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Abstract We prove a conjecture of the first author relating the Bernstein–
Sato ideal of a finite collection of multivariate polynomials with cohomology
support loci of rank one complex local systems. This generalizes a classical
theorem of Malgrange and Kashiwara relating the b-function of a multivariate
polynomialwith themonodromyeigenvalues on theMilnorfibers cohomology.
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1 Introduction

1.1.

Let F = ( f1, . . . , fr ) : (X, x) → (Cr , 0) be the germ of a holomorphic
map from a complex manifold X . The (local) Bernstein–Sato ideal of F is
the ideal BF in C[s1, . . . , sr ] generated by all b ∈ C[s1, . . . , sr ] such that in a
neighborhood of x

b
r∏

i=1

f si
i = P ·

r∏

i=1

f si +1
i (1.1)

for some P ∈ DX [s1, . . . , sr ], whereDX is the ring of holomorphic differential
operators. Sabbah [22,23] showed that BF is not zero.

1.2.

If F = ( f1, . . . , fr ) : X → C
r is a morphism from a smooth complex affine

irreducible algebraic variety, the (global) Bernstein–Sato ideal BF is defined
as the ideal generated by all b ∈ C[s1, . . . , sr ] such that (1.1) holds globally
with DX replaced by the ring of algebraic differential operators. The global
Bernstein–Sato ideal is the intersection of all the local ones at points x with
some fi (x) = 0, and there are only finitely many distinct local Bernstein–Sato
ideals, see [1,8].

1.3.

It was clear from the beginning that BF contains some topological informa-
tion about F , e.g. [18,19,22,23]. However, besides the case r = 1, it was not
clear what precise topological information is provided by BF . Later, a conjec-
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Zero loci of Bernstein–Sato ideals 47

ture based on computer experiments was formulated in [10] addressing this
problem. In this article we prove this conjecture.

1.4.

Let us recall what happens in the case r = 1. If f : X → C is a regular function
on a smooth complex affine irreducible algebraic variety, or the germ at x ∈ X
of a holomorphic function on a complex manifold, the monic generator of the
Bernstein–Sato ideal of f in C[s] is called the Bernstein–Sato polynomial, or
the b-function, of f and it is denoted by b f (s). The non-triviality of b f (s) is
a classical result of Bernstein [5] in the algebraic case, and Björk [6] in the
analytic case. One has the following classical theorem, see [16,17,21]:

Theorem 1.4.1 Let f : X → C be a regular function on a smooth complex
affine irreducible algebraic variety, or the germ at x ∈ X of a holomorphic
function on a complex manifold, such that f is not invertible. Let b f (s) ∈ C[s]
be the Bernstein–Sato polynomial of f . Then:

(i) (Malgrange, Kashiwara) The set

{exp(2π iα) | α is a root of b f (s)}
is the set of monodromy eigenvalues on the nearby cycles complex of f .

(ii) (Kashiwara) The roots of b f (s) are negative rational numbers.
(iii) (Monodromy Theorem) The monodromy eigenvalues on the nearby cycles

complex of f are roots of unity.

The definition of the nearby cycles complex is recalled in Sect. 2. In the alge-
braic case, b f (s) provides thus an algebraic computation of the monodromy
eigenvalues.

1.5.

We complete in this article the extension of this theorem to a finite collection
of functions as follows. Let

Z(BF ) ⊂ C
r

be the zero locus of the Bernstein–Sato ideal of F . Let ψFCX be the spe-
cialization complex1 defined by Sabbah [24]; the definition will be recalled
in Sect. 2. This complex is a generalization of the nearby cycles complex to
a finite collection of functions, the monodromy action being now given by r
simultaneous monodromy actions, one for each function fi . Let

S(F) ⊂ (C∗)r

1 This is called “le complexe d’Alexander” in [24].
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48 N. Budur et al.

be the support of this monodromy action on ψFCX . In the case r = 1, this
is the set of eigenvalues of the monodromy on the nearby cycles complex.
The support S(F) has a few other topological interpretations, one being in
terms of cohomology support loci of rank one local systems, see Sect. 2. Let
Exp : C

r → (C∗)r be the map Exp(_) = exp(2π i_).

Theorem 1.5.1 Let F = ( f1, . . . , fr ) : X → C
r be a morphism of smooth

complex affine irreducible algebraic varieties, or the germ at x ∈ X of a
holomorphic map on a complex manifold, such that not all fi are invertible.
Then:

(i) Exp(Z(BF )) = S(F).

(ii) Every irreducible component of Z(BF ) of codimension 1 is a hyperplane
of type a1s1 + . . . + ar sr + b = 0 with ai ∈ Q≥0 and b ∈ Q>0. Every
irreducible component of Z(BF ) of codimension > 1 can be translated
by an element of Z

r inside a component of codimension 1.
(iii) S(F) is a finite union of torsion-translated complex affine subtori of

codimension 1 in (C∗)r .

Thus in the algebraic case, BF gives an algebraic computation of S(F).
Part (i) was conjectured in [10], where one inclusion was also proved,

namely that Exp(Z(BF )) containsS(F). See also [11, Conjecture 1.4, Remark
2.8].

Regarding part (i i i), Sabbah [24] showed that S(F) is included in a finite
union of torsion-translated complex affine subtori of codimension 1. Here a
complex affine subtorus of (C∗)r means an algebraic subgroup G ⊂ (C∗)r

such that G ∼= (C∗)p as algebraic groups for some 0 ≤ p ≤ r . In [12], it
was proven that every irreducible component of S(F) is a torsion-translated
subtorus. Finally, part (i i i) was proven as stated in [11].

The first assertion of part (i i), about the components of codimension one
of Z(BF ), is due to Sabbah [22,23] and Gyoja [14].

In light of the conjectured equality in part (i), it was therefore expected
that part (i i i) would hold for Exp(Z(BF )). This is equivalent to the second
assertion in part (i i), about the smaller-dimensional components of Z(BF ),
and it was confirmed unconditionally by Maisonobe [20, Résultat 3]. This
result of Maisonobe will play a crucial role in this article.

In this article we complete the proof of Theorem 1.5.1 by proving the other
inclusion from part (i):

Theorem 1.5.2 Let F be as in Theorem 1.5.1. Then Exp(Z(BF )) is contained
in S(F).
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Zero loci of Bernstein–Sato ideals 49

The proof uses Maisonobe’s results from [20] and uses an analog of
the Cohen-Macaulay property for modules over the noncommutative ring
DX [s1, . . . , sr ].
1.6.

Algorithms for computing Bernstein–Sato ideals are now implemented in
many computer algebra systems. The availability of examples where the zero
loci of Bernstein–Sato ideals contain irreducible components of codimension
> 1 suggests that this is not a rare phenomenon, see [1]. The stronger conjec-
ture that Bernstein–Sato ideals are generated by products of linear polynomials
remains open, [10, Conjecture 1]. This would imply in particular that all irre-
ducible components of Z(BF ) are linear.

1.7.

In Sect. 2, we recall the definition and some properties of the support of the
specialization complex. InSect. 3wegive the proof ofTheorem1.5.2. Section 4
is an appendix reviewing basic facts from homological algebra for modules
over not-necessarily commutative rings.

2 The support of the specialization complex

2.1 Notation

Let F = ( f1, . . . , fr ) : X → C
r be a holomorphic map on a complex

manifold X of dimension n > 0. Let f = ∏r
i=1 fi , D = f −1(0), U = X \ D.

Let i : D → X be the closed embedding and j : U → X the open embedding.
We are assuming that not all fi are invertible, which is equivalent to D 	= ∅.

We use the notation s = (s1, . . . , sr ) and fs = ∏r
i=1 f si

i , and in general
tuples of numbers will be in bold, e.g. 1 = (1, . . . , 1), α = (α1, . . . , αr ), etc.

2.2 Specialization complex

Let Db
c (AD) be the derived category of bounded complexes of AD-modules

with constructible cohomology, where A is the affine coordinate ring of (C∗)r

and AD is the constant sheaf of rings on D with stalks A. Sabbah [24] defined
the specialization complex ψFCX in Db

c (AD) by

ψFCX = i−1R j∗ Rπ!( j ◦ π)−1
CX ,

where π : U ×(C∗)r C
r → U is the first projection from the fibered

product obtained from F|U : U → (C∗)r and the universal covering map
exp : C

r → (C∗)r .
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50 N. Budur et al.

The support of the specialization complex S(F) is defined as the union
over all i ∈ Z and x ∈ D of the supports in (C∗)r of the cohomology stalks
Hi (ψFCX )x viewed as finitely generated A-modules.

If F is only given as the germ at a point x ∈ X of a holomorphic map, by
ψFCX we mean the restriction of the specialization complex to a very small
open neighboorhood of x ∈ X .

When r = 1, that is, in the case of only one holomorphic function f :
X → C, the specialization complex equals the shift by [−1] of Deligne’s
nearby cycles complex defined as

ψ f CX = i−1R( j ◦ π)∗( j ◦ π)−1
CX .

The complex numbers in the support S( f ) ⊂ C
∗ are called the monodromy

eigenvalues of the nearby cycles complex of f .

2.3 Cohomology support loci

It was proven in [10,11] that S(F) admits an equivalent definition, without
involving derived categories, as the union of cohomology support loci of rank
one local systems on small ball complements along the divisor D. More pre-
cisely,

S(F) = {λ ∈ (C∗)r | Hi (Ux , Lλ) 	= 0 for some x ∈ D and i ∈ Z},
where Ux is the intersection of U with a very small open ball in X centered
at x , and Lλ is the rank one C-local system on U obtained as the pullback via
F : U → (C∗)r of the rank one local system on (C∗)r with monodromy λi
around the i-th missing coordinate hyperplane.

If F is only given as the germ at (X, x) of a holomorphic map, S(F) is
defined as above by replacing X with a very small open neighboorhood of x .

For one holomorphic function f : X → C, the support S( f ) is the union
of the sets of eigenvalues of the monodromy acting on cohomologies of the
Milnor fibers of f along points of the divisor f = 0, see [12, Proposition 1.3].

With this description of S(F), the following involutivity property was
proven:

Lemma 2.3.1 ([12, Theorem 1.2]) Let λ ∈ (C∗)r . Then λ ∈ S(F) if and only
if λ−1 ∈ S(F).

2.4 Non-simple extension loci

An equivalent definition of S(F) was found by [11, §1.4] as a locus of rank
one local systems on U with non-simple higher direct image in the category
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Zero loci of Bernstein–Sato ideals 51

of perverse sheaves on X :

S(F) =
{
λ ∈ (C∗)r | R j∗Lλ[n]

j!∗Lλ[n] 	= 0

}
,

where Lλ is the rank one local system on U as in 2.3. This description is
equivalent to

S(F) = {
λ ∈ (C∗)r | j!Lλ[n] → R j∗Lλ[n] is not an isomorphism

}
,

the map being the natural one.

2.5 D-module theoretic interpretation

Recall that for α ∈ C
r ,

DX [s]fs

is the natural left DX [s]-submodule of the free rank one OX [s, f −1]-module
OX [s, f −1]·fs generated by the symbol fs. For r = 1, see for exampleWalther
[25].

We denote by Db
rh(DX ) the derived category of bounded complexes of

regular holonomic DX -modules. We denote by DRX : Db
rh(DX ) → Db

c (CX )

the deRham functor, an equivalence of categories. The following is a particular
case of [27, Theorem 1.3 and Corollary 5.5], see also [4]:

Theorem 2.5.1 Let F = ( f1, . . . , fr ) : X → C
r be a morphism from a

smooth complex algebraic variety. Let α ∈ C
r and λ = exp(−2π iα). Let Lλ

be the rank one local system on U defined as in 2.3, and let Mλ = Lλ ⊗C OU
the corresponding flat line bundle, so that

DRU (Mλ) = Lλ[n]

as perverse sheaves on U. For every integer k  ‖α‖ and k = (k, . . . , k)

∈ Z
r , there are natural quasi-isomorphisms in Db

rh(DX )

DX [s]fs+k ⊗C[s] Cα = j!Mλ,

DX [s]fs−k ⊗C[s] Cα = j∗Mλ,

where Cα is the residue field of α in C
r .
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52 N. Budur et al.

Proposition 2.5.2 With F as in Theorem 2.5.1,

S(F) = Exp

{
α ∈ C

r | DX [s]fs−k

DX [s]fs+k ⊗C[s] Cα 	= 0 for all k  ‖α‖
}
.

Proof Applying DRX directly to Theorem 2.5.1, one obtains that

S(F)

= Exp

{
−α ∈ C

r | DX [s]fs−k

DX [s]fs+k ⊗L
C[s] Cα 	= 0 in Db

rh(DX ) for all k  ‖α‖
}

by the interpretation of S(F) from 2.4. Since j!Mλ → j∗Mλ is a morphism
of holonomicDX -modules of same length, the kernel and cokernelmust simul-
taneously vanish or not. Thus, we can replace the derived tensor product with
the usual tensor product. We then can replace −α with α by Lemma 2.3.1. ��

For related work in a particular case, see [2].

Remark 2.5.3 Note that Theorem 2.5.1 is stated in the algebraic case only.
However, the proof from [4,27] extends to the case when X is a complex man-
ifold by replacing j!Mλ, j∗Mλ with M(!D), M(∗D), respectively, where
M is the analytic DX -module DX · fα whose restriction to U is Mλ. Hence
the last proposition also holds in the analytic case.

Since the tensor product is a right exact functor, as a consequence one has the
following corollary which also follows from the proof of [10, Proposition 1.7]:

Proposition 2.5.4 If α is in C
r and

DX [s]fs

DX [s]fs+1 ⊗C[s] Cα 	= 0,

then Exp(α) is in S(F).

This proposition can be interpreted as to say that the difficulty in proving
Theorem 1.5.2 is the lack of aNakayamaLemma for the non-finitely generated
C[s]-module DX [s]fs/DX [s]fs+1.

3 Relative holonomic modules

In this section we will provide necessary conditions for modules overDX [s] to
obey an analog of Nakayama Lemma, andwewill see thatDX [s]fs/DX [s]fs+1
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Zero loci of Bernstein–Sato ideals 53

satisfies these conditions at least generically. Using Maisonobe’s results [20],
this will prove Theorem 1.5.2.

3.1.

For simplicity, we will assume from now that we are in the algebraic case,
namely, X is a smooth complex affine irreducible algebraic variety. We will
treat the analytic case at the end.

We define an increasing filtration on the ringDX by setting FiDX to consist
of all operators of order at most i , that is, in local coordinates (x1, . . . , xn) on
X , the order of xi is zero and the order of ∂/∂xi is one.
We let R be a regular commutative finitely generated C-algebra integral

domain. We write

AR = DX ⊗C R,

and if R = C[s] we write

A = AC[s] = DX [s].

The order filtration on DX induces the relative filtration on AR by

FiAR = FiDX ⊗C R.

The associated graded ring

grAR = grDX ⊗C R

is a regular commutative finitely generated C-algebra integral domain, and it
corresponds to the structure sheaf of T ∗X × Spec R, where T ∗X is the cotan-
gent bundle of X . Thus AR is an Auslander regular ring by Theorem 4.3.2.
Moreover, the homological dimension is equal to the Krull dimension of
grAR ,

gl.dim(AR) = 2n + dim(R),

by Propositions 4.3.3, 4.4.2, and 4.5.1.

3.2.

Let N be a left (or right) AR-module. A good filtration F on N over R is an
exhaustive filtration compatible with the relative filtration onAR such that the
associated graded module gr N is finitely generated over grAR , cf. 4.2. If N is
finitely generated overAR , then good filtrations over R exist on N . We define
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54 N. Budur et al.

the relative characteristic variety of N over R to be the support of gr N inside
T ∗X × Spec R, denoted by

Chrel(N ).

Equivalently, Chrel(N ) is defined by the radical of the annihilator ideal of gr N
in grAR . The relative characteristic variety Chrel(N ) and the multiplicities
mp(N ) of gr N at generic points p of the irreducible components of Chrel(N )

do not depend on the choice of a good filtration for N , by 4.2.1.

Remark 3.2.1 The good filtration F on N localizes, that is, if S is a multiplica-
tively closed subset of R, then

Fi (S−1N ) = S−1Fi N

form a good filtration of S−1N over S−1R, and hence

gr (S−1N ) � S−1gr N .

For a finitely generatedAR-module N , wewill denote by jAR (N ), or simply
j (N ), the grade number of N defined as in 4.3.

Lemma 3.2.2 Suppose that N is a finitely generated AR-module. Then:

(1) j (N ) + dim(Chrel(N )) = 2n + dim(R);
(2) if

0 → N ′ → N → N ′′ → 0

is a short exact sequence of finitely generated AR-modules, then

Chrel(N ) = Chrel(N ′) ∪ Chrel(N ′′)

and if p is the generic point of an irreducible component ofChrel(N ) then

mp(N ) = mp(N ′) + mp(N ′′).

Proof Propositions 4.4.2 and 4.5.1 give (1). Proposition 4.2.1 gives (2). ��
Note that the lemma does not require, nor does it imply, that Chrel(N ) is

equidimensional.

Definition 3.2.3 We say that a finitely generated AR-module N is relative
holonomic over R if its relative characteristic variety over R is a finite union

Chrel(N ) =
⋃

w

�w × Sw
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Zero loci of Bernstein–Sato ideals 55

where �w are irreducible conic Lagrangian subvarieties in T ∗X and Sw are
algebraic irreducible subvarieties of Spec R.

Lemma 3.2.4 Suppose that N is relative holonomic over R. Then:

(1) every nonzero subquotient of N is relative holonomic over R;
(2) if Ext j

AR
(N ,AR) 	= 0 for some integer j , then Ext j

AR
(N ,AR) is relative

holonomic (as a right AR-module if N is a left AR-module and vice
versa), and

Chrel(Ext j
AR

(N ,AR)) ⊂ Chrel(N ).

Proof ByProposition4.2.2, there exist goodfiltrations on N andExt j
AR

(N ,AR)

such that gr (Ext j
AR

(N ,AR)) is a subquotient of Ext j
grAR

(gr N , grAR). It fol-
lows that

Chrel(Ext j
AR

(N ,AR)) ⊂ Chrel(N ).

Then part (2) follows from Proposition 3.2.5. Part (1) is proved similarly, using
Lemma 3.2.2 (2). ��

The following is a straight-forward generalization of the algebraic case of
[20, Proposition 8] where one replaces C[s] by R:

Proposition 3.2.5 If N is a finitely generated module over AR such that
Chrel(N ) is contained in � × Spec R for some conic Lagrangian, not nec-
essarily irreducible, subvariety � of T ∗X, then N is relative holonomic over
R.

Proof The Poisson bracket on grAR is the R-linear extension of the Poisson
bracket on grDX . Let J be the radical ideal of the annihilator in grAR of
gr N . By Gabber’s Theorem [7, A.III 3.25], J is involutive with respect to
the Poisson bracket on grAR , that is, {J, J } ⊂ J . Let m be a maximal ideal
in R corresponding to a point q in the image of Chrel(N ) under the second
projection

p2 : T ∗X × Spec R → Spec R.

By R-linearity of the Poisson bracket, it follows that J +m ·AR is involutive.
Therefore the image J̄ of J in the ring grAR ⊗R R/m � grDX is involutive
under the Poisson bracket on grDX . If this ideal would be radical, we could
conclude that all the irreducible components of the fiber Chrel(N ) ∩ p−1

2 (q)

have dimension at least dim X . Note however that the same assertions on
involutivity are true for the associated sheaves since the Poisson bracket on

123



56 N. Budur et al.

a C-algebra induces a canonical Poisson bracket on the localization of the
algebra with respect to anymultiplicatively closed subset, cf. [15, Lemma 1.3].
Thus, restricting to an open subset of Chrel(N )where the second projection p2
has smooth reduced fibers, and assuming q = p2(y) for a point y in this open
subset, the involutivity implies that dimy(Chrel(N ) ∩ p−1

2 (q)) ≥ dim X . By
the upper-semicontinuity on Chrel(N ) of the function y �→ dimy(Chrel(N ) ∩
p−1
2 (p2(y))), every irreducible component of a non-empty fiber Chrel(N ) ∩

p−1
2 (q) has dimension ≥ dim X . (So far, this is an elaborate adaptation of

proof of the algebraic case of [20, Proposition 5] to the case when C[s] is
replaced by R.)

Since � is equidimensional with dim� = dim X , and � contains every
non-empty fiber Chrel(N ) ∩ p−1

2 (q), it follows that Chrel(N ) ∩ p−1
2 (q) is a

finite union of some of the irreducible conic Lagrangian subvarieties �w of
T ∗X which are irreducible components of �. Define Sw to be the subset
of closed points q in Spec R such that �w is an irreducible component of
Chrel(N ) ∩ p−1

2 (q). Then Chrel(N ) = ∪w(�w × Sw). Moreover, setting λw

to be a general point of �w,

{λw} × Sw = Chrel(N ) ∩ p−1
1 (λw),

where p1 : T ∗X ×Spec R → T ∗X is the first projection. Since the right-hand
side is defined in Spec R by finitely many algebraic regular functions, Sw is
Zariski closed in Spec R. It follows that Chrel(N ) is relative holonomic over R.

��

3.3.

Recall from 4.3 the definition of pure modules over AR . Examples of pure
modules are given by the following.

Definition 3.3.1 We say that a nonzero finitely generated AR-module N is
Cohen-Macaulay, or more precisely j-Cohen-Macaulay, if for some j ≥ 0

ExtkAR
(N ,AR) = 0 if k 	= j.

Remark 3.3.2 If N is a Cohen-Macaulay AR-module, then:

(1) N is j-pure (see Definition 4.3.4), by Lemma 4.3.5 (2);
(2) Chrel(N ) is equidimensional of codimension j , by Propositions 4.4.1,

4.4.2, and 4.5.1.

Lemma 3.3.3 If N is relative holonomic over R and j (N ) = n + dim(R),
then it is (n + dim(R))-Cohen-Macaulay.
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Zero loci of Bernstein–Sato ideals 57

Proof The condition on j (N ) implies that N 	= 0 by Lemma 3.2.2 (1). If
ExtkAR

(N ,AR) 	= 0 for some k > n +dim(Spec R), then by Lemma 3.2.4 (2),

ExtkAR
(N ,AR) is relative holonomic. Hence dim(Chrel(ExtkAR

(N ,AR))) ≥ n.

Since AR is an Auslander regular ring, j (ExtkAR
(N ,AR)) ≥ k. This contra-

dicts Lemma 3.2.2 (1). ��

3.4.

For a finitely generatedAR-module N , since N is also an R-module, we write

BN = AnnR(N )

and denote by Z(BN ) the reduced subvariety in Spec R defined by the radical
ideal of BN . Since in general N is not finitely generated over R, it is a priori
not clear that Z(BN ) is the R-module support of N , suppR(N ), consisting of
closed points with maximal idealm ⊂ R such that the localization Nm 	= 0.

Lemma 3.4.1 If N is relative holonomic over R, then

Z(BN ) = p2(Ch
rel(N )),

where p2 : T ∗X × Spec R → Spec R the natural projection. In particular,

Z(BN ) = suppR(N ).

Proof For R = C[s] and in the analytic setting, this is [20, Proposition 9],
whose proof can be easily adapted to our case. Since N is relative holonomic,
p2(Chrel(N )) is closed. Since the contraction of a radical ideal is a radical
ideal, the ideal defining p2(Chrel(N )) is R ∩√

AnngrAR (gr N ). Hence the first
assertion is equivalent to

R ∩
√
AnngrAR (gr N ) = √

AnnR(N ),

where R is viewed as a C-subalgebra of grAR = grDX ⊗C R via the map
a �→ 1 ⊗ a for a in R. Let b be in R. If bk N = 0 for some k ≥ 1, then
bk(gr N ) = 0 as well. Conversely, if bk(gr N ) = 0 for some k ≥ 1, then
bk(Fi N ) ⊂ Fi−1N for all i . Since gr N is finitely generated over grAR , the
filtration F on N is bounded from below. Then by induction applied to the
short exact sequence

0 → Fi−1N → Fi N → grF
i N → 0,

it follows that for each i there exist a multiple ki of k such that bki (Fi N ) = 0,
and ki form an increasing sequence. Fix a finite set of generators of N over
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AR . Since F is exhaustive, there exists an index j such that all the generators
are contained in Fj N . Then bk j N = 0.

We proved thus the first claim, or equivalently, that Z(BN ) = suppR(gr N ).
Hence the second assertion follows from the equality

suppR(gr N ) = suppR(N )

which is proved as follows. Ifm is amaximal ideal in R such that (grF
i N )m 	= 0

for some i , then (Fi N )m 	= 0 since localization is an exact functor. Then, again
by exactness, Nm 	= 0 since Fi N injects into N . Thus suppR(gr N ) is a subset
of suppR(N ). Conversely, if Nm 	= 0, take i to be the minimum integer with
the property that (Fi N )m 	= 0 but (Fi−1N )m = 0. Then (grF

i N )m 	= 0. ��
Lemma 3.4.2 Suppose that N is relative holonomic over R and (n + l)-pure
for some 0 ≤ l ≤ dim(R). If b is an element of R not contained in any minimal
prime ideal containing BN , then the morphisms given by multiplication by b

N
b−→ N

and

Extn+l
AR

(N ,AR)
b−→ Extn+l

AR
(N ,AR)

are injective. Furthermore, there exists a good filtration of N over R so that

gr N
b−→ gr N

is also injective.

Proof We first prove that N
b−→ N is injective. If on the contrary its kernel

K 	= 0, then by Lemma 3.2.2 (2)

Chrel(K ) ⊂ Chrel(N ).

By purity, we know that j (K ) = j (N ) = n + l. Thanks to Lemma 3.2.2 (1),

dim(Chrel(K )) = dim(Chrel(N )).

By Proposition 4.4.1, we can choose good filtrations on K and N so that both
gr K and gr N are (n + l)-pure over grAR . Hence Chrel(K ) and Chrel(N ) are
equidimensional of dimension n+dim(R)−l, by Propositions 4.4.2 and 4.5.1.
In particular, Chrel(K ) is a union of some irreducible components of Chrel(N ).
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By the relative holonomicity of N , the irreducible components of Chrel(N )

are �i × Zi with i in some finite index set I , for some conic irreducible
Lagrangian subvarieties�i ⊂ T ∗X and some irreducible closed subsets Zi ⊂
Spec R. The equidimensionality ofChrel(N ) implies that dim Zi = dim(R)−l.

By Lemma 3.4.1, Z(BN ) = ∪i∈I Zi , and the assumption on b is that (b = 0)
does not contain any irreducible component of Z(BN ), where by (b = 0) we
mean the reduced closed subset of Spec R defined by the radical ideal of b.
We hence have

Chrel(K ) 	⊂ T ∗X × (b = 0.

However, since b annihilates K , Chrel(K ) ⊂ T ∗X × (b = 0), which is a
contradiction.

Similarly, since gr N is (n + l)-pure over grAR , we can run the above
argument by replacing Chrel(K ) with the support of the kernel of the map

gr N
b−→ gr N

to obtain the injectivity of the latter.
By Lemma 3.2.4 (2), Extn+l

AR
(N ,AR) is relative holonomic and

Chrel(Extn+l
AR

(N ,AR)) ⊂ Chrel(N ).

Since Extn+l
AR

(N ,AR) is always (n + l)-pure, cf. Lemma 4.3.5 (1), by a similar
argument we conclude that

Extn+l
AR

(N ,AR)
b−→ Extn+l

AR
(N ,AR)

is also injective. ��
The following is the key technical result of the article. For simplicity, we

take Spec R to be an open set of C
r , the only case we need for the proof of the

main result.

Proposition 3.4.3 Let Spec R be a nonempty open subset of C
r . Let N be an

AR-module that is relative holonomic over R and (n + l)-Cohen-Macaulay
over AR for some 0 ≤ l ≤ r . Then

α ∈ Z(BN ) if and only if N ⊗R Cα 	= 0,

where Cα is the residue field of the closed point α ∈ Spec R.
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Proof We first assume N ⊗R Cα 	= 0. Then N ⊗R Rm 	= 0, where m ⊂ R is
the maximal ideal of α and Rm is the localization of R at m. Then α belongs
to suppR(N ) = Z(BN ), by Lemma 3.4.1.

Conversely, we fix a point α in Z(BN ). Since N is (n +l)-Cohen-Macaulay,
it is in particular (n + l)-pure as a module over AR . By Proposition 4.4.1, we
then can choose a good filtration F on N so that gr N is also pure over grAR .
Hence Chrel(N ) is purely of dimension n + r − l. By relative holonomicity
and Lemma 3.4.1, Z(BN ) is also purely of dimension r − l.

Let us consider the case when l < r . We then can choose a linear poly-
nomial b ∈ C[s] so that (b = 0) contains α, but does not contain any of the
irreducible components of Z(BN ). By Lemma 3.4.2, the morphisms given by
multiplication by b

N
b−→ N and gr N

b−→ gr N

are both injective, the good filtration from Lemma 3.4.2 being constructed in
the same way. Thus for every i the vertical maps are injective in the diagram

0 Fi−1N

b

Fi N

b

Fi N/Fi−1N

b

0

0 Fi−1N Fi N Fi N/Fi−1N 0

and hence by the snake lemma we get an exact sequence

0 → Fi−1N ⊗R R/(b) → Fi N ⊗R R/(b) → grF
i N ⊗R R/(b) → 0.

(3.1)

Note that b is also injective on N/Fi N . Indeed, if not, then there exists some
ν ∈ Fj N with j > i , ν /∈ Fj−1N , and bν ∈ Fi N . But then b must annihilate
the class of ν in grF

j N , which contradicts the injectivity of b on gr N . Running
a similar snake lemma as above after applying the multiplication by b on the
short exact sequence

0 → Fi N → N → N/Fi N → 0,

we obtain a short exact sequence

0 → Fi N ⊗R R/(b) → N ⊗R R/(b) → (N/Fi N ) ⊗R R/(b) → 0

(3.2)
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The injectivity from (3.1) and (3.2) implies that the induced filtration on N ⊗R
R/(b),

Fi (N ⊗R R/(b)) = im(Fi N → N ⊗R R/(b)) � Fi N/(Fi N ∩ bN ),

is the filtration by

Fi N ⊗R R/(b) � Fi N/bFi N ,

and the surjectivity from (3.1) then implies

gr (N ⊗R R/(b)) � gr N ⊗R R/(b). (3.3)

By Lemma 3.4.1, p−1
2 (α) intersects non-trivially the support of gr N , hence

the same is true for p−1
2 (b = 0). By Nakayama’s Lemma for the finitely

generated module gr N over grAR , we hence have

0 	= gr N

b · gr N
� gr N ⊗R R/(b).

Together with the isomorphism (3.3), this implies that N ⊗R R/(b) 	= 0. Since
N ⊗R R/(b) is also a finitely generatedAR/(b)-module and gr (N ⊗R R/(b))

is a finitely generated grAR/(b)-module, we further conclude from (3.3) that
the relative characteristic variety over R/(b)

Chrel(N ⊗R R/(b)) = (idT ∗ X × 	)−1(Chrel(N )), (3.4)

where	 : Spec R/(b) ↪→ Spec R is the closed embedding.Hence N⊗R R/(b)

is relative holonomic over R/(b). By Lemma 3.4.1, we further have

Z(BN⊗R/(b)) = 	−1(Z(BN )).

In particular,

	−1(α) ∈ Z(BN⊗R/(b)).

Since

N ⊗R Cα � N ⊗R R/(b) ⊗R/(b) C	−1(α),

where C	−1(α) is the residue field of 	−1(α) ∈ Spec R/(b), our strategy will
be to prove

N ⊗R Cα 	= 0
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by repeatedly replacing N by N ⊗R R/(b) and R by R/(b).
To make this work, we need first to prove that N ⊗R R/(b) remains Cohen-

Macaulay over AR/(b). By taking a free resolution of N , one can see that

RHomAR (N ,AR) ⊗L
AR

AR/(b) � RHomAR/(b)
(N ⊗L

R R/(b),AR/(b))

(3.5)

in the derived category of rightAR/(b)-modules. Since the multiplication by b
is injective on N , we further have

RHomAR/(b)
(N ⊗L

R R/(b),AR/(b)) � RHomAR/(b)
(N ⊗R R/(b),AR/(b)).

(3.6)

We will use the Grothendieck spectral sequence associated with the left-
hand side of (3.5) to compute the Ext modules from the right-hand side of
(3.6). Let us assume without harm that N is a left AR-module. Then viewing
HomAR (_ ,AR) as a covariant right-exact functor on the opposite category of
the category of leftAR-modules, the composition of the two derived functors
RHomAR (_ ,AR) and (_ ) ⊗L

AR
AR/(b) gives us a convergent first quadrant

homology spectral sequence

E2
p,q = TorAR

p (ExtqAR
(N ,AR),AR/(b)) ⇒ Ext−p+q

AR/(b)
(N ⊗R R/(b),AR/(b)),

by [26, Corollary 5.8.4]. Note that the conditions from loc. cit. are satisfied in
our case, since a projective object in the opposite category of the category of
leftAR-modules is an injective leftAR-module I , and thus HomAR (I,AR) is
a projective rightAR-module, and so acyclic for the left exact functor (_ )⊗AR

AR/(b).
Since N is (n + l)-Cohen-Macaulay over AR ,

ExtqAR
(N ,AR) = 0 for q 	= n + l.

Then

TorAR
p (Extn+l

AR
(N ,AR),AR/(b)) = 0 for p 	= 0

thanks to Lemma 3.4.2, since the complexAR
b→ AR is a resolution ofAR/b.

Therefore the above spectral sequence degenerates at E2,

ExtqAR/(b)
(N ⊗R R/(b),AR/(b)) = 0 for q 	= n + l,
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and

Extn+l
AR/(b)

(N ⊗R R/(b),AR/(b)) � Extn+l
AR

(N ,AR) ⊗AR AR/(b)

� Extn+l
AR

(N ,AR) ⊗R R/(b).

As a consequence, N ⊗R R/(b) is (n + l)-Cohen-Macaulay over AR/(b).
Since b is linear, Cr−1 � SpecC[s]/(b), and the latter contains Spec R/(b)

an open subset. We then repeatedly replace R by R/(b), N by N ⊗R R/(b),
and α by 	−1(α). Each time r drops by 1, l stays unchanged, and N remains
nonzero, relative holonomic, and (n + l)-Cohen-Macaulay. This reduces us to
the case l = r .

If 0 = l = r , the claim is trivially true.
We now assume 0 < l = r . Since N is now relative holonomic and (n + r)-

Cohen-Macaulay, hence (n + r)-pure, we have

Chrel(N ) =
∑

w

�w × {pw},

where pw are points in C
r . Hence Z(BN ) is a finite union of points in Spec R.

Counting multiplicities, by Lemma 3.2.2 (2) we see that N is of finite length.
We now fix a linear polynomial b ∈ C[s] with b(α) = 0 but not vanishing

at the other points of Z(BN ). We then have an exact sequence

0 → K → N
b−→ N → N ⊗R R/(b) → 0,

where K is the kernel. We claim that K 	= 0. To see this, chose a polynomial
c ∈ C[s] not vanishing at α but vanishing at all other points of Z(BN ). Then
by Nullstellensatz, there is m > 0 the smallest power such that (bc)m is in
BN . On the other hand, cm is not in BN . Taking p ≥ 1 to be the smallest with
bpcm ∈ BN , we see that there exists ν in N , such that bp−1cmν is a nonzero
element of K .
Since K 	= 0 and since endomorphisms of modules of finite length are iso-
morphisms if and only if they are surjective, we have N ⊗R R/(b) 	= 0.
By Lemma 3.2.4 (1), N ⊗R R/(b) is relative holonomic over R, and by
Lemma 3.2.2 (2), every irreducible component of its relative characteristic
variety over R is one of the components�w ×{pw} of Chrel(N ). Since b anni-
hilates N ⊗R R/(b), only the components with b(pw) = 0, and hence with
pw = α, appear.We conclude that N ⊗R R/(b) is also relative holonomic over
R/(b). By Lemma 3.2.2 (1), we have jAR/(b)

(N ⊗R R/(b)) = n + r −1. Then
by Lemma 3.3.3, N ⊗R R/(b) is (n + r − 1)-Cohen-Macaulay over AR/(b).

We therefore can replace N by N ⊗R R/(b), R by R/(b), and assume that
Chrel(N ) = ∪w�w × {α} for some irreducible conic Lagrangian subvarieties
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�w of T ∗X . Repeating this process, each time r drops by1, N remains nonzero,
relative holonomic, and (n + r)-Cohen-Macaulay. The process finishes at the
case r = 0, in which case there is nothing to prove anymore. ��
Remark 3.4.4 A result similar to Proposition 3.4.3 is proved by a different
method in [3, Appendix B] for DX [s]fs/DX [s]fs+1 when f is a reduced free
hyperplane arrangement.

3.5.

We consider now the left A -module

M = DX [s]fs/DX [s]fs+1.

In this case, the annihilator BM is the Bernstein–Sato ideal BF , since M is a
cyclic A -module generated by the class of fs in M .

It iswell-known that the zero locus Z(BF) inC
r has dimension r−1. Indeed,

since BF is the intersection of the local Bernstein–Sato ideals, by restricting
attention to the neighborhood of a smooth point of the zero locus of

∏r
i=1 fi ,

one reduces the assertion to the case when fi = xai
1 for some ai ∈ N for all

i = 1, . . . r with a = (a1, . . . , ar ) 	= (0, . . . , 0). In this case, the Bernstein–
Sato ideal is principal, generated by

∏|a|
j=1(a · s + j) with |a| = a1 + . . .+ ar .

In addition, it is known that every top-dimensional irreducible component
of Z(BF ) is a hyperplane in C

r defined over Q by [22,23].
We will use the following result of Maisonobe, which also holds in the local

analytic case, cf. 3.6:

Theorem 3.5.1 (Maisonobe) The A -module M is relative holonomic over
C[s], has grade number j (M) = n+1 overA , and dim Chrel(M) = n+r −1.
Every irreducible component of Z(BF ) of codimension > 1 can be translated
by an element of Z

r into a component of codimension one.

Proof In [20, Résultat 3] it is shown that Chrel(M) = ∪i∈I �i × Zi for some
finite set I with�i ⊂ T ∗X conic Lagrangian, Zi ⊂ C

r algebraic closed subset
of dimension ≤ r − 1. Thus M is relative holonomic over C[s]. Lemma 3.4.1
shows that Z(BF ) = ∪i∈I Zi , cf. also the remark after [20, Résultat 2]. Since
dim Z(BF ) = r − 1, it follows that dim Chrel(M) = n + r − 1, and hence
j (M) = n+1 by Lemma 3.2.2 (1). The last claim is contained in the statement
of [20, Résultat 3]. ��

We next observe that over an open subset of C
r , M behaves particularly

nice:

Lemma 3.5.2 There exists an open affine subset V = Spec R ⊂ C
r such that

the intersection of V with each irreducible component of codimension one of
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Z(BF ) is not empty, and the module M ⊗C[s] R is relative holonomic over R
and (n + 1)-Cohen-Macaulay over AR.

Proof Since M is relative holonomic over C[s], and since good filtrations
localize by Remark 3.2.1, it follows that M ⊗C[s] R is relative holonomic over
R, if Spec R is a non-empty open subset of C

r .
Since j (M) = n + 1,

ExtkA (M,A ) = 0 for k < n + 1.

By Auslander regularity of A , if ExtkA (M,A )) 	= 0 for k ≥ n + 1, then

j (ExtkA (M,A )) ≥ k.

Note that since gl.dim(A ) is finite, there are only finitely many k with
ExtkA (M,A ) 	= 0. By Lemma 3.2.4 (2), if ExtkA (M,A ) 	= 0, then
ExtkA (M,A )) is relative holonomic and

Chrel(ExtkA (M,A ))) ⊂ Chrel(M).

By Lemma 3.2.2 (1), when k > n + 1,

dim(Chrel(ExtkA (M,A ))) < n + r − 1. (3.7)

By relative holonomicity, the irreducible components of Chrel(M) are
�i × Zi with i in some finite index set I , �i ⊂ T ∗X irreducible conic
Lagrangian, and Zi irreducible closed in C

r . Then the irreducible compo-
nents of Chrel(ExtkA (M,A )) are�i × Z ′

i with i in some subset J ⊂ I , and Z ′
i

irreducible closed in Zi . By Lemma 3.4.1 applied to M and ExtkA (M,A ),
respectively, we have that Z(BF ) = ∪i∈I Zi , and the support in C

r of
ExtkA (M,A ) is ∪i∈J Z ′

i . Then dim Z(BF ) = r − 1, and dim Z ′
i < r − 1

for each k > n + 1 by (3.7). Therefore the support in C
r of ExtkA (M,A ) is a

proper algebraic subset of Z(BF ) not containing any top-dimensional compo-
nent of Z(BF ) if k > n + 1. Choose V = Spec R to be an open affine subset
of C

r away from these proper subsets of Z(BF ) for all k > n + 1. Then for
any good filtration we have

(gr ExtkA (M,A )) ⊗C[s] R = 0

for all k > n+1. Since R is the localization ofC[s]with respect to somemulti-
plicatively closed subset S, and since goodfiltrations localize, cf.Remark3.2.1,
we have

gr (S−1ExtkA (M,A )) = 0,
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and so

S−1ExtkA (M,A ) = 0.

Since S is also a multiplicatively closed subset of A , in the center of A , and
M is finitely generated over the noetherian ring A , the Ext module localizes

0 = S−1ExtkA (M,A ) = ExtkS−1A
(S−1M, S−1A ),

cf. [26, Lemma 3.3.8] and the proof of [26, Proposition 3.3.10], where one
identifies the localization functor S−1(_) onA -moduleswith the flat extension
(_) ⊗A AR = (_) ⊗C[s] R. Thus S−1M = M ⊗C[s] R is (n + 1)-Cohen-
Macaulay over S−1A = AR . ��

Now Lemma 3.5.2 and Proposition 3.4.3 immediately imply:

Theorem 3.5.3 For every irreducible component H of codimension one of
Z(BF ) and for every general point α on H,

M ⊗C[s] Cα 	= 0.

3.6 Analytic case

Theorem 3.5.3 holds also in the local analytic case. We indicate now the
necessary changes in the arguments. The smooth affine algebraic variety X is
replaced by the germ (X, x) of a complexmanifold of dimension n. The rings R
stay as before andwe letY denote the complexmanifold underlying the smooth
affine complex algebraic variety Spec (R). The rings and modules from the
algebraic caseDX ,AR = DX ⊗C R, N , etc., have natural analytic versions as
sheaves on the complexmanifold X , but their role from the previous arguments
will be played by the stalks of these sheaves, DX,x , AR,x = DX,x ⊗C R, Nx ,
etc. The role of Chrel(N ) from the algebraic case will be played by Chrel(N )∩
π−1(� × Y ), for a very small open ball � in X centered at x . Recall that for
a coherent sheaf of AR-modules N on the complex manifold X , the relative
characteristic variety Chrel(N ) is the analytic subspace of T ∗X ×Y defined as
the zero locus of the radical of the annihilator of N inAR . With these changes,
all the statements in this section hold in the local analytic case as well.

There are however a few special issues arising in this case, since (partial)
analytifications of AR and N are needed in order for the module theory as
in the Appendix to capture the analytic structure of Chrel(N ). For a sheaf of
OX ⊗C R-modules L on the complex manifold X , one defines the (partial)
analytification

L̃ = OX×Y ⊗p−1(OX ⊗CR) p−1(L),

123



Zero loci of Bernstein–Sato ideals 67

a sheaf of OX×Y -modules, where p : X × Y → X is the first projection. Thus
ÃR is the sheaf of relative differential operators DX×Y/Y , locally isomorphic
to OX×Y [∂1, . . . , ∂n]. The analytification of the filtration onAR is the natural
filtration on ÃR , and grAR is locally isomorphic toOX×Y [ξ1, . . . , ξn], a sheaf
of subrings of OT ∗ X×Y , where ξi are coordinates of the fibers of the natural
projection π : T ∗X × Y → X × Y . If N is a coherent sheaf of AR-modules,
then Ñ is a coherent sheaf of ÃR-modules. Since (̃_) is an exact functor, it
is is compatible with good filtrations, gr Ñ = g̃r N , the annihilator in gr ÃR
of gr Ñ is the analytification of the annihilator of gr N in AR , and the radical
J (Ñ ) of the former is the analytification J̃ (N ) of the radical of the latter. Then
Chrel(N ) is the analytic subspace of T ∗X × Y defined by the ideal generated
by J (Ñ ) in OT ∗ X×Y , the full analytification, cf. [7, I.6.21].

Note that there is a natural isomorphism of C-algebras

grAR,x � C{x1, . . . , xn}[ξ1, . . . , ξn] ⊗C R

after choosing local coordinates x1, . . . , xn on X at x . This ring is a regular
commutative integral domain of dimension 2n+dim(R). Thus all the results in
the Appendix apply to this ring, except Proposition 4.5.1 (ii). Indeed, grAR,x
has maximal ideals of height less than dim(grAR,x ). (For example, the ideal
(1 − xξ) of C{x}[ξ ] is maximal of height 1.) On the other hand, our modules
are special: gr Nx is a graded module if grAR,x is given the natural grading in
the coordinates ξ1, . . . , ξn . The exact functor (̃_) is also faithful on the category
of coherent graded grAR-modules:

Proposition 3.6.1 (Maisonobe [20, Lemme 1]) If M is a coherent grAR-
module and x ∈ X, then Mx = 0 if and only if there exists an open
neighborhood � of x in X such that M̃ |�×Y = 0.

Thus one obtains, cf. [20, Proposition 2]: for a small enough �,

jgrAR,x (gr Nx ) = inf
(x ′,y)∈�×Y

j(gr ÃR)(x ′,y)
((gr Ñ )(x ′,y)).

The stalks (gr Ñ )(x ′,y) determine the local analytic structure at (x ′, 0, y) of
the conical set Chrel(N ), since the extension functor from the category of
graded coherent sheaves over gr ÃR into the category of coherent sheaves over
OT ∗ X×Y is also faithful besides being exact, by the Nullstellensatz for conical
analytic sets, cf. [7, Remark I.1.6.8]. In particular, there is a 1-1 correspondence
between conical analytic sets in T ∗X × Y and radical graded coherent ideals
in gr ÃR . Therefore the ring (gr ÃR)(x ′,y) and the module (gr Ñ )(x ′,y) can be
replaced by their localization at the unique graded maximal ideal (cf. [9, 1.5])
and in this context Proposition 4.5.1 (ii) does apply. A consequence is that
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Lemma 3.2.2 (1) holds indeed with the changes we have mentioned: for a
small neighborhood � of x ,

jAR,x (Nx ) + dim(Chrel(N ) ∩ π−1(� × Y )) = 2n + dim(R).

This is [20, Proposition 2, Théorème 1], where R = C[s] but the proof applies
in general, and we used semicontinuity of the dimension function [13, p.94]
to rephrase the statement slightly.

Next, in keeping up with the changes indicated, the condition “regular holo-
nomic” will be replaced by the condition that a coherent module N over AR
is regular holonomic at x , that is, there exists a neighborhood � of x such that
Chrel(N ) ∩ π−1(� × Y ) is as in Definition 3.2.3.

The condition “ j-Cohen-Macaulay”will be replaced by the condition that N
is j -Cohen-Macaulay at x , that is, Nx is j-Cohen-Macaulay. This is equivalent
to N being j-Cohen-Macaulay on someneighborhood� of x , that is, j-Cohen-
Macaulay at all points x ′ in � ∩ supp(N ). Note that the support of N is an
analytic subset of X by Proposition 3.6.1, since the support of Ñ is an analytic
subset of X ×Y by the conical property of Chrel(N ). Moreover, N is j-Cohen-
Macaulay on � if and only if one of the following two equivalent conditions
hold for k 	= j : E xtk

AR
(N ,AR)|� = 0; E xtk

AR
(N ,AR)x ′ = 0 for all x ′ ∈ �.

Also, N is j-Cohen-Macaulay at x if and only if Ñ is j-Cohen-Macaulay
on � × Y for some � � x , by Proposition 3.6.1. This implies, by applying
Proposition 4.5.1 in the context mentioned above, that Remark 3.3.2 holds
in the local analytic case; in particular, if N is j-Cohen-Macaulay at x , then
Chrel(N ) ∩ π−1(� × Y ) is equidimensional of codimension j .

With the changes we have indicated, the rest of the arguments remain as
before, and all statements in this section are true in this case.

3.7 Proof of Theorem 1.5.2.

By Theorem 3.5.3 and Proposition 2.5.4, the image under Exp of a non-empty
open subset of each irreducible component of codimension one of Z(BF ) lies
in S(F). By the description of Z(BF ) from Theorem 3.5.1 and the paragraphs
preceding it, it follows that Exp(Z(BF )) is included in S(F). �
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4 Appendix

We recall some facts for not-necessarily commutative rings from [7, A.III and
A.IV] that we use in the proof of the main theorem.

4.1.

Let A be a ring, by which we mean an associative ring with a unit element.
Let Mod f (A) be the abelian category of finitely generated left A-modules.

We say that A is a positively filtered ring if A is endowed with a Z-indexed
increasing exhaustive filtration {Fi A}i∈Z of additive subgroups such that Fi A ·
Fj A ⊂ Fi+ j A for all i, j in Z, and F−1A = 0. The associated graded object
grF A = ⊕i (Fi A/Fi−1A) has a natural ring structure. When we do not need
to specify the filtration, we write gr A for grF A.

If A is a positively filtered ring such that gr A is noetherian, then A is noethe-
rian, [7, A.III 1.27]. Here, noetherian means both left and right noetherian.

4.2.

Let A be a noetherian ring, positively filtered. A good filtration on M ∈
Mod f (A) is an increasing exhaustive filtration F•M of additive subgroups
such that Fi A · Fj M ⊂ Fi+ j M for all i, j in Z, and such that its associated
graded object gr M is a finitely generated graded module over gr A, cf. [7,
A.III 1.29].

Proposition 4.2.1 ([7, A.III 3.20–3.23]) Let A be a noetherian ring, positively
filtered.

(1) Let M be in Mod f (A) with a good filtration. Then the radical of the
annihilator ideal in gr A

J (M) :=
√
Anngr A(gr M)

and the multiplicities mp(M) of gr M at minimal primes p of J (M) do
not depend on the choice of a good filtration.

(2) If

0 → M ′ → M → M ′′ → 0

is an exact sequence in Mod f (A) then

J (M) = J (M ′) ∩ J (M ′′)

and if p is a minimal prime of J (M) then

mp(M) = mp(M ′) + mp(M ′′).
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Note that the last assertion is equivalent to the existence of a Z-valued
additivemapmp on theGrothendieck group generated by the finitely generated
modules N over gr A with J (M) ⊂ √

Anngr A N , as it is phrased in loc. cit.

Proposition 4.2.2 ([7, A.IV 4.5]) Let A be a noetherian ring, positively fil-
tered. Let M be inMod f (A) with a good filtration. For every k ≥ 0, there exists
a good filtration on the right A-moduleExtkA(M, A) such that gr (ExtkA(M, A))

is a subquotient of Extkgr A(gr M, gr A).

4.3.

Let A be a noetherian ring. The smallest k ≥ 0 for which every M inMod f (A)

has a projective resolution of length ≤ k is called the homological dimension
of A and it is denoted by gl.dim(A).

Definition 4.3.1 For a nonzero M in Mod f (A), the smallest integer k ≥ 0
such that ExtkA(M, A) 	= 0 is denoted

jA(M)

and it is called the grade number of M . If M = 0 the grade number is taken
to be ∞.

The ring A is Auslander regular if it has finite homological dimension and,
for every M in Mod f (A), every k ≥ 0, and every nonzero right submodule N
of ExtkA(M, A), one has jA(N ) ≥ k. This implies the similar condition phrased
for right A-modules M , see [7, A.IV 1.10] and the comment thereafter.

Theorem 4.3.2 ([7, A.IV 5.1]) If A is a positively filtered ring such that gr A
is a regular commutative ring, then A is an Auslander regular ring.

Proposition 4.3.3 ([7, A.IV 1.11]) Let A be an Auslander regular ring. Then

gl.dim(A) = sup{ jA(M) | 0 	= M ∈ Mod f (A)}.

Definition 4.3.4 Anonzeromodule M inMod f (A) is j-pure (or simply, pure)
if jA(N ) = jA(M) = j for every nonzero submodule N .

Lemma 4.3.5 ([7, A.IV 2.6]) Let A be an Auslander regular ring, M nonzero
in Mod f (A), and j = jA(M). Then:

(1) Ext j
A(M, A) is a j-pure right A-module;

(2) M is pure if and only if ExtkA(ExtkA(M, A), A) = 0 for every k 	= j .
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4.4.

We assume now that A is a positively filtered ring such that gr A is a regu-
lar commutative ring. Then A is also Auslander regular by Theorem 4.3.2.
Moreover, with these assumptions one has the following two results.

Proposition 4.4.1 ([7, A.IV 4.10 and 4.11]) If M in Mod f (A) is j -pure, there
exists a good filtration on M such that gr M is a j-pure gr A-module.

Proposition 4.4.2 ([7, A.IV 4.15]) For any M in Mod f (A) and any good
filtration on M,

jA(M) = jgr A(gr M).

4.5.

Lastly, we consider a regular commutative ring A. Then gl.dim.(A) =
sup{gl.dim.(Am) | m ⊂ A maximal ideal }, cf. [6, Ch. 2, 5.20]. We let
dim(A) denote the Krull dimension. For a module M ∈ Mod f (A), dimA(M)

denotes dim(A/AnnA(M)). If A is a regular local commutative ring, then
dim(A) = gl.dim.(A), cf. [7, A.IV 3.5].

Proposition 4.5.1 Let A be a regular commutative ring and M nonzero in
Mod f (A). Then:

(i) ([7, A.IV 3.4]) A is Auslander regular;
(ii) ([6, Ch. 2, Thm. 7.1]) if dim(Am) = m for every maximal ideal m of A,

jA(M) + dimA(M) = m ;

(iii) ([7, A.IV 3.7 and 3.8]) M is a pure A-module if and only if every asso-
ciated prime of M is a minimal prime of M and jA(M) = dim(Ap) for
every minimal prime p of M.
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