In [\[12\]](#page-27-12), it was proven that every irreducible component of $S(F)$ is a torsion-translated subtorus. Finally, part (*iii*) was proven as stated in [\[11\]](#page-27-11).

The first assertion of part (*ii*), about the components of codimension one of $Z(B_F)$, is due to Sabbah [\[22](#page-27-0), [23\]](#page-27-1) and Gyoja [\[14\]](#page-27-13).

In light of the conjectured equality in part (*i*), it was therefore expected that part (*iii*) would hold for $Exp(Z(B_F))$. This is equivalent to the second assertion in part (ii) , about the smaller-dimensional components of $Z(B_F)$, and it was confirmed unconditionally by Maisonobe [\[20,](#page-27-14) Résultat 3]. This result of Maisonobe will play a crucial role in this article.

In this article we complete the proof of Theorem [1.5.1](#page-2-1) by proving the other inclusion from part (*i*):

Theorem 1.5.2 *Let F be as in Theorem [1.5.1.](#page-2-1) Then* $Exp(Z(B_F))$ *is contained in* $S(F)$ *.*

The proof uses Maisonobe's results from [\[20](#page-27-14)] and uses an analog of the Cohen-Macaulay property for modules over the noncommutative ring \mathscr{D}_X [s_1, \ldots, s_r].

1.6.

Algorithms for computing Bernstein–Sato ideals are now implemented in many computer algebra systems. The availability of examples where the zero loci of Bernstein–Sato ideals contain irreducible components of codimension > 1 suggests that this is not a rare phenomenon, see [\[1\]](#page-26-1). The stronger conjecture that Bernstein–Sato ideals are generated by products of linear polynomials remains open, [\[10](#page-27-5), Conjecture 1]. This would imply in particular that all irreducible components of $Z(B_F)$ are linear.

1.7.

In Sect. [2,](#page-4-0) we recall the definition and some properties of the support of the specialization complex. In Sect. [3](#page-7-0) we give the proof of Theorem [1.5.2.](#page-3-0) Section [4](#page-24-0) is an appendix reviewing basic facts from homological algebra for modules over not-necessarily commutative rings.

2 The support of the specialization complex

2.1 Notation

Let $F = (f_1, \ldots, f_r) : X \to \mathbb{C}^r$ be a holomorphic map on a complex manifold *X* of dimension $n > 0$. Let $f = \prod_{i=1}^r f_i$, $\overline{D} = f^{-1}(0)$, $U = X \setminus D$. Let $i : D \to X$ be the closed embedding and $j : U \to X$ the open embedding. We are assuming that not all f_i are invertible, which is equivalent to $D \neq \emptyset$.

We use the notation $\mathbf{s} = (s_1, \ldots, s_r)$ and $\mathbf{f}^{\mathbf{s}} = \prod_{i=1}^r f_i^{s_i}$, and in general tuples of numbers will be in bold, e.g. $1 = (1, \ldots, 1), \alpha = (\alpha_1, \ldots, \alpha_r)$, etc.

2.2 Specialization complex

Let $D_c^b(A_D)$ be the derived category of bounded complexes of A_D -modules with constructible cohomology, where *A* is the affine coordinate ring of $(\mathbb{C}^*)^r$ and A_D is the constant sheaf of rings on *D* with stalks *A*. Sabbah [\[24\]](#page-27-10) defined the *specialization complex* $\psi_F C_X$ in $D_c^b(A_D)$ by

$$
\psi_F \mathbb{C}_X = i^{-1} R j_* R \pi_!(j \circ \pi)^{-1} \mathbb{C}_X,
$$

where π : *U* ×_{(\mathbb{C}^*)^{*r*} \mathbb{C}^r \rightarrow *U* is the first projection from the fibered} product obtained from $F_{|U}$: $U \rightarrow (\mathbb{C}^*)^r$ and the universal covering map $exp: \mathbb{C}^r \to (\mathbb{C}^*)^r$.

The *support of the specialization complex* $S(F)$ is defined as the union over all $i \in \mathbb{Z}$ and $x \in D$ of the supports in $(\mathbb{C}^*)^r$ of the cohomology stalks $\mathcal{H}^i(\psi_F \mathbb{C}_X)_x$ viewed as finitely generated *A*-modules.

If *F* is only given as the germ at a point $x \in X$ of a holomorphic map, by $\psi_F C_X$ we mean the restriction of the specialization complex to a very small open neighboorhood of $x \in X$.

When $r = 1$, that is, in the case of only one holomorphic function f : $X \rightarrow \mathbb{C}$, the specialization complex equals the shift by [−1] of Deligne's *nearby cycles complex* defined as

$$
\psi_f C_X = i^{-1} R(j \circ \pi)_*(j \circ \pi)^{-1} C_X.
$$

The complex numbers in the support $S(f) \subset \mathbb{C}^*$ are called the *monodromy eigenvalues* of the nearby cycles complex of *f* .

2.3 Cohomology support loci

It was proven in $[10,11]$ $[10,11]$ $[10,11]$ that $S(F)$ admits an equivalent definition, without involving derived categories, as the union of cohomology support loci of rank one local systems on small ball complements along the divisor *D*. More precisely,

$$
\mathcal{S}(F) = \{ \lambda \in (\mathbb{C}^*)^r \mid H^i(U_x, L_\lambda) \neq 0 \text{ for some } x \in D \text{ and } i \in \mathbb{Z} \},
$$

where U_x is the intersection of U with a very small open ball in X centered at *x*, and L_{λ} is the rank one \mathbb{C} -local system on *U* obtained as the pullback via $F: U \to (\mathbb{C}^*)^r$ of the rank one local system on $(\mathbb{C}^*)^r$ with monodromy λ_i around the *i*-th missing coordinate hyperplane.

If *F* is only given as the germ at (X, x) of a holomorphic map, $S(F)$ is defined as above by replacing *X* with a very small open neighboorhood of *x*.

For one holomorphic function $f : X \to \mathbb{C}$, the support $S(f)$ is the union of the sets of eigenvalues of the monodromy acting on cohomologies of the Milnor fibers of f along points of the divisor $f = 0$, see [\[12](#page-27-12), Proposition 1.3].

With this description of $S(F)$, the following involutivity property was proven:

Lemma 2.3.1 ([\[12,](#page-27-12) Theorem 1.2]) *Let* $\lambda \in (\mathbb{C}^*)^r$. *Then* $\lambda \in S(F)$ *if and only* $if \lambda^{-1} \in \mathcal{S}(F)$.

2.4 Non-simple extension loci

An equivalent definition of $S(F)$ was found by [\[11,](#page-27-11) §1.4] as a locus of rank one local systems on *U* with non-simple higher direct image in the category of perverse sheaves on *X*:

$$
\mathcal{S}(F) = \left\{ \lambda \in (\mathbb{C}^*)^r \mid \frac{Rj_* L_{\lambda}[n]}{j_{!*} L_{\lambda}[n]} \neq 0 \right\},\,
$$

where L_{λ} is the rank one local system on *U* as in [2.3.](#page-5-0) This description is equivalent to

$$
\mathcal{S}(F) = \left\{ \lambda \in (\mathbb{C}^*)^r \mid j_! L_{\lambda}[n] \to R j_* L_{\lambda}[n] \text{ is not an isomorphism} \right\},\
$$

the map being the natural one.

2.5 *D***-module theoretic interpretation**

Recall that for $\alpha \in \mathbb{C}^r$,

 \mathscr{D}_X **sfs**

is the natural left \mathscr{D}_X [**s**]-submodule of the free rank one \mathscr{O}_X [**s**, f^{-1}]-module \mathcal{O}_X [s, f^{-1}] \cdot **f**^s generated by the symbol **f**^s. For $r = 1$, see for example Walther [\[25](#page-27-15)].

We denote by $D_{rh}^b(\mathscr{D}_X)$ the derived category of bounded complexes of regular holonomic \mathscr{D}_X -modules. We denote by $DR_X : D_{rh}^b(\mathscr{D}_X) \to D_c^b(\mathbb{C}_X)$ the de Rham functor, an equivalence of categories. The following is a particular case of [\[27,](#page-27-16) Theorem 1.3 and Corollary 5.5], see also [\[4](#page-26-3)]:

Theorem 2.5.1 *Let* $F = (f_1, \ldots, f_r) : X \to \mathbb{C}^r$ *be a morphism from a smooth complex algebraic variety. Let* $\alpha \in \mathbb{C}^r$ *and* $\lambda = \exp(-2\pi i \alpha)$ *. Let* L_{λ} *be the rank one local system on U defined as in [2.3,](#page-5-0) and let* $M_{\lambda} = L_{\lambda} \otimes_{\mathbb{C}} \mathcal{O}_U$ *the corresponding flat line bundle, so that*

$$
DR_U(\mathcal{M}_\lambda) = L_\lambda[n]
$$

as perverse sheaves on U. For every integer $k \gg ||\alpha||$ *and* $\mathbf{k} = (k, \ldots, k)$ $\in \mathbb{Z}^r$, there are natural quasi-isomorphisms in $D_{rh}^b(\mathscr{D}_X)$

$$
\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}+\mathbf{k}} \otimes_{\mathbb{C}[\mathbf{s}]}\mathbb{C}_{\alpha} = j_!\mathcal{M}_{\lambda},
$$

$$
\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}-\mathbf{k}} \otimes_{\mathbb{C}[\mathbf{s}]}\mathbb{C}_{\alpha} = j_*\mathcal{M}_{\lambda},
$$

where \mathbb{C}_{α} *is the residue field of* α *in* \mathbb{C}^{r} *.*

Proposition 2.5.2 *With F as in Theorem [2.5.1,](#page-6-1)*

$$
\mathcal{S}(F) = \mathrm{Exp}\left\{\boldsymbol{\alpha} \in \mathbb{C}^r \mid \frac{\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}-\mathbf{k}}}{\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}+\mathbf{k}}} \otimes_{\mathbb{C}[\mathbf{s}]} \mathbb{C}_{\boldsymbol{\alpha}} \neq 0 \text{ for all } k \gg \|\boldsymbol{\alpha}\| \right\}.
$$

Proof Applying DR_X directly to Theorem [2.5.1,](#page-6-1) one obtains that

$$
S(F)
$$

= Exp $\left\{-\alpha \in \mathbb{C}^r \mid \frac{\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}-\mathbf{k}}}{\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}+\mathbf{k}}} \otimes_{\mathbb{C}[\mathbf{s}]}^L \mathbb{C}_{\alpha} \neq 0 \text{ in } D_{rh}^b(\mathscr{D}_X) \text{ for all } k \gg \|\alpha\|\right\}$

by the interpretation of *S*(*F*) from [2.4.](#page-5-1) Since $j_! \mathcal{M}_\lambda \rightarrow j_* \mathcal{M}_\lambda$ is a morphism of holonomic \mathscr{D}_X -modules of same length, the kernel and cokernel must simultaneously vanish or not. Thus, we can replace the derived tensor product with the usual tensor product. We then can replace $-\alpha$ with α by Lemma [2.3.1.](#page-5-2) \Box

For related work in a particular case, see [\[2](#page-26-4)].

Remark 2.5.3 Note that Theorem [2.5.1](#page-6-1) is stated in the algebraic case only. However, the proof from [\[4,](#page-26-3)[27](#page-27-16)] extends to the case when *X* is a complex manifold by replacing j_1M_λ , j_*M_λ with $M(1D)$, $M(*D)$, respectively, where *M* is the analytic \mathscr{D}_X -module $\mathscr{D}_X \cdot \mathbf{f}^{\alpha}$ whose restriction to *U* is \mathcal{M}_λ . Hence the last proposition also holds in the analytic case.

Since the tensor product is a right exact functor, as a consequence one has the following corollary which also follows from the proof of [\[10](#page-27-5), Proposition 1.7]:

Proposition 2.5.4 *If* α *is in* \mathbb{C}^r *and*

$$
\frac{\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}}}{\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}+1}} \otimes_{\mathbb{C}[\mathbf{s}]} \mathbb{C}_{\alpha} \neq 0,
$$

then $Exp(\alpha)$ *is in* $S(F)$ *.*

This proposition can be interpreted as to say that the difficulty in proving Theorem [1.5.2](#page-3-0) is the lack of a Nakayama Lemma for the non-finitely generated $\mathbb{C}[\mathbf{s}]$ -module $\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}}/\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}+1}$.

3 Relative holonomic modules

In this section we will provide necessary conditions for modules over $\mathscr{D}_X[\mathbf{s}]$ to obey an analog of Nakayama Lemma, and we will see that $\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}}/\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}+1}$

satisfies these conditions at least generically. Using Maisonobe's results [\[20\]](#page-27-14), this will prove Theorem [1.5.2.](#page-3-0)

3.1.

For simplicity, we will assume from now that we are in the algebraic case, namely, *X* is a smooth complex affine irreducible algebraic variety. We will treat the analytic case at the end.

We define an increasing filtration on the ring \mathscr{D}_X by setting $F_i \mathscr{D}_X$ to consist of all operators of order at most *i*, that is, in local coordinates (x_1, \ldots, x_n) on *X*, the order of x_i is zero and the order of $\partial/\partial x_i$ is one.

We let *R* be a regular commutative finitely generated C-algebra integral domain. We write

$$
\mathscr{A}_R=\mathscr{D}_X\otimes_{\mathbb{C}} R,
$$

and if $R = \mathbb{C}[s]$ we write

$$
\mathscr{A} = \mathscr{A}_{\mathbb{C}[\mathbf{s}]} = \mathscr{D}_X[\mathbf{s}].
$$

The order filtration on \mathscr{D}_X induces the *relative filtration* on \mathscr{A}_R by

$$
F_i\mathscr{A}_R=F_i\mathscr{D}_X\otimes_{\mathbb{C}} R.
$$

The associated graded ring

$$
\operatorname{gr} \mathscr{A}_R = \operatorname{gr} \mathscr{D}_X \otimes_{\mathbb{C}} R
$$

is a regular commutative finitely generated C-algebra integral domain, and it corresponds to the structure sheaf of $T^*X \times \text{Spec } R$, where T^*X is the cotangent bundle of *X*. Thus \mathscr{A}_R is an Auslander regular ring by Theorem [4.3.2.](#page-25-0) Moreover, the homological dimension is equal to the Krull dimension of $gr \mathscr{A}_R$,

$$
\mathrm{gl.dim}(\mathscr{A}_R)=2n+\dim(R),
$$

by Propositions [4.3.3,](#page-25-1) [4.4.2,](#page-25-0) and [4.5.1.](#page-24-1)

3.2.

Let *N* be a left (or right) \mathcal{A}_R -module. A *good filtration F on N over R* is an exhaustive filtration compatible with the relative filtration on \mathscr{A}_R such that the associated graded module gr *N* is finitely generated over gr \mathcal{A}_R , cf. 4.2. If *N* is finitely generated over \mathscr{A}_R , then good filtrations over *R* exist on *N*. We define the *relative characteristic variety of N over R* to be the support of gr *N* inside $T^*X \times$ Spec *R*, denoted by

$$
Ch^{rel}(N).
$$

Equivalently, $\text{Ch}^{\text{rel}}(N)$ is defined by the radical of the annihilator ideal of gr N in gr \mathscr{A}_R . The relative characteristic variety $\mathrm{Ch}^{\mathrm{rel}}(N)$ and the multiplicities $m_p(N)$ of gr *N* at generic points p of the irreducible components of $Ch^{rel}(N)$ do not depend on the choice of a good filtration for *N*, by [4.2.1.](#page-24-1)

Remark 3.2.1 The good filtration *F* on *N* localizes, that is, if *S* is a multiplicatively closed subset of *R*, then

$$
F_i(S^{-1}N) = S^{-1}F_iN
$$

form a good filtration of $S^{-1}N$ over $S^{-1}R$, and hence

$$
\operatorname{gr}(S^{-1}N)\simeq S^{-1}\operatorname{gr}N.
$$

For a finitely generated \mathscr{A}_R -module N, we will denote by $j_{\mathscr{A}_R}(N)$, or simply $j(N)$, the grade number of *N* defined as in 4.3.

Lemma 3.2.2 *Suppose that* N is a finitely generated \mathscr{A}_R -module. Then:

 (1) $j(N)$ + dim(Ch^{rel}(*N*)) = 2*n* + dim(*R*); *(2) if*

$$
0 \to N' \to N \to N'' \to 0
$$

is a short exact sequence of finitely generated AR-modules, then

$$
Ch^{rel}(N) = Ch^{rel}(N') \cup Ch^{rel}(N'')
$$

and if \mathfrak{p} *is the generic point of an irreducible component of* $\mathrm{Ch}^{\mathrm{rel}}(N)$ *then*

$$
m_{\mathfrak{p}}(N) = m_{\mathfrak{p}}(N') + m_{\mathfrak{p}}(N'').
$$

Proof Propositions [4.4.2](#page-25-0) and [4.5.1](#page-24-1) give (1). Proposition [4.2.1](#page-24-1) gives (2). \Box

Note that the lemma does not require, nor does it imply, that $Ch^{rel}(N)$ is equidimensional.

Definition 3.2.3 We say that a finitely generated \mathcal{A}_R -module *N* is *relative holonomic over R* if its relative characteristic variety over *R* is a finite union

$$
\mathrm{Ch}^{\mathrm{rel}}(N) = \bigcup_{w} \Lambda_w \times S_w
$$

where Λ_w are irreducible conic Lagrangian subvarieties in T^*X and S_w are algebraic irreducible subvarieties of Spec *R*.

Lemma 3.2.4 *Suppose that N is relative holonomic over R. Then:*

- *(1) every nonzero subquotient of N is relative holonomic over R;*
- (2) if $\text{Ext}^j_{\mathscr{A}_R}(N, \mathscr{A}_R) \neq 0$ for some integer j, then $\text{Ext}^j_{\mathscr{A}_R}(N, \mathscr{A}_R)$ is relative *holonomic (as a right AR-module if N is a left AR-module and vice versa), and*

$$
Ch^{rel}(Ext^j_{\mathscr{A}_R}(N,\mathscr{A}_R)) \subset Ch^{rel}(N).
$$

Proof By Proposition [4.2.2,](#page-25-0) there exist good filtrations on *N* and $\text{Ext}^j_{\mathscr{A}_R}(N,\mathscr{A}_R)$ such that gr (Ext $^j_{\mathscr{A}_R}(N, \mathscr{A}_R)$) is a subquotient of Ext $^j_{\text{gr}\mathscr{A}_R}(\text{gr}\,N, \text{gr}\,\mathscr{A}_R)$. It follows that

$$
Ch^{rel}(Ext^j_{\mathscr{A}_R}(N,\mathscr{A}_R)) \subset Ch^{rel}(N).
$$

Then part (2) follows from Proposition [3.2.5.](#page-10-0) Part (1) is proved similarly, using Lemma [3.2.2](#page-9-0) (2).

The following is a straight-forward generalization of the algebraic case of [\[20](#page-27-14), Proposition 8] where one replaces ^C[**s**] by *^R*:

Proposition 3.2.5 *If N is a finitely generated module over* \mathscr{A}_R *such that* $Ch^{rel}(N)$ *is contained in* $\Lambda \times$ Spec *R* for some conic Lagrangian, not nec*essarily irreducible, subvariety* Λ *of* T^*X *, then* N *is relative holonomic over R.*

Proof The Poisson bracket on gr \mathcal{A}_R is the *R*-linear extension of the Poisson bracket on gr \mathscr{D}_X . Let *J* be the radical ideal of the annihilator in gr \mathscr{A}_R of gr *N*. By Gabber's Theorem [\[7](#page-27-17), A.III 3.25], *J* is involutive with respect to the Poisson bracket on gr \mathscr{A}_R , that is, $\{J, J\} \subset J$. Let m be a maximal ideal in *R* corresponding to a point *q* in the image of $Ch^{rel}(N)$ under the second projection

$$
p_2: T^*X \times \operatorname{Spec} R \to \operatorname{Spec} R.
$$

By *R*-linearity of the Poisson bracket, it follows that $J + \mathfrak{m} \cdot \mathcal{A}_R$ is involutive. Therefore the image \bar{J} of J in the ring gr $\mathscr{A}_R \otimes_R R/\mathfrak{m} \simeq \mathrm{gr} \mathscr{D}_X$ is involutive under the Poisson bracket on $gr \mathcal{D}_X$. If this ideal would be radical, we could conclude that all the irreducible components of the fiber $\text{Ch}^{\text{rel}}(N) \cap p_2^{-1}(q)$ have dimension at least dim *X*. Note however that the same assertions on involutivity are true for the associated sheaves since the Poisson bracket on

a C-algebra induces a canonical Poisson bracket on the localization of the algebra with respect to any multiplicatively closed subset, cf. [\[15,](#page-27-18) Lemma 1.3]. Thus, restricting to an open subset of $Ch^{\text{rel}}(N)$ where the second projection p_2 has smooth reduced fibers, and assuming $q = p_2(y)$ for a point *y* in this open subset, the involutivity implies that dim_y(Ch^{rel}(*N*) ∩ $p_2^{-1}(q)$) ≥ dim *X*. By the upper-semicontinuity on Ch^{rel}(*N*) of the function $y \mapsto \dim_y(\text{Ch}^{\text{rel}}(N) \cap$ $p_2^{-1}(p_2(y))$, every irreducible component of a non-empty fiber Ch^{rel}(*N*) ∩ $p_2^{-1}(q)$ has dimension \geq dim *X*. (So far, this is an elaborate adaptation of proof of the algebraic case of [\[20](#page-27-14), Proposition 5] to the case when ^C[**s**] is replaced by *R*.)

Since Λ is equidimensional with dim $\Lambda = \dim X$, and Λ contains every non-empty fiber $\text{Ch}^{\text{rel}}(N) \cap p_2^{-1}(q)$, it follows that $\text{Ch}^{\text{rel}}(N) \cap p_2^{-1}(q)$ is a finite union of some of the irreducible conic Lagrangian subvarieties Λ_w of T^*X which are irreducible components of Λ . Define S_w to be the subset of closed points *q* in Spec *R* such that Λ_w is an irreducible component of Ch^{rel}(*N*) \cap $p_2^{-1}(q)$. Then Ch^{rel}(*N*) = $\cup_w(\Lambda_w \times S_w)$. Moreover, setting λ_w to be a general point of Λ_w ,

$$
\{\lambda_w\} \times S_w = \text{Ch}^{\text{rel}}(N) \cap p_1^{-1}(\lambda_w),
$$

where p_1 : $T^*X \times \text{Spec } R \to T^*X$ is the first projection. Since the right-hand side is defined in Spec R by finitely many algebraic regular functions, S_w is Zariski closed in Spec *R*. It follows that $Ch^{rel}(N)$ is relative holonomic over *R*. \Box

3.3.

Recall from 4.3 the definition of pure modules over \mathcal{A}_R . Examples of pure modules are given by the following.

Definition 3.3.1 We say that a nonzero finitely generated \mathscr{A}_R -module *N* is *Cohen-Macaulay*, or more precisely *j*-*Cohen-Macaulay*, if for some *j* ≥ 0

$$
\operatorname{Ext}_{\mathscr{A}_R}^k(N, \mathscr{A}_R) = 0 \quad \text{if } k \neq j.
$$

Remark 3.3.2 If *N* is a Cohen-Macaulay \mathcal{A}_R -module, then:

- (1) *N* is *j*-pure (see Definition [4.3.4\)](#page-25-2), by Lemma [4.3.5](#page-25-3) (2);
- (2) $Ch^{rel}(N)$ is equidimensional of codimension *j*, by Propositions [4.4.1,](#page-24-1) [4.4.2,](#page-25-0) and [4.5.1.](#page-24-1)

Lemma 3.3.3 If N is relative holonomic over R and $j(N) = n + \dim(R)$, *then it is* $(n + \dim(R))$ *-Cohen-Macaulay.*

Proof The condition on $j(N)$ implies that $N \neq 0$ by Lemma [3.2.2](#page-9-0) (1). If $\text{Ext}^k_{\mathscr{A}_R}(N, \mathscr{A}_R) \neq 0$ for some $k > n + \dim(\text{Spec } R)$, then by Lemma [3.2.4](#page-10-1) (2), $\text{Ext}^k_{\mathscr{A}_R}(N, \mathscr{A}_R)$ is relative holonomic. Hence $\dim(\text{Ch}^{\text{rel}}(\text{Ext}^k_{\mathscr{A}_R}(N, \mathscr{A}_R))) \geq n$. Since \mathscr{A}_R is an Auslander regular ring, $j(\text{Ext}^k_{\mathscr{A}_R}(N, \mathscr{A}_R)) \geq k$. This contradicts Lemma $3.2.2$ (1).

3.4.

For a finitely generated \mathscr{A}_R -module *N*, since *N* is also an *R*-module, we write

$$
B_N = \operatorname{Ann}_R(N)
$$

and denote by $Z(B_N)$ the reduced subvariety in Spec *R* defined by the radical ideal of B_N . Since in general N is not finitely generated over R, it is a priori not clear that $Z(B_N)$ is the *R*-module support of *N*, supp_{*R*}(*N*), consisting of closed points with maximal ideal $m \subset R$ such that the localization $N_m \neq 0$.

Lemma 3.4.1 *If N is relative holonomic over R, then*

$$
Z(B_N) = p_2(\text{Ch}^{\text{rel}}(N)),
$$

*where p*₂: $T^*X \times \text{Spec } R \rightarrow \text{Spec } R$ *the natural projection. In particular,*

$$
Z(B_N) = \operatorname{supp}_R(N).
$$

Proof For $R = \mathbb{C}[s]$ and in the analytic setting, this is [\[20,](#page-27-14) Proposition 9], whose proof can be easily adapted to our case. Since *N* is relative holonomic, $p_2(\text{Ch}^{\text{rel}}(N))$ is closed. Since the contraction of a radical ideal is a radical ideal, the ideal defining $p_2(\text{Ch}^{\text{rel}}(N))$ is $R \cap \sqrt{\text{Ann}_{gr\mathscr{A}_R}(\text{gr} N)}$. Hence the first assertion is equivalent to

$$
R \cap \sqrt{\operatorname{Ann}_{\operatorname{gr} \mathscr{A}_R}(\operatorname{gr} N)} = \sqrt{\operatorname{Ann}_R(N)},
$$

where *R* is viewed as a \mathbb{C} -subalgebra of gr \mathcal{A}_R = gr $\mathcal{D}_X \otimes_{\mathbb{C}} R$ via the map $a \mapsto 1 \otimes a$ for *a* in *R*. Let *b* be in *R*. If $b^kN = 0$ for some $k \ge 1$, then b^k (gr *N*) = 0 as well. Conversely, if b^k (gr *N*) = 0 for some $k > 1$, then $b^{k}(F_{i}N) \subset F_{i-1}N$ for all *i*. Since gr *N* is finitely generated over gr \mathscr{A}_{R} , the filtration *F* on *N* is bounded from below. Then by induction applied to the short exact sequence

$$
0 \to F_{i-1}N \to F_iN \to \operatorname{gr}_i^FN \to 0,
$$

it follows that for each *i* there exist a multiple k_i of k such that $b^{k_i}(F_i N) = 0$, and *ki* form an increasing sequence. Fix a finite set of generators of *N* over \mathscr{A}_R . Since *F* is exhaustive, there exists an index *j* such that all the generators are contained in $F_i N$. Then $b^{k_j} N = 0$.

We proved thus the first claim, or equivalently, that $Z(B_N) = \sup p_R(\text{gr } N)$. Hence the second assertion follows from the equality

$$
\operatorname{supp}_R(\operatorname{gr} N) = \operatorname{supp}_R(N)
$$

which is proved as follows. If m is a maximal ideal in *R* such that $(gr_i^FN)_m \neq 0$ for some *i*, then $(F_i N)_{m} \neq 0$ since localization is an exact functor. Then, again by exactness, $N_m \neq 0$ since $F_i N$ injects into N. Thus supp_R(gr N) is a subset of supp_{*R*}(*N*). Conversely, if $N_m \neq 0$, take *i* to be the minimum integer with the property that $(F_i N)_{\mathfrak{m}} \neq 0$ but $(F_{i-1} N)_{\mathfrak{m}} = 0$. Then $(g r_i^F N)_{\mathfrak{m}} \neq 0$. \Box

Lemma 3.4.2 *Suppose that* N *is relative holonomic over R and* $(n + l)$ *-pure for some* $0 \le l \le \dim(R)$ *. If b is an element of R not contained in any minimal prime ideal containing* B_N *, then the morphisms given by multiplication by b*

$$
N \xrightarrow{b} N
$$

and

$$
\mathrm{Ext}^{n+l}_{\mathscr{A}_R}(N,\mathscr{A}_R)\xrightarrow{b}\mathrm{Ext}^{n+l}_{\mathscr{A}_R}(N,\mathscr{A}_R)
$$

are injective. Furthermore, there exists a good filtration of N over R so that

$$
\text{gr}\,N \stackrel{b}{\to} \text{gr}\,N
$$

is also injective.

Proof We first prove that $N \stackrel{b}{\rightarrow} N$ is injective. If on the contrary its kernel $K \neq 0$, then by Lemma [3.2.2](#page-9-0) (2)

$$
Ch^{\text{rel}}(K) \subset Ch^{\text{rel}}(N).
$$

By purity, we know that $j(K) = j(N) = n + l$. Thanks to Lemma [3.2.2](#page-9-0) (1),

$$
\dim(\mathrm{Ch}^{\mathrm{rel}}(K)) = \dim(\mathrm{Ch}^{\mathrm{rel}}(N)).
$$

By Proposition [4.4.1,](#page-24-1) we can choose good filtrations on *K* and *N* so that both gr *K* and gr *N* are $(n + l)$ -pure over gr \mathcal{A}_R . Hence $Ch^{rel}(K)$ and $Ch^{rel}(N)$ are equidimensional of dimension $n + \dim(R) - l$, by Propositions [4.4.2](#page-25-0) and [4.5.1.](#page-24-1) In particular, $Ch^{\text{rel}}(K)$ is a union of some irreducible components of $Ch^{\text{rel}}(N)$.

By the relative holonomicity of *N*, the irreducible components of $Ch^{rel}(N)$ are $\Lambda_i \times Z_i$ with *i* in some finite index set *I*, for some conic irreducible Lagrangian subvarieties $\Lambda_i \subset T^*X$ and some irreducible closed subsets $Z_i \subset T^*X$ Spec *R*. The equidimensionality of Ch^{rel}(*N*) implies that dim $Z_i = \dim(R) - l$.

By Lemma [3.4.1,](#page-9-1) $Z(B_N) = \bigcup_{i \in I} Z_i$, and the assumption on *b* is that (*b* = 0) does not contain any irreducible component of $Z(B_N)$, where by $(b = 0)$ we mean the reduced closed subset of Spec *R* defined by the radical ideal of *b*. We hence have

$$
Ch^{\text{rel}}(K) \not\subset T^*X \times (b = 0.
$$

However, since *b* annihilates *K*, Ch^{rel}(*K*) $\subset T^*X \times (b = 0)$, which is a contradiction.

Similarly, since gr *N* is $(n + l)$ -pure over gr \mathcal{A}_R , we can run the above argument by replacing $Ch^{\text{rel}}(K)$ with the support of the kernel of the map

$$
\text{gr}\,N \stackrel{b}{\to} \text{gr}\,N
$$

to obtain the injectivity of the latter.

By Lemma [3.2.4](#page-10-1) (2), $\text{Ext}^{n+l}_{\mathscr{A}_R}(N, \mathscr{A}_R)$ is relative holonomic and

$$
Ch^{rel}(Ext^{n+l}_{\mathscr{A}_R}(N,\mathscr{A}_R)) \subset Ch^{rel}(N).
$$

Since $\text{Ext}_{\mathscr{A}_R}^{n+l}(N, \mathscr{A}_R)$ is always $(n+l)$ -pure, cf. Lemma [4.3.5](#page-25-3) (1), by a similar argument we conclude that

$$
\text{Ext}^{n+l}_{\mathscr{A}_R}(N,\mathscr{A}_R) \xrightarrow{b} \text{Ext}^{n+l}_{\mathscr{A}_R}(N,\mathscr{A}_R)
$$

is also injective.

The following is the key technical result of the article. For simplicity, we take Spec *R* to be an open set of \mathbb{C}^r , the only case we need for the proof of the main result.

Proposition 3.4.3 *Let* Spec *R be a nonempty open subset of* C*r. Let N be an AR-module that is relative holonomic over R and* (*n* + *l*)*-Cohen-Macaulay over* \mathcal{A}_R *for some* $0 \le l \le r$ *. Then*

$$
\alpha \in Z(B_N) \ \text{if and only if } N \otimes_R \mathbb{C}_{\alpha} \neq 0,
$$

where \mathbb{C}_{α} *is the residue field of the closed point* $\alpha \in \text{Spec } R$.

Proof We first assume $N \otimes_R \mathbb{C}_{\alpha} \neq 0$. Then $N \otimes_R R_m \neq 0$, where $m \subset R$ is the maximal ideal of α and R_m is the localization of R at m. Then α belongs to supp_{*R*}(N) = $Z(B_N)$, by Lemma [3.4.1.](#page-9-1)

Conversely, we fix a point α in $Z(B_N)$. Since *N* is $(n+l)$ -Cohen-Macaulay, it is in particular $(n + l)$ -pure as a module over \mathcal{A}_R . By Proposition [4.4.1,](#page-24-1) we then can choose a good filtration *F* on *N* so that gr *N* is also pure over gr \mathcal{A}_R . Hence $Ch^{rel}(N)$ is purely of dimension $n + r - l$. By relative holonomicity and Lemma [3.4.1,](#page-9-1) $\overline{Z}(B_N)$ is also purely of dimension $r - l$.

Let us consider the case when $l \leq r$. We then can choose a linear polynomial $b \in \mathbb{C}[s]$ so that $(b = 0)$ contains α , but does not contain any of the irreducible components of $Z(B_N)$. By Lemma [3.4.2,](#page-9-0) the morphisms given by multiplication by *b*

$$
N \xrightarrow{b} N \text{ and } \text{gr } N \xrightarrow{b} \text{gr } N
$$

are both injective, the good filtration from Lemma [3.4.2](#page-9-0) being constructed in the same way. Thus for every *i* the vertical maps are injective in the diagram

$$
0 \longrightarrow F_{i-1}N \longrightarrow F_iN \longrightarrow F_iN/F_{i-1}N \longrightarrow 0
$$

\n
$$
\downarrow b \qquad \qquad \downarrow b \qquad \qquad \downarrow b
$$

\n
$$
0 \longrightarrow F_{i-1}N \longrightarrow F_iN \longrightarrow F_iN/F_{i-1}N \longrightarrow 0
$$

and hence by the snake lemma we get an exact sequence

$$
0 \to F_{i-1}N \otimes_R R/(b) \to F_iN \otimes_R R/(b) \to \operatorname{gr}_i^F N \otimes_R R/(b) \to 0.
$$
\n(3.1)

Note that *b* is also injective on N/F_iN . Indeed, if not, then there exists some $v \in F_j N$ with $j > i$, $v \notin F_{j-1} N$, and $bv \in F_i N$. But then *b* must annihilate the class of ν in $gr_f^F N$, which contradicts the injectivity of *b* on gr *N*. Running a similar snake lemma as above after applying the multiplication by *b* on the short exact sequence

$$
0 \to F_i N \to N \to N/F_i N \to 0,
$$

we obtain a short exact sequence

$$
0 \to F_i N \otimes_R R/(b) \to N \otimes_R R/(b) \to (N/F_i N) \otimes_R R/(b) \to 0
$$
\n(3.2)

The injectivity from [\(3.1\)](#page-15-0) and [\(3.2\)](#page-15-1) implies that the induced filtration on $N \otimes_R R$ $R/(b)$,

$$
F_i(N \otimes_R R/(b)) = \text{im}(F_i N \to N \otimes_R R/(b)) \simeq F_i N/(F_i N \cap bN),
$$

is the filtration by

$$
F_i N \otimes_R R/(b) \simeq F_i N/b F_i N,
$$

and the surjectivity from (3.1) then implies

$$
\operatorname{gr}(N\otimes_R R/(b)) \simeq \operatorname{gr} N\otimes_R R/(b). \tag{3.3}
$$

By Lemma [3.4.1,](#page-9-1) $p_2^{-1}(\alpha)$ intersects non-trivially the support of gr *N*, hence the same is true for $p_2^{-1}(b = 0)$. By Nakayama's Lemma for the finitely generated module gr \overline{N} over gr \mathscr{A}_R , we hence have

$$
0 \neq \frac{\operatorname{gr} N}{b \cdot \operatorname{gr} N} \simeq \operatorname{gr} N \otimes_R R/(b).
$$

Together with the isomorphism [\(3.3\)](#page-16-0), this implies that $N \otimes_R R/(b) \neq 0$. Since *N* ⊗*R R*/(*b*) is also a finitely generated $\mathcal{A}_{R/(b)}$ -module and gr(*N* ⊗*R R*/(*b*)) is a finitely generated gr $\mathcal{A}_{R/(b)}$ -module, we further conclude from [\(3.3\)](#page-16-0) that the relative characteristic variety over $R/(b)$

$$
Chrel(N \otimes_R R/(b)) = (\mathrm{id}_{T^*X} \times \Delta)^{-1}(Chrel(N)),
$$
 (3.4)

where Δ : Spec *R*/(*b*) \hookrightarrow Spec *R* is the closed embedding. Hence $N \otimes_R R/(b)$ is relative holonomic over $R/(b)$. By Lemma [3.4.1,](#page-9-1) we further have

$$
Z(B_{N\otimes R/(b)})=\Delta^{-1}(Z(B_N)).
$$

In particular,

$$
\Delta^{-1}(\pmb{\alpha}) \in Z(B_{N\otimes R/(b)}).
$$

Since

$$
N\otimes_R \mathbb{C}_{\alpha} \simeq N\otimes_R R/(b)\otimes_{R/(b)} \mathbb{C}_{\Delta^{-1}(\alpha)},
$$

where $\mathbb{C}_{\Delta^{-1}(\alpha)}$ is the residue field of $\Delta^{-1}(\alpha) \in \text{Spec } R/(b)$, our strategy will be to prove

$$
N\otimes_R \mathbb{C}_\alpha\neq 0
$$

by repeatedly replacing *N* by $N \otimes_R R/(b)$ and R by $R/(b)$.

To make this work, we need first to prove that $N \otimes_R R/(b)$ remains Cohen-Macaulay over $\mathcal{A}_{R/(b)}$. By taking a free resolution of N, one can see that

$$
\mathrm{RHom}_{\mathscr{A}_R}(N, \mathscr{A}_R) \otimes_{\mathscr{A}_R}^L \mathscr{A}_{R/(b)} \simeq \mathrm{RHom}_{\mathscr{A}_{R/(b)}}(N \otimes_R^L R/(b), \mathscr{A}_{R/(b)})
$$
\n(3.5)

in the derived category of right $\mathcal{A}_{R/(b)}$ -modules. Since the multiplication by *b* is injective on *N*, we further have

$$
\mathrm{RHom}_{\mathscr{A}_{R/(b)}}(N \otimes_R^L R/(b), \mathscr{A}_{R/(b)}) \simeq \mathrm{RHom}_{\mathscr{A}_{R/(b)}}(N \otimes_R R/(b), \mathscr{A}_{R/(b)}).
$$
\n(3.6)

We will use the Grothendieck spectral sequence associated with the lefthand side of [\(3.5\)](#page-17-0) to compute the Ext modules from the right-hand side of [\(3.6\)](#page-17-1). Let us assume without harm that *N* is a left \mathscr{A}_R -module. Then viewing $\text{Hom}_{\mathscr{A}_R}(_,\mathscr{A}_R)$ as a covariant right-exact functor on the opposite category of the category of left \mathcal{A}_R -modules, the composition of the two derived functors RHom_{\mathscr{A}_R}(_, \mathscr{A}_R) and (_) $\otimes_{\mathscr{A}_R}^L \mathscr{A}_{R/(b)}$ gives us a convergent first quadrant homology spectral sequence

$$
E_{p,q}^2 = \text{Tor}_p^{\mathscr{A}_R}(\text{Ext}_{\mathscr{A}_R}^q(N, \mathscr{A}_R), \mathscr{A}_{R/(b)}) \Rightarrow \text{Ext}_{\mathscr{A}_{R/(b)}}^{-p+q}(N \otimes_R R/(b), \mathscr{A}_{R/(b)}),
$$

by [\[26,](#page-27-19) Corollary 5.8.4]. Note that the conditions from *loc. cit.* are satisfied in our case, since a projective object in the opposite category of the category of left \mathscr{A}_R -modules is an injective left \mathscr{A}_R -module *I*, and thus $\text{Hom}_{\mathscr{A}_R}(I, \mathscr{A}_R)$ is a projective right \mathcal{A}_R -module, and so acyclic for the left exact functor (_) $\otimes_{\mathcal{A}_R}$ $\mathscr{A}_{R/(b)}$.

Since *N* is $(n+l)$ -Cohen-Macaulay over \mathcal{A}_R ,

$$
\operatorname{Ext}_{\mathscr{A}_R}^q(N, \mathscr{A}_R) = 0 \quad \text{for } q \neq n+l.
$$

Then

$$
\operatorname{Tor}_p^{\mathscr{A}_R}(\operatorname{Ext}^{n+l}_{\mathscr{A}_R}(N,\mathscr{A}_R),\mathscr{A}_{R/(b)})=0 \quad \text{for } p \neq 0
$$

thanks to Lemma [3.4.2,](#page-9-0) since the complex $\mathscr{A}_R \stackrel{b}{\rightarrow} \mathscr{A}_R$ is a resolution of $\mathscr{A}_{R/b}$. Therefore the above spectral sequence degenerates at E^2 ,

$$
\operatorname{Ext}^q_{\mathscr{A}_{R/(b)}}(N \otimes_R R/(b), \mathscr{A}_{R/(b)}) = 0 \quad \text{for } q \neq n+l,
$$

 \circledcirc Springer

and

$$
\operatorname{Ext}_{\mathscr{A}_{R/(b)}}^{n+l}(N \otimes_R R/(b), \mathscr{A}_{R/(b)}) \simeq \operatorname{Ext}_{\mathscr{A}_R}^{n+l}(N, \mathscr{A}_R) \otimes_{\mathscr{A}_R} \mathscr{A}_{R/(b)}
$$

\simeq \operatorname{Ext}_{\mathscr{A}_R}^{n+l}(N, \mathscr{A}_R) \otimes_R R/(b).

As a consequence, $N \otimes_R R/(b)$ is $(n+l)$ -Cohen-Macaulay over $\mathscr{A}_{R/(b)}$.

Since *b* is linear, \mathbb{C}^{r-1} ≥ Spec $\mathbb{C}[\mathbf{s}]/(b)$, and the latter contains Spec *R*/(*b*) an open subset. We then repeatedly replace *R* by $R/(b)$, *N* by $N \otimes_R R/(b)$, and α by $\Delta^{-1}(\alpha)$. Each time *r* drops by 1, *l* stays unchanged, and *N* remains nonzero, relative holonomic, and $(n + l)$ -Cohen-Macaulay. This reduces us to the case $l = r$.

If $0 = l = r$, the claim is trivially true.

We now assume $0 < l = r$. Since N is now relative holonomic and $(n+r)$ -Cohen-Macaulay, hence $(n + r)$ -pure, we have

$$
Ch^{rel}(N) = \sum_{w} \Lambda_w \times \{p_w\},\
$$

where p_w are points in \mathbb{C}^r . Hence $Z(B_N)$ is a finite union of points in Spec *R*. Counting multiplicities, by Lemma [3.2.2](#page-9-0) (2) we see that *N* is of finite length.

We now fix a linear polynomial $b \in \mathbb{C}[s]$ with $b(\alpha) = 0$ but not vanishing at the other points of $Z(B_N)$. We then have an exact sequence

$$
0 \to K \to N \xrightarrow{b} N \to N \otimes_R R/(b) \to 0,
$$

where *K* is the kernel. We claim that $K \neq 0$. To see this, chose a polynomial $c \in \mathbb{C}[s]$ not vanishing at α but vanishing at all other points of $Z(B_N)$. Then by Nullstellensatz, there is $m > 0$ the smallest power such that $(bc)^m$ is in *B_N*. On the other hand, c^m is not in *B_N*. Taking $p \ge 1$ to be the smallest with $b^p c^m \in B_N$, we see that there exists ν in *N*, such that $b^{p-1} c^m \nu$ is a nonzero element of *K*.

Since $K \neq 0$ and since endomorphisms of modules of finite length are isomorphisms if and only if they are surjective, we have $N \otimes_R R/(b) \neq 0$. By Lemma [3.2.4](#page-10-1) (1), $N \otimes_R R/(b)$ is relative holonomic over *R*, and by Lemma [3.2.2](#page-9-0) (2), every irreducible component of its relative characteristic variety over *R* is one of the components $\Lambda_w \times \{p_w\}$ of Ch^{rel}(*N*). Since *b* annihilates *N* \otimes *R R*/(*b*), only the components with *b*(p_w) = 0, and hence with $p_w = \alpha$, appear. We conclude that $N \otimes_R R/(b)$ is also relative holonomic over *R*/(*b*). By Lemma [3.2.2](#page-9-0) (1), we have $j_{\mathscr{A}_{R/(b)}}(N \otimes_R R/(b)) = n + r - 1$. Then by Lemma [3.3.3,](#page-9-2) $N \otimes_R R/(b)$ is $(n + r - 1)$ -Cohen-Macaulay over $\mathscr{A}_{R/(b)}$.

We therefore can replace *N* by $N \otimes_R R/(b)$, R by $R/(b)$, and assume that $\text{Ch}^{\text{rel}}(N) = \bigcup_{w} \Lambda_w \times \{\alpha\}$ for some irreducible conic Lagrangian subvarieties

 Λ_w of T^*X . Repeating this process, each time *r* drops by 1, *N* remains nonzero, relative holonomic, and $(n + r)$ -Cohen-Macaulay. The process finishes at the case $r = 0$, in which case there is nothing to prove anymore.

Remark 3.4.4 A result similar to Proposition [3.4.3](#page-9-2) is proved by a different method in [\[3,](#page-26-5) Appendix B] for $\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}}/\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}+1}$ when **f** is a reduced free hyperplane arrangement.

3.5.

We consider now the left $\mathscr A$ -module

$$
M=\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}}/\mathscr{D}_X[\mathbf{s}]\mathbf{f}^{\mathbf{s}+1}.
$$

In this case, the annihilator B_M is the Bernstein–Sato ideal B_F , since M is a cyclic \mathcal{A} -module generated by the class of f^s in M .

It is well-known that the zero locus $Z(B_F)$ in \mathbb{C}^r has dimension $r-1$. Indeed, since B_F is the intersection of the local Bernstein–Sato ideals, by restricting attention to the neighborhood of a smooth point of the zero locus of $\prod_{i=1}^r f_i$, one reduces the assertion to the case when $f_i = x_1^{a_i}$ for some $a_i \in \mathbb{N}$ for all $i = 1, \ldots r$ with $\mathbf{a} = (a_1, \ldots, a_r) \neq (0, \ldots, 0)$. In this case, the Bernstein– Sato ideal is principal, generated by $\prod_{j=1}^{|a|} (\mathbf{a} \cdot \mathbf{s} + j)$ with $|\mathbf{a}| = a_1 + \ldots + a_r$.

In addition, it is known that every top-dimensional irreducible component of $Z(B_F)$ is a hyperplane in \mathbb{C}^r defined over \mathbb{Q} by [\[22](#page-27-0)[,23](#page-27-1)].

We will use the following result of Maisonobe, which also holds in the local analytic case, cf. [3.6:](#page-21-0)

Theorem 3.5.1 (Maisonobe) *The A -module M is relative holonomic over* $\mathbb{C}[\mathbf{s}]$ *, has grade number* $j(M) = n+1$ *over* \mathcal{A} *, and* dim $\text{Ch}^{\text{rel}}(M) = n+r-1$ *. Every irreducible component of* $Z(B_F)$ *of codimension* > 1 *can be translated by an element of* Z*^r into a component of codimension one.*

Proof In [\[20,](#page-27-14) Résultat 3] it is shown that $Ch^{rel}(M) = \bigcup_{i \in I} \Lambda_i \times Z_i$ for some finite set *I* with $\Lambda_i \subset T^*X$ conic Lagrangian, $Z_i \subset \mathbb{C}^r$ algebraic closed subset of dimension $\leq r - 1$. Thus *M* is relative holonomic over $\mathbb{C}[s]$. Lemma [3.4.1](#page-9-1) shows that $Z(B_F) = \bigcup_{i \in I} Z_i$, cf. also the remark after [\[20,](#page-27-14) Résultat 2]. Since $\dim Z(B_F) = r - 1$, it follows that dim Ch^{rel}(*M*) = $n + r - 1$, and hence $j(M) = n+1$ by Lemma [3.2.2](#page-9-0) (1). The last claim is contained in the statement of [20]. Résultat 31. of [\[20](#page-27-14), Résultat 3].

We next observe that over an open subset of \mathbb{C}^r , M behaves particularly nice:

Lemma 3.5.2 *There exists an open affine subset* $V = \text{Spec } R \subset \mathbb{C}^r$ *such that the intersection of V with each irreducible component of codimension one of* $Z(B_F)$ *is not empty, and the module M* \otimes _{*C*[s]} *R is relative holonomic over R and* $(n + 1)$ *-Cohen-Macaulay over* \mathcal{A}_R *.*

Proof Since *M* is relative holonomic over $\mathbb{C}[s]$, and since good filtrations localize by Remark [3.2.1,](#page-9-1) it follows that $M \otimes_{\mathbb{C}[s]} R$ is relative holonomic over *R*, if Spec *R* is a non-empty open subset of \mathbb{C}^r .

Since $j(M) = n + 1$,

$$
\operatorname{Ext}_{\mathscr{A}}^k(M, \mathscr{A}) = 0 \text{ for } k < n+1.
$$

By Auslander regularity of \mathscr{A} , if $\text{Ext}^k_{\mathscr{A}}(M, \mathscr{A})) \neq 0$ for $k \geq n + 1$, then

$$
j\left(\operatorname{Ext}_{\mathscr{A}}^k(M,\mathscr{A})\right)\geq k.
$$

Note that since $gl.dim(\mathscr{A})$ is finite, there are only finitely many k with $Ext^k_{\mathscr{A}}(M, \mathscr{A}) \neq 0$. By Lemma [3.2.4](#page-10-1) (2), if $Ext^k_{\mathscr{A}}(M, \mathscr{A}) \neq 0$, then $\text{Ext}^k_{\mathscr{A}}(M, \mathscr{A}))$ is relative holonomic and

$$
Ch^{rel}(Ext^k_{\mathscr{A}}(M,\mathscr{A}))) \subset Ch^{rel}(M).
$$

By Lemma [3.2.2](#page-9-0) (1), when $k > n + 1$,

$$
\dim(\mathrm{Ch}^{\mathrm{rel}}(\mathrm{Ext}^k_{\mathscr{A}}(M,\mathscr{A}))) < n + r - 1. \tag{3.7}
$$

By relative holonomicity, the irreducible components of $\text{Ch}^{\text{rel}}(M)$ are $\Lambda_i \times Z_i$ with *i* in some finite index set *I*, $\Lambda_i \subset T^*X$ irreducible conic Lagrangian, and Z_i irreducible closed in \mathbb{C}^r . Then the irreducible components of $Ch^{rel}(Ext^k_{\mathscr{A}}(M, \mathscr{A}))$ are $\Lambda_i \times Z'_i$ with *i* in some subset $J \subset I$, and Z'_i irreducible closed in Z_i . By Lemma [3.4.1](#page-9-1) applied to *M* and $\text{Ext}^k_{\mathscr{A}}(M, \mathscr{A})$, respectively, we have that $Z(B_F) = \bigcup_{i \in I} Z_i$, and the support in \mathbb{C}^r of $\text{Ext}^k_{\mathscr{A}}(M, \mathscr{A})$ is $\cup_{i \in J} Z_i'$. Then dim $Z(B_F) = r - 1$, and dim $Z_i' < r - 1$ for each $k > n + 1$ by [\(3.7\)](#page-20-0). Therefore the support in \mathbb{C}^r of $\text{Ext}^k_{\mathcal{A}}(M, \mathcal{A})$ is a proper algebraic subset of $Z(B_F)$ not containing any top-dimensional component of $Z(B_F)$ if $k > n + 1$. Choose $V = \text{Spec } R$ to be an open affine subset of \mathbb{C}^r away from these proper subsets of $Z(B_F)$ for all $k > n + 1$. Then for any good filtration we have

$$
(\operatorname{gr} \operatorname{Ext}^k_{\mathscr{A}}(M, \mathscr{A})) \otimes_{\mathbb{C}[\mathbf{s}]} R = 0
$$

for all $k > n+1$. Since R is the localization of $\mathbb{C}[s]$ with respect to some multiplicatively closed subset *S*, and since good filtrations localize, cf. Remark [3.2.1,](#page-9-1) we have

$$
\operatorname{gr}(S^{-1}\operatorname{Ext}^k_{\mathscr{A}}(M,\mathscr{A}))=0,
$$

and so

$$
S^{-1}Ext^k_{\mathscr{A}}(M,\mathscr{A})=0.
$$

Since *S* is also a multiplicatively closed subset of $\mathscr A$, in the center of $\mathscr A$, and *M* is finitely generated over the noetherian ring \mathscr{A} , the Ext module localizes

$$
0 = S^{-1}Ext^k_{\mathscr{A}}(M, \mathscr{A}) = Ext^{k}_{S^{-1}\mathscr{A}}(S^{-1}M, S^{-1}\mathscr{A}),
$$

cf. $[26, \text{Lemma } 3.3.8]$ $[26, \text{Lemma } 3.3.8]$ and the proof of $[26, \text{ Proposition } 3.3.10]$ $[26, \text{ Proposition } 3.3.10]$, where one identifies the localization functor S^{-1} (_) on $\mathscr A$ -modules with the flat extension (_) ⊗_{\mathscr{A}} \mathscr{A}_R = (_) ⊗_{C[s]} R . Thus $S^{-1}M = M \otimes_{\mathbb{C}[s]} R$ is $(n + 1)$ -Cohen-Macaulay over $S^{-1} \mathscr{A} = \mathscr{A}_R$. Macaulay over $S^{-1} \mathscr{A} = \mathscr{A}_R$.

Now Lemma [3.5.2](#page-9-0) and Proposition [3.4.3](#page-9-2) immediately imply:

Theorem 3.5.3 *For every irreducible component H of codimension one of* $Z(B_F)$ *and for every general point* α *on* H *,*

$$
M\otimes_{\mathbb{C}[s]}\mathbb{C}_{\alpha}\neq 0.
$$

3.6 Analytic case

Theorem [3.5.3](#page-9-2) holds also in the local analytic case. We indicate now the necessary changes in the arguments. The smooth affine algebraic variety *X* is replaced by the germ(*X*, *x*) of a complex manifold of dimension *n*. The rings *R* stay as before and we let *Y* denote the complex manifold underlying the smooth affine complex algebraic variety Spec (*R*). The rings and modules from the algebraic case \mathscr{D}_X , $\mathscr{A}_R = \mathscr{D}_X \otimes_{\mathbb{C}} R$, *N*, etc., have natural analytic versions as sheaves on the complex manifold *X*, but their role from the previous arguments will be played by the stalks of these sheaves, $\mathscr{D}_{X,x}$, $\mathscr{A}_{R,x} = \mathscr{D}_{X,x} \otimes_{\mathbb{C}} R$, N_x , etc. The role of Ch^{rel}(*N*) from the algebraic case will be played by Ch^{rel}(*N*)∩ $\pi^{-1}(\Omega \times Y)$, for a very small open ball Ω in *X* centered at *x*. Recall that for a coherent sheaf of \mathcal{A}_R -modules N on the complex manifold X, the relative characteristic variety $Ch^{rel}(N)$ is the analytic subspace of $T^*X \times Y$ defined as the zero locus of the radical of the annihilator of *N* in \mathcal{A}_R . With these changes, all the statements in this section hold in the local analytic case as well.

There are however a few special issues arising in this case, since (partial) analytifications of \mathcal{A}_R and N are needed in order for the module theory as in the Appendix to capture the analytic structure of $\mathrm{Ch}^{\mathrm{rel}}(N)$. For a sheaf of $\mathcal{O}_X \otimes_{\mathbb{C}} R$ -modules *L* on the complex manifold *X*, one defines the (partial) analytification

$$
\widetilde{L} = \mathscr{O}_{X \times Y} \otimes_{p^{-1}(\mathscr{O}_X \otimes_{\mathbb{C}} R)} p^{-1}(L),
$$

a sheaf of $\mathcal{O}_{X \times Y}$ -modules, where $p : X \times Y \to X$ is the first projection. Thus \mathcal{A}_R is the sheaf of relative differential operators $\mathcal{D}_{X \times Y/Y}$, locally isomorphic to $\mathcal{O}_{X \times Y}[\partial_1, \ldots, \partial_n]$. The analytification of the filtration on \mathscr{A}_R is the natural filtration on \mathcal{A}_R , and gr \mathcal{A}_R is locally isomorphic to $\mathcal{O}_{X \times Y}[\xi_1, \ldots, \xi_n]$, a sheaf of subrings of $\mathcal{O}_{T^*X \times Y}$, where ξ_i are coordinates of the fibers of the natural projection $\pi : T^*X \times Y \to X \times Y$. If *N* is a coherent sheaf of \mathscr{A}_R -modules, then *N* is a coherent sheaf of \mathcal{A}_R -modules. Since (\cup) is an exact functor, it is is compatible with good filtrations, gr $\widetilde{N} = \widetilde{gr N}$, the annihilator in gr $\widetilde{\mathscr{A}}_R$
of $gr \widetilde{N}$ is the analytification of the annihilator of $gr N$ in \mathscr{A}_r and the redical of gr *N* is the analytification of the annihilator of gr *N* in \mathcal{A}_R , and the radical $J(\widetilde{N})$ of the former is the analytification $\widetilde{J(N)}$ of the radical of the latter. Then
Ch^{rel}(M) is the analytic subgross of $T^*V \times V$ defined by the ideal congrated $Ch^{rel}(N)$ is the analytic subspace of $T^*X \times Y$ defined by the ideal generated by $J(N)$ in $\mathcal{O}_{T^*X \times Y}$, the full analytification, cf. [\[7,](#page-27-17) I.6.21].

Note that there is a natural isomorphism of C-algebras

gr
$$
\mathscr{A}_{R,x} \simeq \mathbb{C}\{x_1,\ldots,x_n\}[\xi_1,\ldots,\xi_n] \otimes_{\mathbb{C}} R
$$

after choosing local coordinates x_1, \ldots, x_n on *X* at *x*. This ring is a regular commutative integral domain of dimension $2n + \dim(R)$. Thus all the results in the Appendix apply to this ring, except Proposition [4.5.1](#page-24-1) (ii). Indeed, gr $\mathscr{A}_{R,x}$ has maximal ideals of height less than dim(gr $\mathscr{A}_{R,x}$). (For example, the ideal $(1 - x\xi)$ of $\mathbb{C}\{x\}$ [ξ] is maximal of height 1.) On the other hand, our modules are special: gr N_x is a graded module if gr \mathcal{A}_{R_x} is given the natural grading in the coordinates ξ_1, \ldots, ξ_n . The exact functor (\Box) is also faithful on the category
of sekerant anded an \mathcal{A} modules. of coherent graded gr \mathcal{A}_R -modules:

Proposition 3.6.1 (Maisonobe [\[20,](#page-27-14) Lemme 1]) If M is a coherent gr \mathcal{A}_R *module and* $x \in X$, then $M_x = 0$ if and only if there exists an open *neighborhood* Ω *of x in X such that* $\widetilde{M}|_{\Omega \times Y} = 0$.

Thus one obtains, cf. [\[20,](#page-27-14) Proposition 2]: for a small enough Ω ,

$$
j_{\operatorname{gr}\mathscr{A}_{R,x}}(\operatorname{gr} N_x)=\inf_{(x',y)\in\Omega\times Y}j_{(\operatorname{gr}\widetilde{\mathscr{A}}_R)_{(x',y)}}((\operatorname{gr}\widetilde{N})_{(x',y)}).
$$

The stalks $(gr N)_{(x',y)}$ determine the local analytic structure at $(x', 0, y)$ of the conical set $\text{Ch}^{\text{rel}}(N)$, since the extension functor from the category of graded coherent sheaves over gr \mathcal{A}_R into the category of coherent sheaves over $\mathscr{O}_{T^*X \times Y}$ is also faithful besides being exact, by the Nullstellensatz for conical analytic sets, cf. [\[7](#page-27-17), Remark I.1.6.8]. In particular, there is a 1-1 correspondence between conical analytic sets in $T^*X \times Y$ and radical graded coherent ideals in gr \mathscr{A}_R . Therefore the ring $(\text{gr }\mathscr{A}_R)_{(x',y)}$ and the module $(\text{gr } N)_{(x',y)}$ can be replaced by their localization at the unique graded maximal ideal (cf. [\[9,](#page-27-20) 1.5]) and in this context Proposition [4.5.1](#page-24-1) (ii) does apply. A consequence is that

Lemma [3.2.2](#page-9-0) (1) holds indeed with the changes we have mentioned: for a small neighborhood Ω of *x*,

$$
j_{\mathscr{A}_{R,x}}(N_x) + \dim(\mathrm{Ch}^{\mathrm{rel}}(N) \cap \pi^{-1}(\Omega \times Y)) = 2n + \dim(R).
$$

This is [\[20,](#page-27-14) Proposition 2, Théorème 1], where $R = \mathbb{C}[s]$ but the proof applies in general, and we used semicontinuity of the dimension function [\[13](#page-27-21), p.94] to rephrase the statement slightly.

Next, in keeping up with the changes indicated, the condition "regular holonomic" will be replaced by the condition that a coherent module *N* over \mathscr{A}_R is *regular holonomic at x*, that is, there exists a neighborhood Ω of *x* such that $Ch^{\text{rel}}(N) \cap \pi^{-1}(\Omega \times Y)$ is as in Definition [3.2.3.](#page-9-2)

The condition " *j*-Cohen-Macaulay" will be replaced by the condition that *N* is *j*-Cohen-Macaulay at x, that is, N_x is *j*-Cohen-Macaulay. This is equivalent to *N* being *j*-Cohen-Macaulay on some neighborhood Ω of *x*, that is, *j*-Cohen-Macaulay at all points x' in $\Omega \cap \text{supp}(N)$. Note that the support of N is an analytic subset of *X* by Proposition [3.6.1,](#page-22-0) since the support of *N* is an analytic subset of *X* \times *X* by the sonical property of *C* k^{rel}(*N*). Moreover, *N* is *i*, *C* chan subset of *X* × *Y* by the conical property of $Ch^{rel}(N)$. Moreover, *N* is *j*-Cohen-Macaulay on Ω if and only if one of the following two equivalent conditions hold for $k \neq j$: $\mathcal{E}xt_{\mathcal{A}_R}^k(N, \mathcal{A}_R)|_{\Omega} = 0$; $\mathcal{E}xt_{\mathcal{A}_R}^k(N, \mathcal{A}_R)_{x'} = 0$ for all $x' \in \Omega$. Also, *N* is *j*-Cohen-Macaulay at *x* if and only if *N* is *j*-Cohen-Macaulay and Ω *N* is *f* or Ω *N* is *k* is and Ω *n* is *n* Ω *n* is *n* Ω *n* on $\Omega \times Y$ for some $\Omega \ni x$, by Proposition [3.6.1.](#page-22-0) This implies, by applying Proposition [4.5.1](#page-24-1) in the context mentioned above, that Remark [3.3.2](#page-9-0) holds in the local analytic case; in particular, if *N* is *j*-Cohen-Macaulay at *x*, then $Ch^{rel}(N) \cap \pi^{-1}(\Omega \times Y)$ is equidimensional of codimension *j*.

With the changes we have indicated, the rest of the arguments remain as before, and all statements in this section are true in this case.

3.7 Proof of Theorem [1.5.2.](#page-3-0)

By Theorem [3.5.3](#page-9-2) and Proposition [2.5.4,](#page-7-1) the image under Exp of a non-empty open subset of each irreducible component of codimension one of $Z(B_F)$ lies in $S(F)$. By the description of $Z(B_F)$ from Theorem [3.5.1](#page-9-1) and the paragraphs preceding it, it follows that $Exp(Z(B_F))$ is included in $S(F)$.

Acknowledgements We would like to thank L. Ma, P. Maisonobe, C. Sabbah for some discussions, to M. Mustaţă for drawing our attention to a mistake in the first version of this article, and to the referees for comments that helped improve the article.

The first author was partly supported by the grants STRT/13/005 and Methusalem METH/15/026 from KU Leuven, G097819N and G0F4216N from the Research Foundation - Flanders. The second author is supported by a PhD Fellowship of the Research Foundation - Flanders. The fourth author is supported by the Simons Postdoctoral Fellowship as part of the Simons Collaboration on HMS.

4 Appendix

We recall some facts for not-necessarily commutative rings from [\[7](#page-27-17), A.III and A.IV] that we use in the proof of the main theorem.

4.1.

Let *A* be a ring, by which we mean an associative ring with a unit element. Let $Mod_f(A)$ be the abelian category of finitely generated left *A*-modules.

We say that *A* is a *positively filtered ring* if *A* is endowed with a \mathbb{Z} -indexed increasing exhaustive filtration ${F_i A}_{i \in \mathbb{Z}}$ of additive subgroups such that $F_i A$. $F_i A \subset F_{i+i} A$ for all *i*, *j* in \mathbb{Z} , and $F_{-1} A = 0$. The associated graded object $gr^F A = \bigoplus_i (F_i A / F_{i-1} A)$ has a natural ring structure. When we do not need to specify the filtration, we write gr *A* for $gr^F A$.

If *A* is a positively filtered ring such that gr *A* is noetherian, then *A* is noetherian, [\[7](#page-27-17), A.III 1.27]. Here, noetherian means both left and right noetherian.

4.2.

Let *A* be a noetherian ring, positively filtered. A *good filtration* on $M \in$ Mod $_f(A)$ is an increasing exhaustive filtration $F_{\bullet}M$ of additive subgroups such that $F_i A \cdot F_j M \subset F_{i+j} M$ for all *i*, *j* in \mathbb{Z} , and such that its associated graded object gr *M* is a finitely generated graded module over gr *A*, cf. [\[7](#page-27-17), A.III 1.29].

Proposition 4.2.1 ([\[7](#page-27-17), A.III 3.20–3.23]) *Let A be a noetherian ring, positively filtered.*

(1) Let M be in Mod *^f* (*A*) *with a good filtration. Then the radical of the annihilator ideal in* gr *A*

$$
J(M) := \sqrt{\operatorname{Ann}_{\operatorname{gr} A}(\operatorname{gr} M)}
$$

and the multiplicities $m_p(M)$ of $gr M$ at minimal primes p of $J(M)$ do *not depend on the choice of a good filtration.*

(2) If

$$
0 \to M' \to M \to M'' \to 0
$$

is an exact sequence in Mod *^f* (*A*) *then*

$$
J(M) = J(M') \cap J(M'')
$$

and if p *is a minimal prime of J* (*M*) *then*

$$
m_{\mathfrak{p}}(M) = m_{\mathfrak{p}}(M') + m_{\mathfrak{p}}(M'').
$$

Note that the last assertion is equivalent to the existence of a \mathbb{Z} -valued additive map m_p on the Grothendieck group generated by the finitely generated modules *N* over gr *A* with $J(M) \subset \sqrt{\text{Ann}_{gr} A N}$, as it is phrased in *loc. cit.*

Proposition 4.2.2 ([\[7](#page-27-17), A.IV 4.5]) *Let A be a noetherian ring, positively filtered. Let M be in* Mod $_f(A)$ *with a good filtration. For every k* ≥ 0 *, there exists a good filtration on the right A-module* $\operatorname{Ext}_A^k(M, A)$ *such that* $\operatorname{gr}(\operatorname{Ext}_A^k(M, A))$ *is a subquotient of* $\operatorname{Ext}_{\mathrm{gr} A}^k(\operatorname{gr} M,\operatorname{gr} A)$ *.*

4.3.

Let *A* be a noetherian ring. The smallest $k \geq 0$ for which every *M* in Mod_f(*A*) has a projective resolution of length $\leq k$ is called the *homological dimension* of *A* and it is denoted by gl.dim(*A*).

Definition 4.3.1 For a nonzero *M* in Mod_{*f*}(*A*), the smallest integer $k \geq 0$ such that $\text{Ext}_{A}^{k}(M, A) \neq 0$ is denoted

 $j_A(M)$

and it is called the *grade number* of M. If $M = 0$ the grade number is taken to be ∞ .

The ring *A* is *Auslander regular* if it has finite homological dimension and, for every *M* in Mod_f(*A*), every $k \ge 0$, and every nonzero right submodule *N* of $\text{Ext}_{A}^{k}(M, A)$, one has $j_{A}(N) \geq k$. This implies the similar condition phrased for right *A*-modules *M*, see [\[7](#page-27-17), A.IV 1.10] and the comment thereafter.

Theorem 4.3.2 ([\[7,](#page-27-17) A.IV 5.1]) *If A is a positively filtered ring such that* gr *A is a regular commutative ring, then A is an Auslander regular ring.*

Proposition 4.3.3 ([\[7](#page-27-17), A.IV 1.11]) *Let A be an Auslander regular ring. Then*

 $gl.dim(A) = \sup\{j_A(M) | 0 \neq M \in Mod_f(A)\}.$

Definition 4.3.4 A nonzero module *M* in Mod $_f(A)$ is *j*-*pure* (or simply, *pure*) if $j_A(N) = j_A(M) = j$ for every nonzero submodule N.

Lemma 4.3.5 ([\[7](#page-27-17), A.IV 2.6]) *Let A be an Auslander regular ring, M nonzero in* $Mod_f(A)$ *, and* $j = j_A(M)$ *. Then:*

- *(1)* Ext^{j}_{A} (M, A) *is a j-pure right A-module;*
- *(2) M* is pure if and only if $\text{Ext}_{A}^{k}(\text{Ext}_{A}^{k}(M, A), A) = 0$ for every $k \neq j$.

4.4.

We assume now that *A* is a positively filtered ring such that gr *A* is a regular commutative ring. Then *A* is also Auslander regular by Theorem [4.3.2.](#page-25-0) Moreover, with these assumptions one has the following two results.

Proposition 4.4.1 ([\[7](#page-27-17), A.IV 4.10 and 4.11]) *If M in* Mod $_f(A)$ *is j-pure, there exists a good filtration on M such that* gr *M is a j-pure* gr *A-module.*

Proposition 4.4.2 ([\[7](#page-27-17), A.IV 4.15]) *For any M in* $Mod_f(A)$ *and any good filtration on M,*

$$
j_A(M) = j_{\text{gr }A}(\text{gr }M).
$$

4.5.

Lastly, we consider a regular commutative ring A. Then gl.dim. (A) = sup{gl.dim. (A_m) | m \subset *A* maximal ideal }, cf. [\[6,](#page-27-6) Ch. 2, 5.20]. We let $\dim(A)$ denote the Krull dimension. For a module $M \in Mod_f(A)$, $\dim_A(M)$ denotes $\dim(A/\text{Ann}_A(M))$. If *A* is a regular local commutative ring, then $dim(A) = gl.dim.(A), cf. [7, A.IV 3.5].$ $dim(A) = gl.dim.(A), cf. [7, A.IV 3.5].$ $dim(A) = gl.dim.(A), cf. [7, A.IV 3.5].$

Proposition 4.5.1 *Let A be a regular commutative ring and M nonzero in* $Mod_f(A)$ *. Then:*

- *(i) ([\[7](#page-27-17), A.IV 3.4]) A is Auslander regular;*
- *(ii)* (*[\[6](#page-27-6), Ch. 2, Thm. 7.1]) if* $dim(A_m) = m$ *for every maximal ideal* m *of A,*

$$
j_A(M) + \dim_A(M) = m \, ;
$$

(iii) ([\[7](#page-27-17), A.IV 3.7 and 3.8]) M is a pure A-module if and only if every associated prime of M is a minimal prime of M and $j_A(M) = \dim(A_p)$ *for every minimal prime* p *of M.*

References

- 1. Bahloul, R., Oaku, T.: Local Bernstein-Sato ideals: algorithm and examples. J. Symbolic Comput. **45**(1), 46–59 (2010)
- 2. Bath, D.: Bernstein-Sato varieties and annihilation of powers. [arXiv:1907.05301.](http://arxiv.org/abs/1907.05301) To appear in Trans. Amer. Math. Soc
- 3. Bath, D.: Combinatorially determined zeroes of Bernstein-Sato ideals for tame and free arrangements. J. Singul. **20**, 165–204 (2020)
- 4. Beilinson, A., Gaitsgory, D.: A corollary of the b-function lemma. Selecta Math. (N.S.) **18**(2), 319–327 (2012)
- 5. Bernstein, J.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl. **6**, 273–285 (1972)
- 6. Björk, J.-E.: Rings of differential operators. North-Holland Math. Libr. **21**, xvii+374 (1979)
- 7. Björk, J.-E.: Analytic *D*-Modules and Applications. Mathematics and its Applications, vol. 247, pp xiv+581. Kluwer academic publishers, New York (1993)
- 8. Briançon, J., Maisonobe, P., Merle, M.: Constructibilité de l'idéal de Bernstein. In: Singularities-Sapporo 1998, pp 79–95, Adv. Stud. Pure Math., 29, Kinokuniya, Tokyo (2000)
- 9. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. pp xii+403, Cambridge University Press, Cambridge (1993)
- 10. Budur, N.: Bernstein-Sato ideals and local systems. Ann. Inst. Fourier **65**(2), 549–603 (2015)
- 11. Budur, N., Liu, Y., Saumell, L., Wang, B.: Cohomology support loci of local systems. Michigan Math. J. **66**(2), 295–307 (2017)
- 12. Budur, N., Wang, B.: Local systems on analytic germ complements. Adv. Math. **306**, 905– 928 (2017)
- 13. Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 265. xviii+249, Springer, Berlin (1984)
- 14. Gyoja, A.: Bernstein-Sato's polynomial for several analytic functions. J. Math. Kyoto Univ. **33**, 399–411 (1993)
- 15. Kaledin, D.: Normalization of a Poisson algebra is Poisson. Proc. Steklov Inst. Math. **264**(1), 70–73 (2009)
- 16. Kashiwara, M.: *B*-functions and holonomic systems. Rationality of roots of *B*-functions. Invent. Math. **38**(1): 33–53 (1976/77)
- 17. Kashiwara, M.: Vanishing cycle sheaves and holonomic systems of differential equations. In: Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, pp. 134– 142, Springer, Berlin (1983)
- 18. Kashiwara, M., Kawai, T.: On holonomic systems for $\prod_{l=1}^{N} (f_l + \sqrt{-1}O)^{\lambda_l}$. Publ. Res. Inst. Math. Sci. **15**(2), 551–575 (1979)
- 19. Loeser, F.: Fonctions zêta locales d'Igusa à plusieurs variables, intégration dans les fibres, et discriminants. Ann. Sci. École Norm. Sup. (4) **22**(3), 435–471 (1989)
- 20. Maisonobe, P.: Filtration Relative, l'Idéal de Bernstein et ses pentes. [arXiv:1610.03354](http://arxiv.org/abs/1610.03354)
- 21. Malgrange, B.: Polynômes de Bernstein-Sato et cohomologie évanescente. Astérisque **101**, 243 (1983)
- 22. Sabbah, C.: Proximité évanescente. I. Compositio Math. **62**(3), 283–328 (1987)
- 23. Sabbah, C.: Proximité évanescente. II. Compositio Math. **64**(2), 213–241 (1987)
- 24. Sabbah, C.: Modules d'Alexander et *D*-modules. Duke Math. J. **60**(3), 729–814 (1990)
- 25. Walther, U.: The Jacobian module, the Milnor fiber, and the *D*-module generated by *f ^s*. Invent. Math. **207**(3), 1239–1287 (2017)
- 26. Weibel, C.: An Introduction to Homological Algebra, p. xiv+450. Cambridge University Press, Cambridge (1994)
- 27. Wu, L., Zhou, P.: Log *D*-modules and index theorem, [arXiv:1904.09276v1](http://arxiv.org/abs/1904.09276v1)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.