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Abstract

This work is concerned with the Laudau-Ginzburg A-model, or the Fukaya-Seidel

category, associated with a Laurent polynomial f : (C∗)n → C. We use constructible

sheaves on a real n-dimensional torus to describe the Lagrangian thimbles associated

to f . Then we discuss the application to Homological Mirror Symmetry for smooth

projective toric Fano variety. We also develope a general tool that allows one to deform

a constructible sheaf as its singular support moves non-characteristically.
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CHAPTER 1

Introduction

Picard-Lefschetz theory is the complex analog of real Morse theory for holomorphic

functions [AGV], where instead of studying the change of topology of the sublevel sets

as level increases, one studies the regular fiber of f by moving it around or towards a

singular fiber.

To fix idea, we consider the following example. Let f = x2 + y2 on C2. As we

move the regular fiber f−1(ε) towards the singular fiber f−1(0) along real positive ε, the

circle Sε = {x2 + y2 = ε, x, y ∈ R} in f−1(ε) shrinks to the point (0, 0). The circle

Sε is called a vanishing sphere, and the union of them
⋃

0≤t≤ε St form a smooth disk

Dε = {x2 + y2 ≤ ε, x, y ∈ R} ending on f−1(ε), called a Lefschetz thimble.

Figure 1.1. A smooth fiber of f and a singular one. (Figure from [AGV], p.7)
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The symplectic Picard-Lefschetz theory [Do, Se1] is a refinement of the topological

one, where in addition of requiring f : X → C to be a holomorphic map, one give the

total space X a Kahler structure, hence the the regular fibers are Kahler as well. Using

symplectic parallel transport, i.e., lifting a tangent vector on the base to tangent vectors

ω-perpendicular to the fiber, one can make the vanishing spheres and Lefschetz thimbles

into Lagrangian submanifolds of the regular fibers and the total space, respectively. If one

fix a regular value b in C as the base point, and a set of path from the critical values to b,

then one can study the set of Lagrangian spheres in f−1(b), or equivalently corresponding

the Lagrangian thimbles in X. The Fukaya-Seidel category for a holomorphic function on

a Kähler manifold roughly is the Fukaya category generated by the Lagrangian thimbles.

Although the study of Lefschetz thimble, vanishing cycles and intersection forms are

classical topics of Picard-Lefschetz theory[AGV], the counting of J-holomorphic disks is

computationally non-trivial.

Given a real analytic manifold M , Nadler-Zaslow theorem [NZ, N1] shows that the

Fukaya category of the cotangent bundle Fuk(T ∗M,Λ) is quasi-equivalent to the dg cat-

egory of constructible sheaves Sh(M,Λ) as A∞ categories, where Λ ⊂ T ∗M is a conical

Lagrangian, objects in Fuk(T ∗M,Λ) are asymptotic conic Lagrangian tending to Λ, and

objects in Sh(M,Λ) are constructible complexes of sheaves with singular support in Λ.

Theorem (Nadler-Zaslow [NZ]). The derived Fukaya category of the cotangent bundle

T ∗M is quasi-equivalent to differential graded category of constructible sheaves on the base

manifold M as A∞ categories.
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This work originates from the idea of applying Nadler-Zaslow theorem to the study of

Fukaya-Seidel (FS) category for a holomorphic function on a complex torus f : (C∗)n → C.

Along the way, we discovered the following related results and tools.

(1) Lagrangian skeleton of affine hypersurface in (C∗)n. Here we refine the previous

construction of [RSTZ] and show that the combinatorially constructed skeleton

of an affine hypersurface is not just a deformation retract of the hypersurface,

but can be realized as the Liouville skeleton for some carefully chosen Kähler

potential. We also define the notion of convexity of a Kähler potential with

respect to a given polytope, which will be used again in controlling the asymptotic

behavior of Lagrangian thimbles.

(2) Quantization of non-characteristic variation of singular support. Given a one-

parameter family of conical Lagrangian Λt ⊂ T ∗M parameterized by t ∈ [0, 1],

we may ask if there is an analog of parallel transport of categories Sh(M,Λt).

We give a sufficient condition on the variations such that the categories remains

invariant.

(3) As an application of the variation of singular support method, we consider

constructible sheaves on a torus T n, and prove the non-equivariant coherent-

constructible correspondence for smooth projective variety.

(4) Finally, we prove our main theorem, that FS-category for a Laurent polynomial is

quasi-equivalent to a category of constructible sheaves on a torus. One ingredient

of the proof is the adapted Kähler potential, which allows us to control the

thimble’s behavior at infinity; another ingredient is the monodromy operator,

which acts on the FS-category by varying the phase of the coefficients of the
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monomial, and acts on the constructible sheaves category by varying the singular

support constraint.

In the remaining part of the introduction, we give a brief summary of the results.

1.1. Notation

Here we establish some common notation that will be used through out this paper.

Let M,N be dual lattices of rank n. Let T = R/2πZ. For any abelian group A, e.g.

A = C∗,R, T , we define MA := M ⊗ZA and similarly for NA. If we fix a basis of M , then

M ∼= Zn, and MC∗ ∼= (C∗)n,MR ∼= Rn,MT
∼= T n. We sometimes denote the torus MT

also as TM .

Let Q ⊂ NR be a integral convex polytope with 0 as an interior point. Let T be a

coherent star triangulation of Q based at 0, and let ∂T be the induced triangulation of

the boundary ∂Q. Let ΣT be the simplicical fan spanned by the simplices in T . Let A

denote the vertices of T , and ∂A that of ∂T , then A = ∂A∪{0}. Fix (h,Θ) : A→ R×T ,

such that h induces the star triangulation of T and h(0) = 0. Let ĥ : Q→ R denote the

convex piecewise linear function extending h on A.

Let g : MR → R be the discrete Legendre transformation (DLT) of h

(1.1.1) g(y) = sup
x∈Q
〈x, y〉 − h(x),

and g(y) is a convex piecewise affine-linear function on MR. The tropical amoeba A is

defined as the singular loci of g.
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We define conical Lagrangian ΛT ,Θ ⊂ TM ×NR ∼= T ∗TM by

(1.1.2) ΛT ,Θ =
⋃
τ∈∂T

{θ ∈ TM : 〈α, θ〉 = Θ(α) for all vertices α ∈ τ} × cone(τ)

where we used the pairing 〈−,−〉 : TM × NR → T induced by the canonical pairing

between M,N .

We also define the generalized RSTZ-skeleton [RSTZ] by

(1.1.3) Λ∞T ,Θ =
⋃
τ∈∂T

{θ ∈ TM : 〈α, θ〉 = Θ(α) for all vertices α ∈ τ} × τ

For all large enough R > 0, we define the tropical polynomial as

(1.1.4) fR,h,Θ(z) =
∑
α∈∂A

e−iΘ(α)R−h(α)zα.

where zα is a monomial function on MC∗ ∼= (C∗)n.

If the function Θ ≡ 0, we drop the Θ subscript everywhere.

1.2. Lagrangian Skeleton of Affine Hypersurface

A skeleton, generally speaking, keeps only the essential part without losing important

information. A topological skeleton of a (non-compact) manifold is a strong deformation

retract, hence remembers the homotopy type of the original manifold. A Lagrangian

skeleton of a Weinstein manifold, i.e an exact symplect manifold ω = dλ with certain

growth control, is the stable manifold of the expanding Liouville flow Xλ, defined by

ιXλω = λ. Stein manifold, e.g. affine hypersurfaces, are Weinstein manifold, hence we

may ask what the skeleton of any given affine hypersurface looks like.
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Lagrangian skeleton is interesting for the study of Fukaya category of Weinstein man-

ifold. Indeed by the contracting Liouville flow, every compact smooth Lagrangian is

Lagrangian isotopic to one contained in a small tubular neighborhood of the skeleton,

hence one has the hope of computing the Floer homology group HF (L1, L2) of two La-

grangians, or even the Fukaya category, locally on the skeleton. In other words, it is

believed that the Fukaya category of the Weinstein manifold can be computed as the

global section of some sheaf of categories over the Lagrangian skeleton. A combinatorial

recipe for computing this sheaf of category is given by Nadler in [N2, N3]. There are on-

going works by Ganatra-Pardon-Shende and Chantrain-Ghiggini-Rizell-Golovko to study

Fukaya category using Liouville skeleton.

Topological skeleton, as strong deformation retract, for affine hypersurfaces has been

studied by Ruddat-Sibilia-Treumann-Zaslow in [RSTZ]. They give a simple combinato-

rial description of the skeleton using Newton polytope of the defining polynomial.

Theorem (Ruddat-Sibilla-Treumann-Zaslow). Let Q, T , fR,h as defined in the setup.

The skeleton Λ∞T embed into the hypersurface {fR,h(z) = 0} as a strong deformation

retract.

The proof there is algebraic and does not require a choice of the Weinstein structure,

hence does not show the skeleton can be embedded as a Lagrangian skeleton, or the stable

manifold of the Liouville flow.

Here we upgrade the topological skeleton into a Lagrangian skeleton. More precisely,

we have the following theorem.
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Theorem 1. There exists an exact symplectic structure on (C∗)n, such that the skele-

ton Λ∞T embed into the hypersurface {fR,h(z) = 0} as the Liouville skeleton with respect

to the induced Liouville structure on the hypersurface.

Our approach here is differential geometrical in flavor, using the idea of tropical de-

generation in the sense of Mikhalkin [Mi], which roughly means introducing a parameter

R and consider R→∞ limit (or fix R to be large enough).

1.3. Variation of Singular Support for Constructible Sheaves

Let M be a smooth manifold, Λ∞ ⊂ T∞M ∼= S∗M a (possibly singular) Legendrian

in the contact infinity of T ∗M , and Sh(M,Λ∞) the differential graded category of con-

structible sheaves with SS∞(F ) ⊂ Λ∞. We are interested in the following question:

Given an initial Legendrian Λ∞ ⊂ T∞M and a constructible sheaf F ∈ Sh(M,Λ∞),

for what kinds of deformation of Λ∞ can we find a corresponding deformation of F , such

that SS∞(F ) ⊂ Λ∞ holds?

Remark 1.3.1. If Λ∞ is a smooth Legendrian and the deformation is an Legendrian

isotopy, then there is a contactomorphism of the ambient space T∞M that induces the

deformation Λ∞. The sheaf-quantization of contactomorphism of Guillermou-Kashiwara-

Schapira [GKS] allows one to deform the sheaf F accordingly.

In [N3], Nadler introduced the notion of ‘non-characteristic deformation’ of Legen-

drian, which is defined using sheaf theory: a deformation of Legendrian is non-characteristic

if the corresponding sheaf category is invariant. He also proved that any Legendrian can
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be deformed non-characteristically to one with standard singularity, called arboreal sin-

gularity [N2]. Here we are interested in finding geometric condition for the Legendrian

deformation to be non-characteristic.

Let Λ∞t be a family of Legendrian in T∞M . Our first theorem (Theorem 7) says that,

if the complement of the Legendrian T∞M\Λ∞t are contactomorphic to each other, then

the corresponding sheaf categories Sh(M,Λ∞t ) are equivalent to each other. However, the

geometric condition is very hard to check in practice, though it can be useful to prove

non-existence of contactomorphism.

We propose another easier to check condition on the Legendrian deformation, inspired

by a remark in [N3]. Intuitively, we allow Legendrian to deform as long as there is no

‘collision’ with itself. One type of collision is detected by the appearance of short Reeb

chord ending on the Legendrian. However, it is also possible that two components of

Legendrian approach each other along the contact distribution, which is not detectable

by Reeb flow. For example, consider the Legendrian in J1R defined by f1(x) = 0 and

f2(x) = x3 + tx for t ∈ [0, 1]. To remedy this, we introduce a notion of ‘thickened’

Legendrian (along the contact distribution direction), and convex tubular neighborhood

around the Legendrian, generated by the Reeb flow-out of the thickened Legendrian. We

prove that the sheaf categories is invariant if the Legendrian deformation admits a uniform

convex tubular neighborhood (Theorem 9).

For application to Mirror symmetry, we also consider the special case of Legendrian

deformation locally modeled by affine hyperplanes in a vector space (Theorem 10), and

verify that if there is no short Reeb chords during the deformation then the sheaf category

is invariant.
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1.4. Non-equivariant Coherent-Constructible Correspondence

As a special case of the above non-characteristic variation of singular support method,

we have the following theorem. Recall that TM ∼= T n is an n-dimensional torus.

Theorem 2. Let Q, T be given as above. For all θ : A → T , the assignment θ  

Sh(TM ,ΛT ,θ) gives a local system of categories over TA. In particular, for any path γ :

[0, 1] → TA, there is a parallel transport functor Φγ : Sh(TM ,ΛT ,γ(0)) → Sh(TM ,ΛT ,γ(1))

inducing an equivalence of categories.

This theorem is useful in that, it allows one to build new objects in the constructible

sheaf category by applying monodromy operator. If we take the function θ : A → T as

identically zero, then the skyscraper sheaf C0 at 0 ∈ TM is in the category. From this

object, we may apply the various monodromy operator, indexed by elements in π1(TA) =

ZA. It turns out that the monodromy action acts by convolution of constructible sheaves

on TM .

Definition 1.4.1. Let π : RA → TA be the universal cover of TA, and a point θ̃ ∈ RA

represent a path γθ̃ from 0 to π(θ̃). For any θ̃ ∈ RA and θ = π(θ̃), we define the twisted-

polytope sheaf

Pθ̃ = Φγ
θ̃
(C0) ∈ Sh(TM ,ΛT ,θ).

And we denote the set of twisted polytope sheaves in Sh(TM ,ΛT ,θ) by

Pθ = {Pθ̃ | θ̃ ∈ RA, and πΣ(θ̃) = θ}.
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Theorem 3. For any θ ∈ TA, the set of twisted polytope sheaves Pθ generates the

category Sh(TM ,ΛT ,θ).

Example 1.4.2. Here is an example illustrating what a twisted-polytope sheaf looks

like. 4

Figure 1.2. Twistings of a convex polytope. As one pushes the edges of the
polytopes, a certain edge will shrink to zero-length then reappear on the
other side. Note the co-directions of the edges, indicated by hairs, remain
fixed. The corresponding twisted polytope sheaves have stalks on green,
yellow and blue regions as C,C[1],C[2], respectively.

As an application to Homological Mirror symmetry, we have the following result of

non-equivariant coherent-constructible correspondence, enhancing the previous result of

[FLTZ1, FLTZ2, Tr, SS, Ku1]. This result was first obtained by Kuwagaki in [Ku2]

using a different method.

Theorem 4 (Non-equivariant Coherent-Constructible Correspondence). Let Σ ⊂ NR

be the fan of a smooth projective toric variety, XΣ, Q ⊂ NR be the polytope generated by

primitive vectors of rays in Σ, and T is the unique star triangulation generated by faces

of Q. Then there is an quasi-equivalence of category

Coh(XΣ)
∼−→ Sh(TM ,ΛT )
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where ΛT is given by (1.1.2) for θ ≡ 0. Under this equivalence, the trivial line bundle

OXΣ
is sent to the skyscraper sheaf C0, and there is a canonical one-to-one correspondence

between line bundle to the twisted-polytope sheaves.

1.5. Lagrangian Thimbles and Constructible Sheaves

Given any lattice polytope Q ⊂ Zn with 0 in the interior. Let T be a regular star

triangulation of Q based at 0 and A the vertices of ∂T . Let h : A→ R be any function,

such that h(0) = 0 and h induces the triangulation T . Let fR,h be tropical polynomial

defined in 1.1.4.

Theorem 5. The Fukaya-Seidel category for fR,h,θ is equivalent to the category of

constructible sheaves on the n-torus

ΦT ,θ : FS((C∗)n, fR,h,θ)
∼−→ Sh(T n,ΛT ,θ).

Here we give the sketch of the proof. First, we choose a special Kahler potential on

(C∗)n, and extends the thimbles ending on f−1
R,h,θ(0) for large R to aymptotically coni-

cal Lagrangians close to the conical Lagrangian ΛT ,θ. This embeds FS((C∗)n, fR,h,θ) to

Fuk(T ∗T n,ΛT ,θ)
∼−→ Sh(T n,ΛT ,θ).

To study the image of the embedding when θ = 0, we consider monodromy of θ

on TA. On the Fukaya-Seidel side, the monodromy of θ mutates the thimbles. On the

constructible sheaf side, the monodromy acts by changing the singular support.

We apologize for the lack of details in this section, they will appear in future work.
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CHAPTER 2

Review of Fukaya-Seidel category

In this section, we give a rather informal overview of the Fukaya-Seidel category [Au,

Sm, Se1]. Then we present the definition and properties following the comprehensive

monograph [Se1] Chapter 1, as well as [NZ] Section 2.

Fukaya category of a compact symplectic manifold (M2n, ω) is a symplectic invariant

valued in an A∞-category, where roughly speaking, the objects are Lagrangian subman-

ifolds, morphisms are Floer chain complex CF (L1, L2), and (higher) compositions are

given by counting pseudo-holomorphic disks with boundaries on the Lagrangians.

Fukaya category is an A∞-category, that is, the composition is not strictly associative

but only associative up to corrections from higher order products, hence it is not an ‘hon-

est’ category. At first sight, the non-associativity seems a shortcoming that complicates

many manipulations. However, one can easily cure this, by taking homology of the mor-

phism complex, that is, using Floer homology groups HF (L1, L2) rather than Floer chain

complex CF (L1, L2), then the composition is associative on the nose, and in addition

HF (L1, L2) themselves become invariant under Hamiltonian isotopies of Li. The reason

for not choosing to pass to homology is that, it will ‘lose information’. Just as the de

Rham complex (Ω∗(X), d,∧) of a smooth compact manifold X as a differential graded

algebra (dga) remembers the real homotopy type of the manifold X rather than just the
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cohomologies, the A∞ structure maps

µk : CF •(L0, L1)⊗ CF •(L1, · · · , L2)⊗ · · · ⊗ CF •(Lk−1, Lk)→ CF (
∑
•)+2−k(L0, Lk)

remembers more information than HF (Li, Lj). These µk satisfies A∞ relations, where

the first fews are

µ1(µ1(a)) = 0, µ1(µ2(a⊗ b)) = ±µ2(µ1(a)⊗ b)± µ2(a⊗ µ1(b)),

µ1 · µ3(a⊗ b⊗ c)± ·µ3((µ1a)⊗ b⊗ c)± ·µ3(a⊗ µ1b⊗ c)± µ3(a⊗ b⊗ µ1c)

= µ2(µ2(a⊗ b)⊗ c)± µ2(a⊗ µ2(b⊗ c))

and the precise definitions are given in the next sections.

Fukaya-Seidel category assigns a Fukaya category to a holomorphic function f : M →

C on a Kähler manifold M . Given a smooth fiber of f and paths from singular fiber

to smooth fibers, we may construct an ordered sequence of vanishing spheres L1, · · · , Lk

in the smooth fiber, as Lagrangian submanifolds. The Fukaya-Seidel category is the

triangulated envelope generated by an directed A∞-category, where ‘directed’ means

Hom(Li, Lj) = 0 if i > j.

Fukaya-Seidel category relates the symplectic topology of the ambient space, to that

of a smooth fiber, hence reduces the dimension of the problem. If repeated by taking

Lefschetz fibration of the fiber again and again, one can reduce the problem to complex

one-dimensional case, where counting holomorphic disks becoming counting polygons on

a Riemann surface.
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Another motivation to study the Fukaya-Seidel category is from Mirror symmetry.

One version of Mirror symmetry conjecture predicts certain Fano manifold X should be

mirror dual to a certain Landau-Ginzburg(LG) model f : X∨ → C, in particular

(1) the B-model DbCoh(X) of X should be dual to the A-model FS(X∨, f) of (X∨, f),

and

(2)the A-model Fuk(X) of X should be dual to the B-model of Db
sing(X

∨, f).

Hence the Fukaya-Seidel category is the study of the LG A-model. Our work here focus

on the special case where X is a smooth projective toric Fano variety, and (X∨, f) is the

Hori-Vafa mirror dual of X.

We briefly explain the organization of this section. We first review the homological

setup of A∞-category, explaining what is an A∞-category and its triangulated envelope,

also introduce the notion of a directed category. Then we focus on the general setup

and properties of Symplectic Lefschetz fibration, explaining the results of Seidel, that

monodromy around a singular fiber corresponds to the Dehn twist of the corresponding

Lagrangian vanishing sphere.

2.1. Triangulated A∞-categories

An A∞-category (not necessarily unital) C consists of a set of objects Ob C, together

with a Z-graded C-vector space homC(X0, X1) for any two objects, and multilinear maps

µkC : homC(X0, X1)⊗ · · ·homC(Xk−1, Xk)→ homC(X0, X1)[2− k]
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for all k ≥ 1 and all (k + 1)-tuples of objects (X0, · · · , Xk+1), satisfying the A∞ associa-

tivity relations. Roughly speaking, if we define the path space from X to Y be

Path(X, Y ) :=
⊕

k≥1,{Xi}

hom(X0, X1)[1]⊗ · · ·hom(Xk−1, Xk)[1], X0 = X,Xk = Y

and define the ‘merge’ operation µ on Path(X, Y ) of degree 1 by merging subsegments

using µd in all possible ways and sum them up, then the A∞-relation is simply µ ◦ µ = 0.

The underlying cohomological category H(C) has the same objects as C, with

homH(C)(X0, X1) = H(homC(X0, X1), µ1
C)

There is also the subcategory H0(C) which has the same objects, but only keep the degree

zero cohomologies. One says H(C) is c-unital (cohomological unital) if H(C) has identity

morphisms.

Remark 2.1.1. A differential graded (dg) category is an A∞-category with {µk}k>2

vanishing. An A∞ algebra is an A∞-category with one object.

Let F : A → B be an A∞-functor between A∞-categories with map on objects F :

ObA → ObB, and morphism maps

Fd : homA(X0, X1)⊗ · · ·homA(Xd−1, Xd)→ homB(FX0,FXd)[1− d],

or a degree-0 map from Path(X, Y ) to Path(FX,FY ) commuting with the ‘merge’ op-

erators µA, µB. An A∞-functor F is said to be c-unital, if H(F) is unital. The category

of A∞-functors from A to B forms an A∞-category, where a morphism T from functor F



24

to functor G allows one to take in a path in A and output a path in B where the first half

is convert usnig F and the second half is convert using G with the jump given by T .

Assumptions: We will assume all A∞-categories to be c-unital, and all A∞-functors

to be c-unital too. We say an A∞-functor F is a quasi-equivalence if the induced functor

H(F) is an equivalence. We say F is quasi-embedding if H(F) is full and faithful. It

can be shown that if F : A → B is a quasi-equivalence, then there is a quasi-equivalence

G : B → A such that H(G) is an inverse equivalence to H(F).

2.1.1. A∞-modules and Yoneda embedding

Let Ch denote the dg category of chain complexes (over C), considered as an A∞-category.

Given an A∞-category A, a (right) A∞-module over A is an A∞-functorM : Aop → Ch.

Let mod(A) denote the A∞-category of A∞-modules of A. Since Ch is a dg category,

mod(A) is actually a dg category as well, and its cohomological category H0(mod(A)) is

a triangulated category.

For any object Y ∈ ObA, we have the A∞-module Y defined as

Y(X) = homA(X, Y ).

Let J denote the A∞ Yoneda embedding A ↪→ mod(A), then H(J ) is full and faithful.

Since the ambient category mod(A) is a dg category, the image J (A) of the embedding

is as well. Thus each A∞-category is canonically quasi-equivalent to a dg category J (A).
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2.1.2. Exact Triangles

Let Y0, Y1 be objects of A, and c ∈ hom0
A(Y0, Y1) a degree zero cocycle. The abstract

mapping cone of c is the A∞-module C = C one(c) defined by

C (X) = homA(X, Y0)[1]⊕ homA(X, Y1)

There is an exact triangle diagram in H(mod(A))

J (Y0)→ J (Y1)→ C one(c)
[1]−→ .

We call any triangles in H(A) exact, if its Yoneda embedding image is isomorphic to one

of such triangles. A shift SX of an object X is any object which ecome isomorphic to the

shift in H(mod(A)) under the Yoneda embedding.

A non-empty A∞-category A is said to be triangulated if the following hold:

(1) Every morphism in H0(A) can be completed to an exact triangle in H(A). In

particular, every object X has a shift SX.

(2) For each object X, there is an object X̃, such that SX̃ ∼= X in H0(A).

If A is a triangulated A∞-category, then H0(A) is a triangulated category in the usual

sense. Furthermore, if F : A → B is an A∞-functor between triangulated A∞-categories,

then H0(F) is an exact functor.

The triangulated envelope of a nonempty A∞-category A is a pair (A,F) consisting of

a triangualted A∞-category A and a cohomologically full and faithful functor F : A → A,

such that the objects in the image of F generate A, in the sense that A is the smallest
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full subcategory in A that contains A, is closed under cohomological isomorphism, and is

itself triangulated.

2.1.3. Twisted Complex

There are two standard construction of a triangulated envelope for A, one is taking the

full subcategory of mod(A) generated by the image fo the Yoneda embedding, and another

the A∞-category of twisted complex TwA. Here we first state the construction of twisted

complex, then state their properties.

The construction (modulo signs) proceeds in two steps: (1) The additive enlargement

ΣA has objects with are formal sums

X =
⊕
f∈F

Xf [σf ],

where F is some finite set, Xf ∈ ObA, and σf ∈ Z. The morphisms between any two

objects are

homΣA(
⊕
f∈F

Xf [σf ],
⊕
g∈G

Yg[τg]) =
⊕
f,g

homA(Xf , Yg)[τg − σf ]

and compositions are defined using those of A and the obvious ‘matrix multiplication’

rule.

(2) A twisted complex is a pair (C, δ) consisting of C ∈ ObΣA and δ ∈ hom1
ΣA(C,C),

with the strict upper triangularity property that the index set F for C = ⊕f∈FCf can be

ordered in such a way that all components δfg with f ≥ g are zero, and subject to the
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generalized Maurer-Cartan equation

µ1
ΣA(δ) + µ2

ΣA(δ, δ) + · · · = 0.

The upper triangularity ensures this is a finite sum. We define an A∞-category TwA of

which the (C, δ) are the objects. The spaces of morphisms are the same as for ΣA, but

composition in TwA involves the δs padded in the slots of compositions for ΣA

µdTwA(ad, · · · , a1) =
∑

j0,··· ,jd≥0

µ
d+

∑
jk

ΣC (δd, · · · , δd, ad, δd−1, · · · , δd−1, ad−1, · · · )

where δk are repeated jk times.

Given two twisted complexes (Ck, δk), k = 0, 1, and a morphism a ∈ hom0
TwC(C0, C1)

such that µ1
TwC(a) = 0, one can define the mapping cone as

Cone(a) = {C0
a−→ C1} :=

C0[1]⊕ C1,

δ0 0

a δ1


 ∈ Ob TwA.

2.2. Symplectic Lefschetz fibration

Here we follow Seidel [Se4] about the defintions of exact symplectic fibration. The

main results here is that the geometric Dehn twist around a Lagrangian sphere corre-

sponds to the mutation. The fibration we will consider has non-compact fibers, hence the

symplectic parallel transport has the danger of running off to fiberwise-infinity. The usual

treatment, as adopted in [Se4, Se1], is to cut-off the fiber, and consider a compact fiber

with boundary, and trivialize the fibration near the boundary. It is somewhat awkard to

implement this condition here, instead we will prove by hand that the symplectic parallel
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transport does not ‘run to infinity’. For the present discussion, we will still state the setup

using compactified fiber with boundary, in accordance with the literature, and introduce

the necessary modification later.

Here we follow the presentation in [Se5] closely. Let (M,ω, θ) be an exact symplectic

manifold of dimension 2n, where M is compact with boundary ∂M , ω ∈ Ω2(M) is a

symplectic form, and θ ∈ Ω1(M) satisfies dθ = ω. We consider exact symplectomorphism

Sympe(M) φ of M which are equal to the identity near ∂M , where exact means [φ∗θ−θ] =

0 in H1(M,∂M ;R). Note that any isotopy within this subgroup is Hamiltonian.

Let S be a smooth manifold with boundary. An exact symplectic fibration over S

consists of data (E, π,Ω,Θ) as follows:

(1) π : E → S is a proper differentiable fiber bundle with 2n-dimensional fiber.

(2) Ω ∈ Ω2(E) and Θ ∈ Ω1(E) such that Ω = dΘ, the vertical part Ω| ker(dπ) is non-

degenerate everywhere.

(3) The boundary ∂E = ∂hE ∪ ∂vE, where the horizontal part ∂hE → S is again a

fiber bundle (see [Se5] for precise control of the boundary), and the vertical part ∂vE =

π−1(∂S).

The form Ω defines a canonical connection on π : E → S, with structure group

Sympe(Ez). We denote the parallel transport maps of the canonical connection ρc :

Ec(a) → Ec(b) for c : [a, b]→ S.

The exact Lefschetz fibration is a modification of above construction by allowing Morse

type singularities. Assuming S is two-dimensional and oriented, an exact Lefschetz fibra-

tion over S consists of the data (E, π,Ω,Θ, J0, j0), where (E, π,Ω,Θ) are as before except
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π is allowed to have finitely many critical points living in the interior of E and in dis-

tinct fibers. J0 is an integrable complex structure defined in a neighborhood of the set

Ecrit ⊂ E of critical points, where Ω is a Kähler form on it, and similarly j0 is a positively

oriented complex structure defined in the neighborhood of critical values Scrit ⊂ S, such

that π is (J0, j0)-holomorphic and with non-degenerate Hessian near every critical point.

An exact Lefschetz fibration is denoted as (E, π) for short.

A framed Lagrangian sphere is a Lagrangian submanfiold L togehter with an equiva-

lence class [f ] of diffeomorphisms f : Sn → L. Here f1, f2 are equivalent, if f−1
2 ◦ f1 is

isotopic to some element in O(n + 1) ⊂ Diff(Sn). One can associated to any (L, [f ]) a

Dehn twist τ(L,[f ]) ∈ Symp(M) which is unique up to Hamiltonian isotopy. If L is exact,

so is the Dehn twist along it. See ( [Se4], 1.2) for the precise construction of it. We will

omit the framing [f ] from the notation in the following.

Let c : [0, 1] → S be a path such that c(0) is a critical value for critical point x, and

c′(0) 6= 0. Then the stable manifold

B = {x} ∪ {y ∈ Ec(s), s ∈ (0, 1], lim
t→0

ρc|−1
[t,s](y) = x}

is a smoothly embedded (n+1)-ball, on which Ω vanishes. The intersection V = B∩Es(1)

is then a Lagrangian sphere, with a prefered framing [f ] induced by the framing on the

sphere B ∩ Es(ε) for small enough positive ε. The monodromy of along a path counter-

clockwise around the critical value is isotopic to τ(V,[f ]).

Suppose S = D is the closed unit disk in C, and π : E → S is an exact Lefschetz

fibration with critical values c1, · · · , cm, then we may fix any regular value b ∈ S and draw

non-intersecting (except at the ends) paths from the critical values to the regular value.
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l

Figure 2.1

Counting the paths coming into b clockwise gives a cyclic ordering on the paths, one may

fix a linear ordering by choosing the ‘first’ path. In the case when b is on the boundary,

one may choose the first path as the ‘leftmost’ one viewed from b. The ordered collection

of exact framed Lagrangian spheres in Eb is called a distinguished basis of vanishing cycles.

b

Figure 2.2

Definition 2.2.1. A Lagrangian configuration in an exact symplectic manifold M is

an ordered family Γ = (L1, · · · , Lm) of Lagrangian spheres. Two configurations are called

Hurwitz equivalent if they are connected by a sequence of the following moves and their

inverses:

(a) Γ = (L1, · · · , Lm)  (L1, · · · , φ(Li), · · · , Lm) for some 1 ≤ i ≤ m and some φ ∈
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Sympe(M) isotopic to identity.

(b) For 1 ≤ i < m, Γ βiΓ := (L1, · · · , Li−1, τiLi+1, Li, Li+2, · · · , Lm).

The {β1, · · · , βm−1} are generators of a the braid group on m strands.
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CHAPTER 3

Review of Constructible Sheaves

Here we give a quick review on constructible sheaves, following the introduction of

[N1] and the Appendix of [STW] very closely. For a thorough account on constructible

sheaf theory and its relation with Fukaya category, see [KS, S] and [NZ].

We first give the categorical background, especially the definition for dg enhancement

of the triangulated derived categories. Then we give some useful formula for practical

computations. Next, we take a brief detour in symplectic geometry to define conical

Lagrangian in cotangent bundles, so that we can define the singular support SS(F ) of

a constructible sheaf F . Then, we discuss some non-characteristic deformations results,

where the sections Γ(Ut, F ) is invariant up to quasi-isomorphism as Ut vary. Then, we

recall quantization of Hamiltonian contactomorphism of [GKS].

3.1. Classical and differential graded derived categories of sheaves

Let X be a topological space. The poset (viewed as a category) Open(X) has objects

of open subsets, and partial orderings (morphisms) are given by inclusions of open subsets.

Let Vect be the abelian category of C-vector spaces.

• A presheaf F valued in Vect is a functor

F : Open(X)o → Vect .
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A presheaf F is a sheaf, if for any collection of open subsets {Ui}i∈I , we have an

exact sequence

0→ F (
⋃
i

Ui)→
∏
i

F (Ui)→
∏
i,j

F (Ui ∩ Uj).

• Let C(X) be the abelian category of complexes of sheaves on X, with morphisms

being degree-zero chain maps.

• Let K(X) be the homotopy category of C(X), where objects are the same as

C(X), ands morphisms are chain maps upto homotopy equivalences

HomK(X)(F
•, G•) := HomC(X)(F

•, G•)/ ∼

where ϕ1 ∼ ϕ2 if ϕ1−ϕ2 = d ◦ h− h ◦ d for some degree −1 map h : F • → G•−1.

• The derived category D(X) is obtained from K(X) by inverting quasi isomor-

phisms. The bounded derived category Db(X) is defined to be the full subcate-

gory of complexes with bounded cohomologies.

To define constructibility, let X be a real analytic manifold. We fix an algebro-

geometric category C, e.g., the category of subanalytic sets. A Whitney stratification

S = {Sα}α∈A of X by C-submanifolds, is a decomposition X = tα∈ASα into disjoint

strata {Sα} indexed by A, where Sα are locally closed C-submanifolds and Sα ∩ Sβ 6= ∅

if and only if Sα ⊂ Sβ, and any pair of distinct strata (Sα,Sβ) satisfies the Whitney

condition, that is, if a sequence {xn ∈ Sα} and a sequence {yn ∈ Sβ} converges to a point

y ∈ Sβ, such that in some local coordinate patch, the secant lines xiyi converges to a line

l and the tangent planes TxiSα converges to a plane τ , then l ⊂ τ .
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Let S = {Sα} be a Whitney stratification of X. An object F • ∈ D(X) is said to be

S-constructible, if the restrictions H i(F •)|Sα of its cohomology sheaves to the strata of S

are finite-rank and locally constant. We denote by DS(X) the full subcategory of D(X)

spanned by S-constructible objects, and denote by Dc(X) the full subcategory of D(X)

spanned by constructible sheaves for some Whitney stratification. If the stratification S

is finite, then by the finite rank condition on cohomology sheaves, Dc(X) ⊂ Db(X).

Next, we define the differential graded(dg) derived category. For a review on dg

category and dg quotient construction, see [Ke] and [Dr].

• The (naive) dg category Shnaive(X) has objects as chain complexes of sheaves F •,

same as C(X), and morphisms are chain complexes, with the degree n element

as

homn
Shnaive(X)(F

•, G•) :=
∏
i∈Z

homX(F i, Gn+i)

and differentials are given by

dn : homn
Shnaive(X)(F

•, G•)→ homn+1
Shnaive(X)(F

•, G•), ϕ 7→ dF ◦ ϕ− (−1)nϕ ◦ dG.

• The dg derived category Sh(X) is the dg quotient of Shnaive(X) by the full

subcategory spanned by acyclic objects [Dr]. This is a triangulated dg category

whose cohomology category H0(Sh(X)) is canonically equivalent to the derived

category D(X) as a triangulated category.

• The dg derived category of bounded constructible categories Shbc(X) is the full

subcategory of Sh(X), whose objects F • have bounded constructible cohomol-

ogy sheaves. For a fixed Whitney stratification S of X, the S-constructible dg
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derived category ShS(X) is the full dg subcategory of Sh(X) spanned by objects

projecting to DS(X).

• A dg functor F : C → D of dg categories is a quasi-embedding (resp. quasi-

equivalence) if and only if the induced cohomological functor H(F ) : H(C) →

H(D) is an embedding (resp. equivalence).

In this paper, we will only work with constructible sheaves, and will omit the subscript

c for constructibility. To simplify notation, we use sheaf F to mean complex of sheaves

F •, homX to mean hom-complex hom•Sh(X).

3.2. Useful Formulae for Computations

Inspite of the abstract categorical definitions, constructible sheaves enjoy many func-

torial properties which faciliates actual computations. Here we give some useful formulae

and examples.

We use f ∗, f∗, f
!, f!, hom,⊗ to mean the corresponding dg derived functors:

−⊗ F : Sh(X)↔ Sh(X) : hom(F,−)

f ∗ : Sh(X)↔ Sh(Y ) : f∗

f! : Sh(Y )↔ Sh(X) : f !

where f : Y → X is a map of real analytic manifolds.

The Verdier duality D : Sh(X)o → Sh(X) is an anti-involution. It interchanges shriek

with star

DD = id, f! = Df∗D, f ! = Df ∗D.
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The shrieks and stars are directly related in two cases: when f is proper f! = f∗; when f is

a smooth morphism of relative dimension df , f
!(−) ∼= f ∗(−)⊗ωY/X ∼= f ∗(−)⊗ orY/X [df ],

where orY/X is the orientation sheaf of the fiber.

Given an open subset U of X and its closed complement Z,

open inclusion: U
j
↪−→ X

i←−↩ Z, closed inclusion,

we have j∗ = j! and i∗ = i!. Furthermore, there are exact triangles

i!i
! → id→ j∗j

∗ [1]−→, j!j
! → id→ i∗i

∗ [1]−→ .

These are sheaf-theoretic incarnations of excisions: applied to the constant sheaf on X

and taking global sections, we get

H∗(Z, i!C)→ H∗(X,C)→ H∗(U,C)
[1]−→, H∗c (U,C)→ H∗c (X,C)→ H∗c (Z,C)

[1]−→ .

If Y is a locally closed C-submanifold of X, we use jY : Y ↪→ X to denote the inclusion.

Let CY ∈ Sh(Y ) denote the constant sheaf on Y , and ωY = DCY be the Verdier dualizing

complex of Y , then ωY is the canonically isomorphic to the shifted orientation sheaf

orY [dimY ] on Y . The standard sheaf on Y is jY ∗CY , and the costandard sheaf on Y is

jY !ωY .

The constructible sheaves can be ‘constructed’ by taking shifts and mapping cones of

certain finite collection of sheaves. Let T = {τα} be a triangulation of X by simplices

jα : τα ↪→ X, where each τα is the embedding image of some open simplex. We denote by

C∗(T ) the the full dg subcategory of ShT (X) spanned by standard objects jα∗Cτα . The
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morphisms between standard objects are quasi-isomorphic to complexes concentrated at

degree zero.

homShT (X)(jβ∗Cτβ , jα∗Cτα) ∼=


C if β ≥ α

0 else

where α ≤ β if τα ⊂ τβ.

Applying Verdier duality to the standard sheaves, we get the costandard sheaves

D(jα∗Cτα) = jα!ωτα . We have

homShT (X)(jα!ωτα , jβ1ωτβ) ∼=


C if α ≤ β

0 else.

We denote by C!(T ) the the full dg subcategory of ShT (X) spanned by costandard objects

jα!ωτα

Lemma 3.2.1 ([N1], Lemma 2.3.1). ShT (X) is the triangulated envelope of C∗(T )

(resp. C!(T )).

Example 3.2.2. Let Y = (0, 1) ⊂ R, then jY ∗CY is the constant sheaf with stalk

C supported on the closed interval [0, 1], and jY !ωY is the costandard sheaf with stalk

isomorphic to C[1] supported on the open interval (0, 1). 4

Example 3.2.3. Let f : {0} ↪→ Rn, then

f !(CRn) = Df ∗DCRn = Df ∗(CRn [n]) = D(C{0}[n]) = C{0}[−n]
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where we have identified the orientation sheaf on Rn with the constant sheaf by chosing

an orientation on Rn. 4

3.3. Conical Lagrangian and Singular Support

In this subsection, we define singular supports of constructible sheaves. Roughly

speaking, singular supports encode the ‘positions and directions’ where sections ‘fail to

propagate’. We first need to introduce notations from symplectic and contact geometry.

Let X be a smooth manifold, T ∗X its cotangent bundle with the canonical one-form

λ = pdq and the canonical sympletic two form ω = dλ = dp ∧ dq. Let Ṫ ∗X = T ∗X\X,

where X is identified with the zero section in T ∗X. Let T∞X = Ṫ ∗X/R>0, where R>0

acts by fiberwise dilation. There is a natural fiberwise compactifiation of T ∗X to T
∗
X,

where T∞X corresponds to the divisor at infinity T
∗
X\T ∗X ([NZ], §5.1.1).

A contact manifold (M, ξ) is a smooth manifold of odd dimension 2m + 1, with a

smooth rank 2m subbundle ξ ⊂ TM , called a hyperplane distribution, such that locally

ξ = ker(α) for some one-form α and α∧ (dα)m 6= 0. Such a one-form α is called a contact

form. The Reeb vector field with respect to a contact form α is the unique vector field

R such that ιRα = 1 and ιRdα = 0. A contactomorphism between contact manifolds is

a diffeomorphism that preserves the hyperplane distributions. A Legendrian submanifold

L of M is an m-dimensional submanifold such that TL ⊂ ker(α) ∩ ker(dα).

The divisor T∞X at infinity of the compactification T
∗
X has a natural contact

structure defined in the following way: Fix any smooth section H of the R>0-bundle

Ṫ ∗X → T∞X, then T∞X is diffeomorphic to H by the section map; the canonical one-

form λ of T ∗X restricts to a contact form α on H, hence induces a contact structure ξ on
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T∞X. If we fix a Riemmanian metric on X, then the section H can be taken as the unit

cosphere bundle

S∗X = {(x, η) ∈ T ∗X | ‖η‖ = 1}.

The Reeb flow on S∗X is the unit geodesic flow. We will identify S∗X and T∞X.

Example 3.3.1. The simplest example contact manifold is the 1-jet bundle on Rn:

J1Rn := T ∗(x,y)Rn × Rz, and one choice of the contact form can be taken as α = z −∑n
i=1 yidxi and the corresponding Reeb flow is ∂z. 4

A conical Lagrangian Λ ⊂ T ∗X is a Lagrangian (possibly singular) invariant under

the R>0-action. A homogenous conical Lagrangian is a one contained in Ṫ ∗X. Given a

conical Lagrangian Λ, we define the associated Legendrians as

Leg(Λ) = Λ∞ = (Λ\X)/R>0 ⊂ T∞X.

Conversely, given a Legendrian L ⊂ T∞X, we use Lag(L) to denote the homogeneous

conical Lagrangian in Ṫ ∗X as the preimage of the quotient Ṫ ∗X → T∞X.

Let S = {Sα}α∈A be a Whitney stratification of X, then there is a canonical conical

Lagrangian associated to S,

ΛS :=
⋃
α∈A

T ∗SαX

where T ∗NX = {(x, η) ∈ T ∗X | x ∈ N, η|TN = 0} denotes the conormal bundle of a

submanifold N ⊂ X.

Let F be a S-constructible sheaf in ShS(X) for a Whitney stratification S. The

singular support SS(F ) is a (singular) conical Lagrangian contained in ΛS defined in the

following way: a point (x, η) ∈ T ∗X is not in the singular support SS(F ), if there is a
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small open ball B(x, ε) around x, and a Morse function f : B(x, ε) → R, with f(x) = 0

and df(x) = η, such that for any 0 < δ � 1, the canonical restriction morphism

Γ(f−1(−∞, δ), F )→ Γ(f−1(−∞,−δ), F )

is a quasi-isomorphism. We use

SS∞(F ) := (SS(F ))∞ = (SS(F )\X)/R>0

to denote the Legendrian in T∞X associated to the conical Lagrangian SS(F ) in T ∗X.

Example 3.3.2. Let j : U = B(0, 1) ↪→ R2 be the inclusion of an open unit ball in

R2. Then j∗CU is supported on the closed set U , with singular support at infinity as

SS∞(j∗CU) = {(x, η) ∈ S∗R2 | x ∈ ∂U, η = −d|x|} = .

And j!CU is supported on the open set U , with singular support at infinity as

SS∞(j!CU) = {(x, η) ∈ S∗R2 | x ∈ ∂U, η = d|x|} = .

Here the Legendrians are represented by co-oriented hypersurfaces in R2 with hairs indi-

cating the co-orientation. 4

The following Lemma from [KS] is useful in characterising the singular support under

⊗ and hom.

Proposition 3.3.3 (Proposition 5.4.14 of [KS]). Let F and G belong to Shb(X), then

(1) if SS∞(F ) ∩ (SS(G)a)∞ = ∅, then SS(F ⊗G) ⊂ SS(F ) + SS(G).
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(2) if SS∞(F ) ∩ SS∞(G) = ∅, then SS(hom(F,G)) ⊂ SS(G)− SS(F ).

where (−)a is the fiberwise anti-podal map in T ∗X and ± is the fiberwise sum/substraction

in T ∗X.

For a version without assuming SS∞(F )∩ SS∞(G) = ∅, see Corollary 6.4.5 and 6.2.4

in loc.cit.

3.4. Kernel and Functors

Let Xi, i = 1, 2, be spaces, and K ∈ Sh(X2 × X1). We define the following pair of

adjoint functors

(3.4.1) K! : Sh(X1)↔ Sh(X2) : K !

(3.4.2) K! : F 7→ (π2)!(K ⊗ π∗1F ), K ! : G 7→ (π1)∗(hom(K, π!
2G))

Indeed

hom(K!F,G) = hom((π2)!(K ⊗ π∗1F ), G) = hom((K ⊗ π∗1F ), (π2)!G)

= hom(π∗1F, hom(K, (π2)!G)) = hom(F, (π1)∗hom(K, (π2)!G)) = hom(F,K !G)

Similarly, we may define

(3.4.3) K∗ : Sh(X2)↔ Sh(X1) : K∗

(3.4.4) K∗ : G 7→ (π1)!(K ⊗ π∗2G), K∗ : F 7→ (π2)∗(hom(K, π!
1F ))
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If we define transposition Kt ∈ Sh(X1×X2) be the pullback of K under the transpo-

sition t : X1 ×X2 → X2 ×X1, then

(3.4.5) (Kt)∗ = K !, (Kt)∗ = K!

Proposition 3.4.1. Let f : X1 → X2 be a continuous map, and let C(f) = CΓ(f) ∈

Sh(X2 × X1) be the constant sheaf on the graph Γ(f) of f . Then, C(f)∗ = f ∗,C(f)∗ =

f∗,C(f)! = f !,C(f)! = f!.

The Verdier duality also works as expected from the notation,

(3.4.6) DK∗DF = D(π2)∗(hom(K, π!
1DF)) = (π2)!D(hom(K,Dπ∗1F)) = (π2)!(K ⊗ π∗1F)

where we have used ([KS], Proposition 3.4.6)

(3.4.7) hom(G,F ) = hom(DF,DG) = D(D(F )⊗G)

The functors can be composed as well. Let K21 ∈ Sh(X2×X1) and K32 ∈ Sh(X3×X2).

Let πij : X3×X2×X1 → Xi×Xj be the projection map. Then the composition is defined

as

(3.4.8) K32 ◦K21 := (π31)!(π
∗
32K32 ⊗ π∗21K21)

The composition has the property

(3.4.9) (K32 ◦K21)! = K32,! ◦K21,!, (K32 ◦K21)∗ = (K32)∗ ◦ (K21)∗
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3.5. Non-characteristic Deformation Lemma

Just as in Morse theory, where a level sets f−1(t) of a Morse function f on M has

constant diffeomorphism type when t varies in the connected components of the comple-

ment of the critical values of f , the non-characteristic deformation results for constructible

sheaves are about the invariance of the hom-complexes hom(Ft, Gt) for families of sheaves

{Ft} and {Gt}, when SS∞(F ) and SS∞(G) are disjoint.

We first state the version regarding sections of a sheaf over an increasing sequence of

open sets.

Proposition 3.5.1 (Proposition 2.7.2 in [KS] ). Let X be a real analytic manifold,

F a bounded complex of constructible sheaves in Sh(X), and let {Ut}t∈R be a family of

open subsets of X. We assume the following conditions:

(1) Ut =
⋃
s<t Us for all t ∈ R.

(2) For all pairs (s, t) with s ≤ t, the set Ut\Us ∩ Supp(F ) is compact.

(3) Setting Zs = ∩t>sUt\Us 1, we have for all pairs (s, t) with s ≤ t and all x ∈ Zs\Ut,

that

hom(jX\Ut∗CX\Ut , F )|x ∼= 0.

Then we have for all t ∈ R, the quasi-isomorphism

Γ(U, F )
∼−→ Γ(Ut;F ), where U =

⋃
s∈R

Us.

Remark 3.5.2. The section functor can be viewed as Γ(Ut, F ) = hom(jUt!CUt , F ).

Hence this is a special case for hom(Gt, Ft). The advantage for this version is that the

1See errata at https://webusers.imj-prg.fr/~pierre.schapira/books/Errata.pdf for the need of
closure.

https://webusers.imj-prg.fr/~pierre.schapira/books/Errata.pdf


44

results holds for the section over union of the open sets {Us}, instead of just between

pairs of open sets Ut, Us for some finite t, s.

Proposition 3.5.3 (Corollary 2.10, [?]). Let I be an open interval of R, let q : M×I →

I be the projection, and let ιs be the embedding M × {s} ↪→M × I. Let F ∈ Sh(M × I),

such that SS∞(F ) ∩ (T ∗MM × T ∗I)∞ = ∅ and q is proper on Supp(F ). Set Fs = ι∗sF .

Then we have isomorphisms

Γ(M,Fs) ∼= Γ(M,Ft) for all s, t ∈ I.

Since the hom-complex can be obtained by taking the global section of hom-sheaf, we

have a non-characteristic deformation result for hom(Ft, Gt). First we state a lemma:

Lemma 3.5.4 (Petrowsky theorem for sheaves, Corollary 4.6 [?]). Let F,G be bounded

constructibles sheaves in Sh(X). If SS∞(F ) ∩ SS∞(G) = ∅, then the natural morphism

hom(F,CX)⊗G→ hom(F,G)

is an isomorphism.

3.6. Quantization of Contactomorphism

For any contactomorphism ϕ : S∗M → S∗M , Hamiltonian isotopic to identity, GKS

constructed a kernel Kϕ ∈ Sh(M ×M), such that the functor Kϕ! satisfies

(3.6.1) SS∞(Kϕ!F) = ϕ(SS∞(F))
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One may achieve the same effect of moving the singular support, using the ‘lower-

star’ push-forard. Let a : S∗M → S∗M be the anti-podal map (q, p) 7→ (q,−p), and

ϕa := a ◦ ϕ ◦ a, then

Lemma 3.6.1.

(3.6.2) SS∞((Kϕa)∗F) = ϕ(SS∞(F))

Hence

(3.6.3) (Kϕa)∗ = Kϕ!

Proof. Using Verdial duality D, we have

(3.6.4) Kϕ∗ = DKϕ!D, SS∞(Kϕ∗F) = SS∞(DKϕ!DF) = a ◦ ϕ ◦ a(SS∞(F))

Replacing ϕ by ϕa finishes the proof of the first line. The equality of the two functors

can be seen when ϕ = ϕ0 is the identity map and the equality persist as ϕt interpolates

between the identity map and the contactomorphism ϕ. �

There are several ways to express the inverse of (Kϕ)!.

(1) By the commutativity of quantization and composition, we have

(3.6.5) (Kϕ−1)! ◦ (Kϕ)! = (Kϕ−1◦ϕ)! = (Kid)! = id

and

(3.6.6) (K(ϕa)−1)∗ ◦ (Kϕa)∗ = id
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(2) By the property of adjoint functor, we have

(3.6.7) id
∼−→ (Kϕ)!(Kϕ)!, (Kϕ)!(Kϕ)! ∼−→ id

(3) By the general construction of the inverse kernel ([GKS], Proposition 1.14), for any

K ∈ Sh(X2 ×X1), we may define

(3.6.8) K−1 := [hom(K, π!
1CX1)]t

then we have a canonical map

(3.6.9) K−1 ◦K → C∆X1

Under suitable condition (see loc.cit), the above map is an isomorphism.

Hence, we have three candidate inverse functors to (Kϕ)!,

(3.6.10) (Kϕ−1)! = (K(ϕa)−1)∗, (Kϕ)! = (Kt
ϕ)∗, (K−1

ϕ )!

In the case where ϕ is the geodesic flow on Rn for time t, we have

(3.6.11) Kϕ =


C{|x2−x1|<t}[n] t > 0

C{|x2−x1|≤|t|} t ≤ 0

Here ϕa = ϕ−1, and Kϕ = Kt
ϕ, we do have

(3.6.12) K−1
ϕ = Kϕ−1 , Kt

ϕ = Kϕ = K(ϕa)−1
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CHAPTER 4

Lagrangian Skeleton of Hypersurface in (C∗)n

A skeleton L of a smooth non-compact manifold M is a minimal deformation retracts

of M . If M is an exact symplectic manifold, ω = dα, then there is canonically-defined

retracting flow ξ (ιξω = −α) on M that preserves the symplectic structure (upto rescal-

ing), and the retraction core is a singular Lagrangian submanifold, called the Lagrangian

skeleton. (The precise definition will be given later.)

Figure 4.1. Deformation retraction of a pair-of-pants.

Just as a skeleton knows the homotopy type of the ambient manifold, a Lagrangian

skeleton (or rather, its tubular neighborhood) remembers the symplectic topology of the

ambient exact symplectic manifold. In particular, under the retracting flow, compact

Lagrangians in M will flow into the tubular neighborhood of the Lagrangian skeleton L,

and Floer theoretic computation might be turned into local computation on the skeleton.
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If M is an exact Kähler manifold, that is ω = ddcϕ globally for some pluri-subharmonic

function ϕ : M → R, then (M,ω, α) is also an exact symplectic manifold, with α = dcϕ,

and the retracting flow is the (negative) gradient flow for ϕ. Hence, if we equip (C∗)n

with a Kähler structure (ω, ϕ), then any complex hypersurface Y in (C∗)n is an exact

symplectic manifold coming from the induced exact Kähler structure (ω|Y , ϕ|Y ).

Skeletons of affine hypersurfaces in (C∗)n have previously been studied by [RSTZ],

where a skeleton is constructed combinatorially using the Newton polytope of the defining

Laurent polynomial of the hypersurface. Here we show that the skeleton can be improved

to be a Lagrangian skeleton. One technique is Abouzaid’s semi-tropicalization, which sim-

plifies the defining local defining equation of a hypersurface by omitting non-dominating

terms. Another technique is the construction of an adapted Kähler potential ϕ on (C∗)n

for the Newton polytope, so that the induced skeleton on the hypersurface is like that

constructed by [RSTZ].

Figure 4.2. Deformation retraction of an three-times punctured torus.

We will first give the necessary background on Weinstein manifold following [CE].

Then we review the construction of the RSTZ-skeleton. Then we introducing the adapted

Kähler potential for the Newton polytope, and Abouzaid’s tropical localization method.

Finally, we prove the Lagrangian skeleton agrees with the RSTZ-skeleton.
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4.1. Review of Weinstein Manifold and Skeleton

Here we recall the relevant definitions and properties from [CE], Chapter 11. An exact

symplectic structure on a symplectic manifold (M,ω) is a one-form λ, called Liouville form

such that ω = dλ. The vector field X that is ω-dual to λ, i.e., ιX = dλ, is called the

Liouville vector field for λ. X is an outgoing vector field, in that

(4.1.1) LXω = (ιXd+ dιX)ω = dλ = ω.

Also note that

(4.1.2) ιXλ = ιXιXω = 0, LXλ = ιXdλ = λ.

A map ψ : (M1, ω1, λ1)→ (M2, ω2, λ2) between exact symplectic manifolds is called exact

symplectic if [ψ∗λ2 − λ1] = 0 ∈ H1(M1,R).

Definition 4.1.1. A Liouville manifold is an exact symplectic manifold (M,ω, λ,X),

or denoted as (M,ω, λ) or (M,ω,X), such that

(1) the expanding vector field X is complete, and

(2) the manifold is convex in the sense that there exists an exhaustion M = ∪∞k=1M
k

by compact domains Mk ⊂M with smooth boundaries along with X is outward

pointing.

We denote the time-t flow generated by X as Φt
X : M → M , for all t ∈ X. Since

LXω = ω, (Φt
X)∗ω = etω, in other words, the ω-area of a surface increases as the surface

flows with X.



50

Note that the sets Mk are invariant under the contracting flow Φ−tX , t > 0. The sets

(4.1.3) Skel(M,ω,X) :=
∞⋃
k=1

⋂
t>0

Φ−tX (Mk)

is independent of the choice of the exhausting sequence of compact sets Mk and is called

the skeleton of the Liouville manifold (M,ω, λ).

Definition 4.1.2. A Weinstein manifold (M,ω,X, ϕ) is a Liouville manifold (M,ω,X)

with a complete Liouville vector field X which is gradient-like for an exhausting Morse

function ϕ : M → R.

We recall that a function ϕ : M → R is exhausting if ϕ is proper and bounded from

below, and a vector field X is gradient-like for ϕ if it satisfies

(4.1.4) 〈X, dϕ〉 > δ(|X|2g + |dϕ|2g)

for some δ > 0 and some Riemannian metric g on M .

Remark 4.1.3. For our application, it is necessary and convenient to allow for Morse-

Bott exhausting function ϕ. We expect most results about Weinstein manifold would carry

over with little modification to the Morse-Bott setup.

Definition 4.1.4. A Stein manifold is a properly embedded complex submanifold of

CN for some N . Equivalently, a complex manifold (M,J) is Stein if and only if it admits

an exhausting pluri-subharmonic (psh) function.

Remark 4.1.5. Let (M,J) be a Stein manifold, with ϕ an exhausting psh function,

then ωϕ = 2i∂∂̄ϕ = −ddcϕ is an exact symplectic two-form, with a Liouville one-form
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λϕ = −dcϕ, where dcϕ = dϕ ◦ J . The data (M,ωϕ, λϕ, ϕ) gives M a Weinstein structure.

The Liouville vector field Xϕ = ∇ϕ, since for any vector field Y

(4.1.5) ω(Xϕ, Y ) = λϕ(Y ) = −dcϕ(Y ) = dϕ(−JY ) = g(∇ϕ,−JY ) = ω(∇ϕ, Y )

where we used the relation g(X, Y ) = ω(X, JY ) among (J, ω, g) for Kähler manifold.

We recall the following results of Lagrangian skeleton.

Proposition 4.1.6 ([CE], Lemma 11.1). The interior of a skeleton Skel(M,ω,X) is

empty.

Proof. For each compact set Mk, we have

(4.1.6) Vol(Φ−tX (Mk)) = e−nt VolMk t→∞−−−→ 0,

hence Vol(∩t>0Φ−tX (Mk)) = 0 for all k ∈ N. �

We say that a Liouville manifold is of finite type if its skeleton is compact. In this

case, let W ⊂ M be a compact domain containing the skeleton with smooth boundary

Π = ∂W along which X is outward pointing (e.g. W = Mk for large k). Then the forward

flow of X starting from Π defines a diffeomorphism M\ IntW ∼= Π × [0,∞). Under this

identification, the Liouville form λ corresponds to etα for t ≥ 0 and α = λ|Π. The form

α is a contact one-form on Π, and M\ IntW is identified with the positive half of the

symplectization of (Π, α), and

(4.1.7) M\ Skel(M) ∼=
⋃
t∈R

Φt
X(Π).
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The following lemma shows that for finite type Liouville manifolds, symplectomor-

phism can be made into exact symplectomorphism.

Lemma 4.1.7 ([CE], Lemma 11.2). Any symplectomorphism f : (M1, ω1, λ1) →

(M2, ω2λ2) between finite type Liouville manifolds is diffeotopic to an exact symplecto-

morphism.

Lemma 4.1.8 ([CE], Lemma 11.4). Let Π1,Π2 be hypersurfaces in a Liouville man-

ifold (M,ω,X) such that flowlines of X defines a diffeomorphism Γ : Π1 → Π2. Then Γ

is a contactomorphism.

Proof. Use the Liouville flow to embed the symplectization R× Π1 ↪→M , such that

Π corresponds to {0} × Π1, λ = erα and X = ∂r, where α = λ|Π1 . Then Π2 is given as

the graph r = f(x) for some function f : Π1 → R, and Γ∗(λ|Π2 = efα. �

Next, we study the local properties of stable and unstable manifolds of flow X. We

recall the notation first ([CE], Section 9.2) for a general smooth vector field X. Let p

be a zero of X, the differential DpX : TpM → TpM induces a splitting into invariant

subspaces

(4.1.8) TpM = E+
p ⊕ E0

p ⊕ E−p

where E+
p (resp. E0

p , E
−
p ) are spanned by generalized eigenvectors of DpX with positive

(negative, zero) real part of eigenvalues. Locally near a fix point p of X, there exists local
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stable manifold W−
p and local unstable manifold W+

p , that is invariant under the flow X,

and W±
p tangent to E±p . W±

p are unique and smooth. 1

A zero p of a vector field p is non-degenerate, if all its eigenvalue are non-zero. It is

called hyperbolic, if all the real parts of eigenvalue are non-zero. If p is hyperbolic, one

can define global stable and unstable manifolds as

(4.1.9) W±
p = {x ∈M | lim

s→∓∞
Φs
X(x) = p}.

They are injectively immerse (but not necessarily embedded) in V .

Proposition 4.1.9 ([CE], Proposition 11.9). Let (M,ω,X) be an exact symplectic

manifold, and p be a (possibly degenerate) zero of X. Then:

(a) the local stable manifold W−
p is isotropic;

(b) the local unstable manifold W+
p is coisotropic.

If M is a Weinstein manifold (see Definition 4.1.2), then we can say more.

Proposition 4.1.10 ([CE], Lemma 11.13). Let (M,ω,X, ϕ) be a Weinstein manifold.

(a) The stable manifold W−
p of any critical point p of ϕ (with respect to X) satisfies

λ|W−p ≡ 0. In particular, W−
p is isotropic and the intersection W−

p ∩ ϕ−1(c) with any

regular level set is isotropic for the contact structure induced by λ on ϕ−1(c).

(b) Suppose ϕ has no critical value in [a, b], then the image of any isotropic submanfiold

Λa ⊂ ϕ−1(a) under the flow of X intersects ϕ−1(b) in an isotropic submanifold.

1One can also construct W 0
p as Cr manifold for arbitrarily large r, such that W 0

p is tangent to E0
p , however

W 0
p in general is not unique and need not be smooth.
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In particular, every zero p in a Weinstein manifold is hyperbolic. Thus, the skeleton

of (M,ω,X) is the union of all stable manifolds, which is isotropic.

Proposition 4.1.11. If (M,ω,X, ϕ) is a Weinstein manifold with ϕ a Morse-Bott

function, and P is a connected component of a critical manifold of ϕ, then

(a) the local stable manifold W−
P is isotropic;

(b) the local unstable manifold W+
P is coisotropic;

(c) the skeleton Skel(M,ω,X) is a union of stable manifolds for the vector field X.

Proof. The proof is exactly the same as for the Morse case. �

4.2. Review of RSTZ-skeleton

Here we do not present the most general case where the RSTZ construction applies.

We follow the presentation of the introduction in [RSTZ].

Let Z be an affine hypersurface in (C∗)n, with defining equation f = 0 and

(4.2.1) f =
∑

α∈A⊂Zn
cαz

α, cα 6= 0

where α = (α1, · · · , αn) and zα = zα1
1 · · · zαnn . The convex hull Q of A is called the

Newton polytope of f . By multiplying f by a monomial, we may assume without loss of

generality, that Q is a polytope containing 0. For generic choices of coefficients cα, the

topological type of the hypersurface depends only on this polytope. However, just like

the Morse-Smale CW-decomposition of a Riemannian manifold depends on a choice of a

Morse function, the skeleton depends on a choice of a triangulation of the polytope Q.
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First, we recall some notion of triangulations from [GKZ]. A triangulation of a con-

vex polytope Q is a decomposition of Q into a finite number of simplices such that the

intersection of any two of these simplices is a common face of them both (maybe empty).

If Q = conv(A) for a finite subset A, then a triangulation of (Q,A) means a triangulation

of Q with vertices in A. Note that we do not require every element of A to appear as a

vertex of a simplex. A star triangulation for Q with base at q ∈ Q, is a triangulation of

Q where every maximal simplex contains q.

A continuous function g : Q → R is convex, if for any x, y ∈ Q, g(tx + (1 − t)y) ≤

tg(x) + (1− t)g(y); g is T -piecewise-linear, if it is affine linear on every simplex of T . The

domain of linearity of a convex function g : Q → R is a subset U ⊂ Q, such that g|U is

affine-linear and which is maximal with this property.

Definition 4.2.1. A triangulation T of Q is regular (or coherent), if there exists a

convex T -piecewise-linear function whose domains of linearity are precisely (maximal)

simplices of T .

Next we give the definition of RSTZ-skeleton.

Definition 4.2.2 ([RSTZ], Definition 1.1). Let Q ⊂ Rn be a lattice polytope with

0 ∈ Q. Let T ′ be a regular star triangulation of Q based at 0, whose vertices are lattice

points, and define T to be the set of simplices of T ′ not meeting 0. Let |T | denote the

union of the simplices in T , and for each x ∈ |T |, let τ(x) denote the smallest simplex in

T containing x.

We define the candidate skeleton SQ,T ⊂ |T | × HomZ(Zn, S1) by

(4.2.2) SQ,T := {(x, φ) | φ(v) = 1, if v is a vertex of τ(x)}.
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Theorem 6 ([RSTZ], Main Theorem). Let Q and T be as in Definition 4.2.2. Let

ZQ be a generic smooth hypersurface whose Newton polytope is Q. Then SQ,T embeds into

ZQ as a deformation retract.

We give some examples for illustration.

Example 4.2.3. Let f = x + y + 1/xy. The Newton polytope Q and its star trian-

gulations are shown below.

(4.2.3)

Figure 4.3. f = x+y+1/xy. The Newton polytopeQ; the star triangulation
and the RSTZ skeleton.

Since Q contains 0 as an interior point, we have |T | = ∂Q in Definition 4.2.2. We

work out the detail of SQ,T for illustration. Fix a the standard basis ex, ey for Z2, then a

homomorphism ϕ : Z2 → S1 is determined by the images of ex and ey, denote them by
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eiφx , eiφy respectively. Then we have the following components in SQ,T :

(4.2.4)



x = (1, 0) φx = 0

x = (0, 1) φy = 0

x = (−1,−1) φx + φy = 0

x ∈ conv{(1, 0), (0, 1)} φx = φy = 0

x ∈ conv{(1, 0), (−1,−1)} φx = φy = 0

x ∈ conv{(0, 1), (−1,−1)} φx = φy = 0

The first three lines define three circles, over the vertices of Q; the last three lines defines

three segments, over the edges over Q. The fiber of f is a three-times punctured torus,

hence the degeneration is the same as Figure 4.2. 4

Remark 4.2.4. Here is an heuristic way to understand why the skeleton for smooth

fiber of f = x + y + 1/xy is as above. Consider a very large positive real number R,

and the fiber f−1(R). The three circles in Figure 4.3 correspond to one-term-domination,

i.e. places where one term in f is much larger than the other two terms, and the circle

represent the irrelevant term’s choice of the argument. The three edges corresponds to

two-term-domination, e.g. the edge between (0, 1) and (1, 0) corresponds to x > 0, y > 0

and x+ y ≈ R and |x|, |y| � |1/xy|, and since dominant terms needs to be real, there is

no freedom in the choice of the argument. We will see in the next section how to make

this rigorous.
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4.3. Convex function and Legendre transformation.

In this section we use Legendre transform to define a diffeomorphism between (C∗)n ∼=

T ∗T n. We will also prove a few properties about homogeneous convex functions that will

be used later. We will use the same notation about M,MR, N, · · · as in the introduction.

4.3.1. Legendre transformation

Let V be a real vector space of dimension n, and V ∨ be its dual space. There is a natural

identification of symplectic space

T ∗V ∼= V × V ∨ ∼= T ∗V ∨.

Let πV and πV ∨ denote the projection of V ×V ∨ to its first and second factor, respectively.

Let ϕ be a smooth strictly convex function on V . The Legendre transformation for ϕ

is defined as

Φϕ : V → V ∨, x 7→ dϕ(x).

We will always assume ϕ satisfies some growth condition such that the Le-

gendre transformation is surjective. The Legendre dual ψ of ϕ is also a convex

function defined as

ψ : V ∨ → R, y 7→ sup
x∈V
〈x, y〉 − ϕ(x) = 〈Φ−1

ϕ (y), y〉 − ϕ(Φ−1
ϕ (y)).
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If we fix a linear coordinate ρ = (ρ1, · · · , ρn) on V and dual coordinate p = (p1, · · · , pn)

on V ∨, then the Legendre transformation can be written as

pi = ∂ρiϕ(ρ).

If p = dϕ(p), then Legendre dual function

ψ(p) =
∑
i

ρipi − ϕ(ρ).

And the two matrices Hessϕ(ρ) = ∂ijϕ(ρ) and Hessψ(p) = ∂ijψ(p) are inverse of each

other. There is a metric on V induced by ϕ:

gϕ = ∂ijϕ(ρ)dρi ⊗ dρj.

The above contruction can be interpreted symplectically. Consider the graph La-

grangian Γdϕ in T ∗V

Γdϕ = {(x, y) ∈ V × V ∨ | y = dϕ(x)}.

Let L = Γdϕ. Then the Legendre transform is Φϕ = πV ∨|L ◦ πV |−1
L

L

V V ∨

πV πV ∨ .

L as a section in T ∗V ∨ is the graph of Γdψ for the Legendre dual function ψ of ϕ.

We record the following result for future reference

Proposition 4.3.1. Let ϕ be any smooth convex function on V , inducing a Legendre

transform Φϕ : V → V ∨ and a metric gϕ on V . Let f : V → R be any smooth function.
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Let ρ ∈ V , p = Φϕ(ρ) ∈ V ∨, then

(Φϕ)∗(∇f |ρ) = df(ρ),

under the identification of ∈ T ∗ρV ∼= V ∨ ∼= TpV
∨.

Proof. We work with linear coordinates (ρ1, · · · , ρn) on V and dual coordinate (p1,

· · · , pn) on V ∨. Let gij = (gϕ)ij = ∂ijϕ and gij be the matrix inverse of gij.

(Φϕ)∗∇f(ρ) =
∑
i,j,k

∂ρkf · gjk ·
∂pi(ρ)

∂ρj
· ∂pi

=
∑
i,j,k

∂ρkf · gjk · gij · ∂pi

=
∑
i,k

∂ρkf · δik · ∂pi = df.

�

4.3.2. Identification between MC∗ and T ∗TM .

There is a canonical complex structure on MC∗ ∼= MR × TM , and a canonical symplectic

structure on T ∗TM ∼= NR×TM . We will use notation θ ∈ TM , ρ ∈MR and p ∈ NR. If we fix

a Z-basis for M , then we have MC∗ ∼= (C∗)n = {(eρi+iθi)i} and T ∗TM ∼= T ∗T n = {(θi, pi)i}.

Let ϕ : MR → R be a smooth strictly convex function such that the Legendre trans-

formation Φϕ : MR → NR is surjective. We abuse notation and also denote by ϕ the

pullback via MC∗ → MR, and call ϕ a Kähler potential on MC∗ . Then we may define

Liouville one-form and symplectic two-form on MC∗

λ = −dcϕ, ω = −ddcϕ.
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In coordinate form, we have

λϕ =
∑
i

∂iϕ(ρ)dθi, ωϕ =
∑
i,j

∂ijϕ(ρ) dρi ∧ dθj.

The Riemannian metric can also be obtained by gϕ(X, Y ) = ωϕ(X, JY ), where J∂ρi =

∂θi , J∂θi = −∂ρi , or in coordinate form

g =
∑
i,j

∂ijϕ(ρ)(dρi ⊗ dρj + dθi ⊗ dθj).

If we equip T ∗TM with the standard exact symplectic structure (ω, λ):

λstd =
∑
i

pidθi, ωstd =
∑
i

dpi ∧ dθi,

then by Legendre transformation Φϕ × id : MC∗ = MR × TM → NR × TM = T ∗TM , we

have

(Φϕ × id)∗(λstd) = λϕ, (Φϕ × id)∗(ωstd) = ωϕ.

4.3.3. Homogeneous Kähler potential

Next we will restrict ourselves to homogenous convex functions as Kähler potential.

Definition 4.3.2. A convex function ϕ on MR is said to be homogeneous of degree d

for some d ≥ 1, if for any 0 6= x ∈MR and any λ > 0, we have

(4.3.1) ϕ(λx) = λdϕ(x),

and Ω = {x : ϕ(x) ≤ 1} is a bounded strictly convex closed set with smooth boundary.
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Remark 4.3.3. Any positive definite quadratic form on MR is a homogeneous degree

two convex function. More generally, any bounded strictly convex subset Ω ⊂ MR with

smooth boundary and containing 0 as an interior point determines a homogeneous degree

d convex function ϕΩ,d such that Ω = {x : ϕ(x) ≤ 1}.

Proposition 4.3.4. For any homogeneous convex function ϕ of degree d with d ≥ 1,

we have

(1) ϕ is smooth on MR\{0}.

(2) ϕ is Ck at 0 where k is the largest integer less than d.

(3) If d > 1, then ϕ is strictly convex.

Proof. (1) and (3) are easy to verify. We only prove (2). Fix a linear coordinate

x1, · · · , xn on MR. For multi-index α = (α1, · · · , αn), any point 0 6= x ∈MR and λ > 0, we

have ∂αxϕ(λx) = λd−|α|∂αxϕ(x). Hence if in addition |α| ≤ k < d, then limλ→0 ∂
α
xϕ(λx) = 0.

Hence all k-th derivative can be continuated to x = 0. �

Proposition 4.3.5. If ϕ is a homogeneous degree two convex function, the Legendre

transformation Φϕ is homogeneous of degree 1, i.e.

Φϕ(λρ) = λΦϕ(ρ).

Proof. This follows from definition. �

Definition 4.3.6. Let M∞
R := (MR\0)/R>0 and N∞R := (NR\0)/R>0. Then we define

the projective Legendre transformation

Φ∞ϕ : M∞
R → N∞R .
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It is easy to check that Φ∞ϕ is an orientation perserving diffeomorphism from Sn−1

to itself. Intuitively, if we take the level set S = ϕ−1(1), then each element in M∞
R

corresponds to a point on S, and the outward conormal of S at the point is the element

in N∞R obtained by Φ∞ϕ .

Proposition 4.3.7. Let ϕ be any homogeneous convex function on MR of degree

k > 1, and equip MR with metric gϕ induced from Hessian of ϕ. Then the integral curves

in MR\{0} of the gradient of ϕ are rays.

Proof. For any nonzero ρ ∈ MR, we have Φϕ(ρ) = dϕ(ρ), also by Proposition 4.3.1

we have (Φϕ)∗(∇ρ) = dϕ(ρ), hence the gradient field of ϕ on MR when pushed-forward

to NR is exactly the radial vector field p∂p whose integral curves are rays. Since ϕ is

homogeneous, hence Φϕ takes ray to ray, hence the integral curve of ∇ϕ is the pull-back

of integral curve of p∂p, i.e. rays. �

4.3.4. Kähler potentials Adapted to a Polytope

Let P be a convex polytope in MR containing 0 as an interior point. We define a notion

of convexity with respect to P .

Definition 4.3.8. A homogeneous convex function ϕ on MR is convex with respect to

P , if for each face F of P of positive dimension, the restriction ϕ|F has a unique minimum

point in the interior of F . A Kähler potential adapted to P is a homogeneous degree two

convex function ϕ : MR → R that is convex with respect to P .
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Remark 4.3.9. A homogeneous convex function ϕ on MR is convex with respect to

P , if the increasing sequence of level sets {ϕ(ρ) < c} meet the faces of P in the interior

first.

Proposition 4.3.10. For any convex polytope P in MR containing 0 as an interior

point, there exists a non-empty contractible set of Kähler potential adapted to P .

Proof. First, we show the existence of such potential ϕ. We will build the level set

S = {ϕ = 1}, and show that as we rescale S to λS, for λ from 0 to ∞, S will meet the

interior of each face F first. We will proceed by first build a polyhedral approximation of

S, then smooth it.

For each face F of P , we pick a point xF in the interior of F if dimF > 0, or xF = F

if F is a point. Let T be the simplicial triangulation of P with vertices of F , then T is

also a barycentric subdivision of P . Let φT : P → R a piecewise linear convex function

on P , with maximal convex domain the top-dimensional simplices of T , and such that for

any 0 ≤ d ≤ n− 1, and any face xF of dimension d, φT (xF ) = cd are the same for all such

F . Such φT can be constructed inductively from xF with dimF from 0 to n− 1. Let φT

be extended to MR by linearity. Thus φT has a unique minium point in each face F .

Let η ∈ C∞c (Rn) be a bump function with
∫
η = 1, and let ηε(x) = η(x/ε)/εn. Let

φT,ε = ηε?φT , then φT,ε is a linear combination of convex function hence still convex. Since

φT,ε → φT as ε → 0. For ε small enough, φT,ε still a unique minimum point in each face

F . And ST,ε = {φT,ε = 1} is a convex smooth boundary, such that ST,ε → ST = {φT = 1}

as ε → 0. Then, for small enough ε, we can use ST,ε as the contour of the homogeneous

degree two convex function {ϕ(x) = 1}.
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(2) Let K be the set of homogeneous degree two potential adapted to P . Then there

is surjective continuous map π : K →
∏

F,dimF>0 Int(F ), by sending ϕ to its critical points

on each face. Since if two convex functions ϕ1, ϕ2 have the same critical points, then their

convex linear combination tϕ1 + (1− t)ϕ2 for t ∈ [0, 1] are still homogeneous degree two

and with the same critical points, we see the fiber of map π is convex hence contractible.

Since the base of the fibration Cr is contractible as well, we have K contractible.

�

Let P be a convex polytope in MR containing 0 as an interior point. Recall the

definition of the dual polytope P∨ ⊂ NR

(4.3.2) P∨ = {p ∈ NR | 〈p, x〉 ≤ 1 ∀x ∈ P}.

For any face F ⊂ P , there is dual face F∨ ⊂ P∨, and dimR F + dimR F
∨ = n − 1. We

define three subsets of MR ×NR

(4.3.3) LP =
⋃
F

cone(F )× F∨, LP∨ =
⋃
F

F × cone(F∨), ΛP =
⋃
F

F × F∨,

where F runs over the faces of P , and cone(F ) = R>0 · F .

Remark 4.3.11. LP and LP∨ are piecewise Lagrangians, and ΛP = LP ∩ LP∨ is

piecewise isotropic. LP is the exterior conormal of P∨ in T ∗NR, and L∨P is the exterior

conormal of P in T ∗MR. If we let ϕP,1 be the piecewise linear function on MR, such that

P = {x : ϕP,1(x) ≤ 1}, then LP morally is ΓdϕP,1 .

Lemma 4.3.12. Let ϕ be a homogeneous degree two convex function on MR. P, P∨

be dual convex polytopes in MR and NR as above. Let F be a face of P . Then there is a
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natural bijection

(4.3.4) cone(F )× F∨ ∩ Γdϕ ↔ F × cone(F∨) ∩ Γdϕ.

Proof. If (λx, p) ∈ cone(F ) × F∨ ∩ Γdϕ, where λ > 0 and x ∈ F, p ∈ F∨, then by

conic invariance of Γdϕ, we have

(4.3.5) (x, p/λ) =
1

λ
(λx, p) ∈ F × cone(F∨) ∩ Γdϕ.

Sending (λx, p) to (x, p/λ) is the desired bijection. �

Next, we give some equivalent characterization for convexity with respect to a poly-

tope.

Proposition 4.3.13. Let P be a convex polytope in MR containing 0 as an interior

point. Let ϕ be a homogeneous degree two convex function on MR. The following condi-

tions are equivalent:

(1) ϕ is adapted to P .

(2) For each face F of P , the smooth component Int(F × cone(F∨)) of L∨P has a unique

intersection with Γdϕ.

(3) For each face F of P , the smooth component Int(cone(F ) × F∨) of LP has a unique

intersection with Γdϕ.

Proof. (2) is equivalent to (3) by Lemma 4.3.12.
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(2) ⇒ (1): since ϕ|F is still convex, hence as at most one minimum point in the

interior, and any interior critical point is a minimum. Since

(4.3.6) ∅ 6= F × cone(F∨) ∩ Γdϕ ⊂ T ∗FMR ∩ Γdϕ

we see ϕ|F has a critical point.

(1) ⇒ (2): for each face F of P , let xF be the critical point of ϕ|F , and let HF ⊂MR

be the affine hyperplane tangent to the contour of ϕ at xF . We claim that HF is a

supporting hyperplane for P , and P ∩ HF = F . Then p = dϕ|xF ∈ T ∗xFMR ∼= NR is in

the exterior conormal of HF (exterior with respect to P ), hence p ∈ cone(F∨). Thus,

(x, p) ∈ F × cone(F∨). �

A consequence of the proposition is the compatibility of the ‘adaptedness’ with Le-

gendre transformation.

Corollary 4.3.14. Let P be a convex polytope in MR containing 0 as an interior point

and P∨ the dual polytope. Let ϕ be homogeneous degree two convex function, and ψ the

Legendrian dual of ϕ. Then ϕ is adapted to P if and only if ψ is adapted to P∨.

4.4. Deformation of Tropical Hypersurface and Amoeba

In this section, we modify the tropical polynomial of Mikhalkin and Abouzaid, to turn

off the terms in f when they become sufficiently small compared with 1.

Recall that Q, T ,Θ, h, P, f from the introduction, that is Q is the Newton polytope

containing 0 in its interior, (T , h) is a coherent star triangulation of Q with vertices on
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∂Q denoted ∂A, and P is defined by

P = {ρ ∈MR : 〈ρ, α〉 − h(α) ≤ 0,∀α ∈ A}.

For simplicity of presentation, we set Θ : A → R to be identically zero. The polynomial

is

fβ(z) =
∑
α∈∂A

e−βh(α)zα =
∑
α∈∂A

ei〈θ,α〉e〈ρ,α〉−βh(α)

for large real number β.

To define the tropicalize hypersurface, we fix a smooth convex function ex0 such that

ex0 =


ex x ∈ [0,+∞)

0 x ∈ (−∞,−2]

.

and ex0 = e−
1
x+2 in a small neighborhood (−2,−2 + ε) for some ε. And for any positive

number b, we define

(4.4.1) exb := e−bex+b
0 , Ex

b :=
d

dx
exb

We also define the linear interpotation between exb and ex as

exb,s := (1− s)ex + sexb , exb = exb,1

Proposition 4.4.1. exb is a smooth convex function of x, and

exb =


ex x ∈ [−b,+∞)

0 x ∈ (−∞,−2− b]
.
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Moreover, for each positive integer k, there exists a constant Ck independent of b, such

that

‖exb − ex‖Ck(R) ≤ Cke
−b.

Proof. The smooth function ex0 − ex vanishes for x > 0 and has exponential decay for

x� 0, hence has finite Ck norm for all k. Let Ck = ‖ex0 − ex‖Ck . Then

‖exb − ex‖Ck = e−b‖ex+b
0 − ex+b‖Ck = e−b‖ex0 − ex‖Ck = Cke

−b.

�

Our family of tropical localized hypersurface is defined by, in log coordinates

fβ,s(ρ, θ) =
∑
α∈∂A

ei〈θ,α〉e
〈ρ,α〉−βh(α)√
β,s

, Hβ,s = f−1
β,s(1).

In short, we turn off a summand zαe−βh(α), if its modulus is less than e−
√
β.

Remark 4.4.2. Our approach differs from that of Abouzaid’s in that we only modify

the defining equation {fβ(z) = 1} when the term 1 dominate.

Proposition 4.4.3. There exists β0, such that for all β > β0 and s ∈ [0, 1], Hβ,s is a

symplectic hypersurface.

Proof. We compute the norm of ∂f and ∂̄f . First, we note that gij(ρ) = ∂ρi∂ρjϕP (ρ)

is homogeneous degree 0, hence |dρi| and |dθi| are uniformly bounded.
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Let Ex
b,s = d

dx
exb,s, then

2∂f√β,s =
∑
i

(∂ρi − i∂θi)fβ,s(ρ, θ)d(ρi + iθi)

=
∑
i

∑
α∈∂A

(e
〈ρ,α〉−βh(α)√
β,s

+ E
〈ρ,α〉−βh(α)√
β,s

)ei〈θ,α〉αid(ρi + iθi)

=
∑
i

∑
α∈∂A

(2e〈ρ,α〉−βh(α) +O(e−
√
β))ei〈θ,α〉αid(ρi + iθi)

and similarly

2∂̄f√β,s =
∑
i

(∂ρi + i∂θi)fβ,s(ρ, θ)d(ρi − iθi)

=
∑
i

∑
α∈∂A

(−e〈ρ,α〉−βh(α)√
β,s

+ E
〈ρ,α〉−βh(α)√
β,s

)ei〈θ,α〉αid(ρi − iθi)

=
∑
i

∑
α∈∂A

(O(e−
√
β))ei〈θ,α〉αid(ρi − iθi) = O(e−

√
β).

where we use the uniform bound that

‖exb,1 − ex‖C1 = ‖exb,1 − ex‖C0 + ‖Ex
b,1 − ex‖C0 < C1e

−b

to replace both e
〈ρ,α〉−βh(α)√
β,1

and E
〈ρ,α〉−βh(α)√
β,1

by e〈ρ,α〉 at a cost of O(e−
√
β) error. �

Definition 4.4.4. We define the compact component of the complement of the amoeba

as

Pβ,s = {ρ ∈MR : F̂β,s ≤ 1}

where the defining function F̂β,s is

F̂β,s(ρ) =
∑
α∈∂A

e
β(〈ρ,α〉−h(α))√
β,s

.
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We also define Fβ,s(ρ) = F̂β,s(ρ/β).

Lemma 4.4.5. For any β, s, ∂Pβ,s is a convex hypersurface, i.e. smooth boundary of

a convex set.

Proof. This follows directly by the fact that exb,s is a convex function in x for all b, s,

hence F̂β,s(ρ) is a convex function in ρ. �

Fix any linear inner product on MR and call the induce metric g0. Since g0 and gϕ

induced by ϕP are comparable in the sense that there exists c > 0, such that c−1g0 <

gϕ < cg0, we will use g0 in the definition of distance function distMR and distS∗MR .

Lemma 4.4.6. The Gromov-Hausdorff (GH) distance between ∂Pβ,s and ∂P is bounded

from above by O(1/
√
β). Even better, the Legendrian lift of Pβ,s and ∂P as co-oriented

hypersurface into S∗MR have GH distance bounded from above by O(1/
√
β).

Proof. For ρ ∈ ∂Pβ,s, let α1, · · · , αk be the set of elements in ∂A, such that e
β(〈ρ,α〉−h(α))√
β,s

6= 0. Since P is a vertex simplicial polytope, there are at most n non-zero terms, hence

k ≤ n. We will find an approximation of ρ denoted by ρ̂, such that ρ̂ is contained in a

face τ defined by 〈ρ̂, αi〉 − h(αi) = 0. This is always possible, e.g. let ρ̂ be orthogonal

projection of ρ to τ . Since we know

−1/
√
β < 〈ρ, αi〉 − h(α) < 0, ∀i = 1, · · · , k

Thus the distance between ρ and ρ̂, in any fixed metric, can be bounded by O(1/
√
β).
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To prove the second statement, we note any the exterior unit conormal p of the

hypersurface at ρ is spanned by positive linear combination of α1, · · · , αk, hence the co-

vector p is also orthogonal to the face τ , thus (ρ̂, p) is contained in the Legendrian lift of

∂P . Hence distS∗MR ((ρ, p); (ρ̂, p)) = distMR(ρ, ρ̂) = O(1/
√
β). �

4.5. Gradient flow on Tropical Amoeba

In this section we prepare for the Liouville flow on the tropical hypersurface, by

considering the gradient flow of ϕP on the boundary ∂Pβ,1 (see Definition 4.4.4). Our

goal is to describe unstable manifolds for the downward gradient flow −∇ϕP .

First, we show that the critical points are approximately the stratified Morse critical

points of ϕP on ∂P , i.e., for each face τ of P , the minimum ρτ of ϕP restricted on τ .

We fix an identification of V ∼= Rn and take Euclidean metric on V and the induced

metric on T ∗V and S∗V . We identify the sphere compactification boundary T∞V =

(T ∗V − V )/R>0 with the unit cosphere bundle S∗V . If U ⊂ V open set with smooth

boundary, then S∗UV is the one-sided unit conormal bundle of ∂U with covectors pointing

outward. The generalization to open convex set U with piecewise smooth boundary is

also straightforward.

Proposition 4.5.1. Let V ∼= Rn be a real vector space of dimension n, P ⊂ V a

convex polytope containing the origin, ϕ : V → R a potential adapted to P . Let {Pj}

be a sequence of convex bounded domains with smooth boundaries, such that the exterior

conormals Lj := S∗PjV converges to L := S∗PV in the cosphere bundle S∗V in the Gromov-

Hausdorff sense. Then there exists a number j0 > 0 large enough, such that for each face
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τ of P and j > j0, there is a critical point ρτ,j ∈ ∂Pj of Morse index n− 1− dim τ , and

ρτ,j → ρτ .

Proof. (1) We express the critical point condition in terms of Legendrian intersection.

Define the projection image of Γdϕ in T∞V as

Γ∞dϕ = (R>0 · Γdϕ)/R>0 ⊂ T∞V.

Then Γ∞dϕ is also the union of unit conormal for level sets of ϕ:

Γ∞dϕ =
⋃
c∈R

S∗{ϕ(ρ)≤c}V.

The Legendrian L = S∗PV is a piecewise smooth C1 manifold, where the smooth

components Lτ are labelled by faces τ of P . If ρτ is a critical point of ϕ on τ , then there

is a unique unit covector pτ ∈ Lτ , such that xτ = (ρτ , pτ ) ∈ L t Γ∞dϕ, and the intersection

is transversal.

(2) Consider the unit speed geodesic flow Φt
R on the unit cosphere bundle S∗V . Fix

any small flow time 1 � ε > 0, since Φε
R : S∗V → S∗V is a diffeomorphism, Φε

R(Lj) still

converges to Φε
R(L) in GH sense. For any subset A ⊂ V , define

Aε := {x : dist(x,A) < ε}

to be the ε-fattening of A. If A is a convex set, we have Φt
R(S∗AV ) = S∗AεV. Hence ∂P ε is

a C1 hypersurface, and ∂P ε
j → ∂P ε in GH sense as j →∞. Define

Lt = Φt
R(L), Ltj = Φt

R(Lj).
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The geodesic flow applied to Γ∞dϕ can be understood as follow

Φε
R(Γ∞dϕ) =

⋃
c∈R

Φε
R(S∗{ϕ(ρ)≤c}V ) =

⋃
c∈R

S∗{ϕ(ρ)≤c}εV.

Define function ϕ̃ε, such that {ϕ̃ε(ρ) < c} = {ϕ(ρ) ≤ c}ε, then ϕ̃ε is a levelset convex

function. By Lemma 2.7 of [CE], there exists a strictly increasing function f : R → R,

such that ϕε = f ◦ ϕ̃ε is a convex function. Thus, we have

Φε
R(Γ∞dϕ) = Γ∞dϕε ϕε is convex .

Let xετ = Φε
R(xτ ), ρ

ε
τ = π(xετ ) in the expanded face τ ε = π(Φε

R(Lτ )). Then xετ is still the

intersection of Γ∞dϕε and S∗P εV , and ρετ is the unique Morse critical points of ϕε restricted

on τ ε, and ρετ is in the interior of τ ε. One may easily check that the Morse index of ρετ is

n− 1− dim τ .

(3) We now prove that for large enough j, for each τ , there is a unique critical points

ρετ,j of ϕε on ∂P ε
j approaching ρετ .

Fix a small neighborhood Wτ ⊂ ∂P ε near ρετ , and for small enough δ, let W̃τ
∼=

Wτ×(−δ, δ) be the flow-out of Wτ under the Reeb flow for time in (−δ, δ), with projection

map πW : W̃τ → Wτ . We claim that for large enough j, ∂P ε
j ∩ W̃τ projects bijectively

to Wτ , since otherwise this contradicts with P ε
j being convex and the fiber of πW being

straight-line segments Reeb trajectories. Thus, we have a sequence of smooth sections

ιj : Wτ → W̃τ for large enough j, such that ιj converges to the zero section in C1.

Let fj = ι∗jϕε|W̃τ
∈ C∞(Wτ ,R), and a smooth function f∞ = ι∗∞ϕε|W̃τ

, where ι∞ :

Wτ ↪→ W̃τ is the identity map of zero section. Since ιj → ι∞ in C1, fj → f∞ in C1.
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Since f∞ has a non-degenerate critical point, by stability of critical points under C1-

perturbation, fj has a unique critical point of the same index as f∞.

(4) Finally, we show that there are no other critical points. Let Uτ be the preimage

of W̃τ under S∗V → V . Let U be the union of all such Ũτ . If δ > 0 is small enough, such

that

dist(Γ∞dϕε\U,Lε) > 3δ.

Then by GH convergence from Lεj to Lε, we make take j0 large enough, such that for all

j > j0 and all x ∈ Lεj, dist(x, Lε) < δ. This shows

dist(Γ∞dϕε\U,Lεj) ≥ dist(Γ∞dϕε\U,Lε)− dist(Lεj, L
ε) > 2δ,

hence there is no intersection between Lεj and Γ∞dϕε away from U .

(5) Since Φε
R is a diffeomorphism, the result about Lεj ∩ Γ∞dϕε implies the same result

about Lj ∩ Γ∞dϕ, and we finish the proof of the proposition. �

Proposition 4.5.2. There exists β0 large enough, such that for all β > β0, the critical

points of ϕP on ∂Pβ,1 are given by {ρτ,β}τ where τ runs over the faces of P , such that

limβ→∞ ρτ,β → ρτ .

Proof. This follows from the convergences result from Lemma 4.4.6 and Proposition

4.5.1. �

Next, we prove that the unstable manifold W−
β,τ for critical point ρβ,τ are cells of a

dual polyhedral decomposition of ∂P . This is true not only in the combinatorial sense,

but in a more refined geometrical sense.
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Proposition 4.5.3. Let β0 be large enough as in Proposition 4.5.2. Then for all

β > β0, the unstable manifold W−
β,τ is a smooth manifold of dimension n− 1−dim τ , and

contains critical point ρβ,τ ′ in the boundary if and only if τ is in the boundary of τ ′.

Proof. The statement dimension follows from the Morse index result. For any critical

point ρβ,τ , take a small enough ball B of radius ε around it, then B can be stratified by

the destination of the downward gradient flow. For each facet F adjacent to τ , there is

an open ball UF in ∂B whose points flows to critical point ρβ,F . If a face τ ′ adjacent to

τ can be written as τ ′ = F1 ∩ · · · ∩ Fk for facets Fi, then points in the relative interior

of ∩ki=1UFi will flow to ρβ,τ ′ . Since ∩ki=1UFi contains ρβ,τ , hence there exists flowline from

ρβ,τ to ρβ,τ ′ . �

Now we give a more refined description of the unstable manifold. Recall from Defini-

tion 4.3.6, that we have identified rays in MR with rays in NR by Φ∞ϕ : M∞
R
∼−→ N∞R . We

may also make the following identification

∂P ∼= ∂Pβ ∼= M∞
R , ∂P∨ ∼= ∂Q ∼= N∞R .

and define

ΦPP
ϕ,β : ∂Pβ

∼−→ ∂P∨, ΦPQ
ϕ,β : ∂Pβ

∼−→ ∂Q

If τ is a k-face of P , let τ∨ denote the dual (n − 1 − k)-face in P∨, and τ∨Q ⊂ ∂Q is

cell of the star triangulation T . If τ∨Q has vertices {α1, · · · , αk}, we define a submanifold

with boundary in ∂Pβ:

Uτ = {ρ ∈ ∂Pβ : Fβ,α > 0 if and only if α = α1, · · · , αk}.
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where Fβ,α(ρ) = e
β(〈ρ,α〉−h(α))√
β

are summands of function Fβ = Fβ,1. The following lemma

is easy to check.

Lemma 4.5.4. If ρ ∈ Uτ , then dF (ρ) ∈ Int cone(τ∨).

Proposition 4.5.5. Let β0 be large enough as in Proposition 4.5.2. Then for all

β > β0, and τ any face of P , the unstable manifold for ρβ,τ goes to τ∨ under the mapping

of ΦPP
ϕ,β.

ΦPP
ϕ,β(W−

β,τ ) = Int τ∨.

Proof. Let ρβ,τ be the critical point corresponding to τ , then ρβ,τ ∈ Uτ , and the

unstable manifold W−
β,τ is contained in the union of Uτ ′ for those τ ′ such that τ ′ ⊃ τ .

(1) We first prove that ΦPP
ϕ,β(ρβ,τ ) is contained in the interior of the cell τ∨, or equiva-

lently

Φϕ(ρβ,τ ) ∈ Int cone(τ∨).

Since dϕ is positively proportional to dFβ at the critical point ρβ,τ ∈ Uτ , hence by the

previous Lemma, we have

Φϕ(ρβ,τ ) = dϕ(ρβ,τ ) = C · dFβ(ρβ,τ ) ∈ Int cone(τ∨).

(2) Next, we claim that for any point ρ on the unstable manifold W−
β,τ ,

(Φϕ)∗(ι∗(−∇(ϕ|∂Pβ))) ⊂ cone(τ∨) + R · p∂p.
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where ι : ∂Pβ ↪→ MR is the embedding of ∂Pβ. For ρ ∈ W−
β,τ , ρ ⊂ Uτ ′ for some τ ′ ⊃ τ ,

thus

dFβ(ρ) ⊂ cone(τ∨).

On the other hand

−ι∗(∇(ϕ|∂Pβ)) = −∇ϕ+ c1∇Fβ = −c2ρ∂ρ + c1∇Fβ

for some c1, c2 > 0. Hence

(Φϕ)∗(ι∗(−∇(ϕ|∂Pβ))) ⊂ R · p∂p + R>0 · dFβ(ρ) ⊂ cone(τ∨) + R · p∂p.

(3) If a curve γ : R → NR, satisfies that limt→−∞ γ(t) ∈ Int cone(τ∨), and γ̇(t) ∈

wbcone(τ∨) +R · p∂p, then the image of the curve is contained in Int cone(τ∨). Hence, we

have shown Φϕ(W−
β,τ ) ⊂ Int cone(τ∨), or equivalently,

ΦPP
ϕ,β(W−

β,τ ) ⊂ Int τ∨.

Since the boundary of the closure of unstable manifolds W−
β,τ are union of other unstable

manifolds

∂(W−
β,τ ) =

⋃
τ ′ sup τ

W−
β,τ ′ .

By induction on the dimension of W−
β,τ from 0 to n− 1, we can prove that ΦPP

ϕ,β(W−
β,τ ) =

Int τ∨. This finishes the proof of the proposition. �
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4.6. Liouville Flow on Tropical Hypersurface

Recall our tropical polynomial is

fβ,1(ρ, θ) =
∑
α∈∂A

ei〈θ,α〉−iΘ(α)e
〈ρ,α〉−βh(α)√
β,1

, (ρ, θ) ∈MR × TM ∼= MC∗

and the tropical hypersurface is

Hβ,1 = f−1
β,1(1) ⊂MC∗ ,

where we modified the exponential function ex to exb , such that if x < −b, then we cut-off

it while keeping exb convex. The exact symplectic structure on MC∗ is given in subsection

4.3.2 λ = −dcϕP , ω = −ddcϕP . The hypersurface Hβ,1 has induced Liouville one-form

λH, symplectic two-form ωH and the Liouville vector field XH.

Our skeleton candidate is defined as

Sβ,h,Θ =
⋃
τ

(β ·W−
β,τ )× Tτ,θ ⊂MR × TM .

where Tτ,Θ is the sub tori of TM defined by

Tτ,Θ = {θ ∈ TM : 〈θ, α〉 = Θ(α), for all α as vertex of τ∨Q}

First, we state some basic properties of the Liouville vector field. Take any point

x = (ρ, θ) ∈ Hβ,1, we have

Xλ(x) = X
‖
λ(x) +X⊥λ (x).
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where X⊥λ (x) is symplectically orthogonal to THβ,1. We note that X
‖
λ(x) = XλH(x), since

for any v ∈ TxHβ,1,

ωH(X
‖
λ(x), v) = ω(Xλ(x)−X⊥λ (x), v) = ω(Xλ(x)−X⊥λ (x), v) = λ(v) = λH(v).

And X⊥λ (x) is the horizontal lift of (fβ,1)∗(Xλ(x)) ∈ T1C.

Definition 4.6.1. The positive loci of Hβ,1 is the subset HR
β,1, where the summand of

fβ,1 are either zero or positive.

Lemma 4.6.2. If x ∈ HR
β,1, then (fβ,1)∗(Xλ(x)) is in the positive real direction.

Proof. We check explicitly

dfβ,1 =
∑
α∈∂A

e
〈ρ,α〉−βh(α)√
β,1

· dei〈θ,α〉−iΘ(α) + ei〈θ,α〉−iΘ(α) · de〈ρ,α〉−βh(α)√
β,1

=
∑
α∈∂A

e
〈ρ,α〉−βh(α)√
β,1

·
√
−1d〈θ, α〉+ E

〈ρ,α〉−βh(α)√
β,1

· d〈ρ, α〉(4.6.1)

Then using Xλ(x) = c(x)ρ∂ρ for some c(x) > 0, we have

〈dfβ,1, ρ∂ρ〉 =
∑
α∈∂A

E
〈ρ,α〉−βh(α)√
β,1

· 〈ρ, α〉

= β

(∑
α∈∂A

E
〈ρ,α〉−βh(α)√
β,1

· (〈 ρ
β
, α〉 − h(α)) +

∑
α∈∂A

E
〈ρ,α〉−h(α)√
β,1

h(α)

)

≥ β

(
−1−

√
β

β

∑
α∈∂A

E
〈ρ,α〉−βh(α)√
β,1

+ ( inf
α∈∂A

h(α))
∑
α∈∂A

E
〈ρ,α〉−h(α)√
β,1

)

≥ β( inf
α∈∂A

h(α) +O(β−1/2))(
∑
α∈∂A

e
〈ρ,α〉−βh(α)√
β,1

+O(e−
√
β))

= β( inf
α∈∂A

h(α) +O(β−1/2))
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Hence for large enough β,

(4.6.2) 〈dfβ,1, ρ∂ρ〉 = 〈dRefβ,1, ρ∂ρ〉 > Cβ

where constant C is independent of x. Hence 〈dfβ,1, Xλ〉 is positive. �

Lemma 4.6.3. Let XImf be the Hamiltonian vector field of Imf , then XImf ⊥ THβ,1.

If x ∈ HR
β,1, then (fβ,1)∗(XImf ) is in the positive real direction.

Proof. Denote fβ,1 by f for short. Take any v ∈ THβ,1, we have

ω(XImf , v) = d(Imf)(v) = Im(df(v)) = 0.

And we have

(4.6.3) 〈df,XImf〉 = 〈dRef,XImf〉 = g(∇Ref,XImf ) ≥
g(∇Ref, ρ∂ρ)g(ρ∂ρ, XImf )

g(ρ∂ρ, ρ∂ρ)
,

If x = (ρ, θ) ∈ HR
β,1, then we can compute dImf using (4.6.1),

(4.6.4) dImf =
∑
α∈∂A

e
〈ρ,α〉−βh(α)√
β,1

· d〈θ, α〉, dRef =
∑
α∈∂A

E
〈ρ,α〉−βh(α)√
β,1

· d〈ρ, α〉,

Hence

XImf =
∑
α∈∂A

e
〈ρ,α〉−βh(α)√
β,1

∑
i,j

αig
ij(ρ)∂ρj(4.6.5)

∇Ref =
∑
α∈∂A

E
〈ρ,α〉−βh(α)√
β,1

∑
i,j

αig
ij(ρ)∂ρj(4.6.6)
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Since ‖E〈ρ,α〉−βh(α)√
β,1

−e〈ρ,α〉−βh(α)‖C0 < C1e
−
√
β, we have ‖XImf −∇Ref‖ = O(e−

√
β). From

(4.6.2), we have

g(∇Ref, β−1ρ∂ρ) > C, g(XImf , β
−1ρ∂ρ) > C +O(e−

√
β‖β−1ρ∂ρ‖).

Since for x ∈ HR
β,1, the vector ‖ρ∂ρ/β‖ is bounded above and below by a constant in-

dependent of β. Thus using (4.6.3) with estimates on g(∇Ref, ρ∂ρ), g(ρ∂ρ, XImf ) and

g(ρ∂ρ, ρ∂ρ) , we finish the proof. �

Proposition 4.6.4. The Liouville vector field XλH on the positive loci HR
β,1 does

not change the θ coordinate, i.e. under the projection map πT : MR × TM → TM ,

(πT )∗(XλH(x)) = 0 for all (ρ, θ) ∈ HR
β,1. In particular, the positive loci HR

β,1 is preserved

under the Liouville flow (for positive and negative time).

Proof. From the following relation

XλH = X
‖
λ = Xλ −X⊥λ ,

suffice to check that Xλ and X⊥λ does not change θ coordinates. Since Xλ ∝ ρ∂ρ ev-

erywhere, hence it does not change θ. At a point x ∈ HR
β,1, X⊥λ is proportional to

the horizontal lift of ∂
∂x
∈ T1C by the local symplectic fibration fβ,1, so is XImf , hence

X⊥λ = c(x)XImf . From the expression of XImf in (4.6.5), we see XImf does not change θ

as well. �

Proposition 4.6.5. For any face τ of P , the submanifold Critτ = {βρβ,τ}×Tτ,Θ is a

critical manifold of the flow XλH.
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Proof. Here we use f = fβ,1, ϕ = ϕP , H = Hβ,1 for short. It is easy to check that

Critτ is in the positive loci, and is contained in a neighborhood where the defining function

fβ,1 is holomorphic. Thus, for any x ∈ Critτ , to check XλH vanishes at x, suffice to check

XλH(x) = 0 ⇔ λH(x) = 0

⇔ λ(v) = 0, ∀v ∈ TxH

⇔ dcϕ(v) = 0, ∀v ∈ TxH

⇔ dϕ(v) = 0, ∀v ∈ J(TxH) = TxH

⇔ dϕ ∈ spanR{dRef, dImf}.

Since x is in the positive loci, using (4.6.4) and

dRef =
∑
α∈∂A

E
〈ρ,α〉−βh(α)√
β,1

· d〈ρ, α〉 = d

(∑
α∈∂A

e
〈ρ,α〉−βh(α)√
β,1

)
= dFβ,1.

Since dϕ|ρβ,τ = cdF̂β,1|ρβ,τ for some constant c, and dϕ|βρβ,τ = βdϕ|ρβ,τ , dFβ,1|βρβ,τ =

β−1dF̂β,1|ρβ,τ , hence

dϕ ∈ spanR dFβ,1 ⊂ spanR{dRef, dImf}.

This proves that any x ∈ Critτ is a critical point for XλH . �

Proposition 4.6.6. There are no other critical point for the flow XλH, besides {Critτ}τ .

Proof. Here we only sketch the proof. First, we show that there are no other critical

point outside the positive loci HR = HR
β,1 by explicitly construct a tangent vector v for

each point x ∈ H\HR, such that dcϕ(v) 6= 0. Let πβ : MC∗ → MR be the rescaled
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projection πβ = β−1 Log. Let A be the tropical amoeba, and Aβ be the actual image of

πβ(H). P is the compact complement of A. For each α, let lα(ρ) = 〈ρ, α〉 − h(α). For

α = 0, let l0 = 0. Define the piecewise linear convex function

ϕmax(ρ) := max{lα(x) : α ∈ A}

And also define the smooth version

ϕβ(ρ) := β−1 log(
∑
α∈A

exp lα(ρ)).

We then have 0 < supρ ϕβ(ρ)−ϕmax(ρ) < Ce−cβ for some constants c1, c2. Let ρ = πβ(x).

Define δ = β−1/2. Let

Let χα(ρ) = χ
(
ϕβ(ρ)−lα(ρ)

δ

)
, where χ(x) is a cut-off function on R that smoothly drops

from 1 to 0 smoothly as x increases from 1 to 2. And we modify the defining equation to

0 =
∑
α

χα(ρ) ei(〈θ,α〉−Θ(α)) eβ(〈ρ,α〉−h(α)).

For any ρ ∈MR define,

Aρ := {α ∈ A | lα(ρ)− ϕmax(ρ) > −δ}.

For ρ ∈ Aβ, Aρ contains at least two elements. We split the discussion into the

following two cases.

(1) If 1 /∈ Aρ, then ρ is close to a non-compact cell ΠAρ in the tropical amoeba A.

Let ∂0ΠAρ be the compact component of the boundary of ΠAρ , then ∂0ΠAρ is also a face

τ of P . Let ρτ be the minimum of ϕ on τ , we claim that ρτ is the global minimum on
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ΠAρ , since the increasing level set of ϕ meets ΠAρ first at ρτ . Let ρΠ be the point on

ΠAρ closest to ρ, and consider the line segment γ from ρΠ to ρτ , we then claim that ϕ

restricted to γ is a strictly decreasing function from ρΠ to ρτ . Let vΠ be the unit vector in

the direction of γ̇. Next, we view vΠ as a tangent vector at TxMC∗ , we claim that vΠ and

JvΠ are already in TxH. Hence 〈dϕ(ρ), J(J−1vΠ)〉 = 〈dϕ(ρΠ), J(J−1vΠ)〉+O(1/
√
β) > 0.

(2) If 1 ∈ Aρ, let Aρ = {1, a1, · · · , ak}, for some k ≤ n. If k < n, we may look

for vectors v ∈ ker(α1, · · · , αk), such that 〈dϕ(x), v〉 6= 0. If such vector exists, then

v, Jv ∈ TxH, hence we have shown dcϕ(x) 6= 0. If such vector does not exist, then

dϕ(x) ∈ spanR(α1, · · · , αk), in fact dϕ(x) ∈ cone(α1, · · · , αk). Let θα := 〈θ, α〉 − Θ(α), if

θαi are all equal, then they have to be zero (modulo 2π), since the sum of the k terms

equals to 1. If {θα} are not all the same, say θα1 6= θα2 . Here we assume that χαi(ρ) all

equal to 1 in a neighborhood of ρ, the general case can be analyzed but is more complicted.

Then we may reduce the modulus of the two complex numbers zα1 , zα2

zα := χα(ρ) ei(〈θ,α〉−Θ(α)) eβ(〈ρ,α〉−h(α)),

while keeping their sum invariant, and all other zα fixed. This vector v satisfies 〈α1, v〉 < 0

, 〈α2, v〉 < 0 and 〈αi, v〉 = 0 for i 6= 1, 2, hence 〈dϕ, v〉 < 0, since dϕ is a strictly positive

linear combination of αi. �

Proposition 4.6.7. For any face τ of P , the unstable manifold for Critτ is W−
β,τ×TΘ,τ .

Proof. We note that the critical manifold Critτ is in the positive loci, where the

summands of f are positive, and the Liouville flow preserves the positivity of summand

and does not change θ-coordinates.
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On the positive loci, the contracting Liouville flow

−XλH = −Xλ +X⊥ωλ = −∇ϕ+ (∇ϕ)⊥ω ,

where X⊥ωλ is the ω-orthogonal projection of Xλ with respect to TH, and we know X⊥ωλ

is proportional to XImf . On the other hand, the downward gradient flow −∇(ϕ|H) can

be expressed as

−∇(ϕ|H) = −∇ϕ+ (∇ϕ)⊥g ,

where this time one take g-orthogonal projection. If f is holomorphic, then H is Kähler

, then (∇ϕ)⊥g = (∇ϕ)⊥ω . However f is not holomorphic in the transition regions, hence

−XλH and −∇(ϕ|H) differs in the transition region, with difference bounded by O(e−
√
β).

Since −∇(ϕ|H) has no critical point in the transition region, hence −XλH does not either.

Since (∇ϕ)⊥ω is positively proportional to XImf , by (4.6.5), hence by a similar argument

as in Proposition 4.5.5, the unstable manifold from critical point ρτ along the flow −XλH

after projective Legendre transformation, is the interior of the cone cone(τ∨). Hence, the

unstable manifold for −XλH and for −∇(ϕ|H) are the same. This finishes the proof of

the proposition. �
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CHAPTER 5

Variation of Constructible Sheaves: I

Let M be a smooth manifold, Λ ⊂ T ∗M a conical Lagrangian containing the zero

section of T ∗M and Λ∞ ⊂ T∞M the corresponding Legendrian. Let Sh(M,Λ∞) =

Sh(M,Λ) be the differential graded category of constructible sheaves with SS∞(F ) ⊂ Λ∞.

We are interested in the following question:

Given an initial Legendrian Λ∞ ⊂ T∞M and a constructible sheaf F ∈ Sh(M,Λ∞),

for what kinds of deformation of Λ∞ can we find a corresponding deformation of F , such

that SS∞(F ) remains in Λ∞?

Constructible sheaves have both the simplicity of combinatorics and the flexibility

of symplectic geometry, in that the data of a sheaf can be encoded as a representation

of a quiver, and any Hamiltonian contactomorphism acting on T∞M can be quantized

to act on sheaves [KS, GKS]. Hence if Λ∞ is a smooth Legendrian, and the defor-

mation is an Legendrian isotopy, then the Legendrian isotopy can be embedded into a

contactomorphism of T∞M , which can be quantized to give an equivalence of categories.

However, if the Legendrian is not smooth, deformation of Legendrian may not come from

contactomorphism, and not all Legendrian deformation results in equivalences of sheaf

categories.
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Example 5.0.1. Consider the following Legendrian deformation in T∞R2, represented

as cooriented hypersurface (curve) on R2.

yesno

The deformation from the middle to the right keeps the category of sheaves invariant, and

the one to the left does not. 4

To setup the problem, we need to be more specific as to what singularity do we allow

in the Legendrian, and how to describe the deformation. Here we list a few approaches,

each having its own advantange and disadvantage.

(1) One possible definition is this: A compact singular Legendrian is union of finitely

many compact smooth Legendrians, L =
⋃N
i=1 Li, and deformation is realized by

smooth Legendrian isotopy of each Li. The advantage is that only the gluing

parameter is changing and the set of components is fixed. The disadvantage is

that there is no canonical way to decompose L as a union of smooth components.

In the above example for the picture in the middle, one write L as union of only

two smooth Legendrians, or as many as four Legendrians.

(2) Another possible definition is: Let S = {Sα : α ∈ A} be a Whitney stratification

of M with finitely many strata, and Λ∞S = ∪αT ∗SαM is the union of the conormal
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to the strata. The singular Legendrian L is defined as a closed subset in Λ∞S , and

there is an induced stratification of L = ∪αLα where Lα ∈ T ∗SαM which might

be empty or of lower dimension. The advantage is that, it is closely related

to the geometry on the base manifold; the disadvantage is that, even a smooth

connected Legendrian L ⊂ T∞M may require a complicated stratification in M

due to the singularity of πF (L) in the front projection πF : T∞M → M . To

describe deformation of Legendrian, one can consider stratification in M×R and

Legendrian T∞(M × R), and consider the restriction to the slices M × {t}.

Besides the above general cases, there are some interesting special cases as well. We

give two examples below.

Example 5.0.2 (Slice of Arboreal Singularities). Let Λ be a conical Lagrangian in

T ∗Rn with arboreal type singularity, studied by Nadler in [N2], given by a rooted tree T

with n+1 nodes. The category of constructible sheaves are equivalent to the representation

category of the quiver from the rooted tree, and is independent of the choice of the roots

up to derived equivalence. We give two examples with n = 2.

• ← • → • • → • → •
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If we fix a linear function f : Rn → R, we may consider sheaves on the slices f−1(t) for

all t ∈ R. It is interesting to ask whether categories of sheaves on different slices are

equivalent. 4

Example 5.0.3 (Hyperplane Arrangements). Let {Hi}Ni=1 be a finite collection of

affine co-oriented hyperplanes in Rn, where each Hi is the zero locus of an affine linear

equation fi = 〈ci, x〉 − bi for some unit conormal vector ci and offset parameter bi ∈ R,

and the co-orientation is given by ci.

For each subset I ⊂ {1, · · · , N} such that {ci : i ∈ I} is linearly independent, we define

a conical Lagrangian

Λ∞I =
⋂
i∈I

Hi × cone{ci : i ∈ I} ⊂ T ∗Rn.

Let I be a collection of above subsets I ⊂ {1, · · · , N}, then we may define a conical

Lagrangian as Λ∞I = ∪I∈IΛ∞I . It is interesting to study family of categories Sh(Rn,Λ∞I )

where I is fixed and {ci}, {bi} is changing. 4

In this chapter, we will study quantization for Legendrian deformation using stratifi-

cation of M and M ×R. In the next chapter, we will study the special case of hyperplane

arrangements variation. The study for slices over arboreal singularities will be taken up

in the future.
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5.1. Definition of Variation of Legendrians and Sheaves

Let M be a smooth compact manifold. For any t ∈ R, let Mt = M ×{t} ⊂M ×R be

the t-slice, and jt : Mt ↪→M ×R be the inclusion. We will fix a Riemannian metric on M

and use T∞M and S∗M interchangeably. As before, our conical Lagrangian Λ includes

the zero section in T ∗M , and Λ∞ is the corresponding Legendrian in T∞M .

Let Λ∞R ⊂ T∞(M × R) be a Legendrian in the product space. We say Λ∞R is πR-

compatible for the projection πR : M ×R→ R, if for any (x, t; ξ, τ) ∈ Λ∞R , we have ξ 6= 0.

For a πR-compatible Λ∞R , we denote its restriction at t ∈ R by

Λ∞t = {(x, ξ/|ξ|) ∈ T∞M | ∃τ, such that (x, t; ξ, τ) ∈ Λ∞R }.

We say a πR-compatible Legendrian Λ∞R has compactly supported deformation, if there

exists [a, b] ⊂ R such that Λ∞t is constant for t < a and t > b.

Definition 5.1.1. A deformation of Legendrian (over R) is a Legendrian Λ∞R ⊂

T∞(M × R), that is πR-compatible and has compactly supported deformation. Given

two deformations of Legendrian, Λ∞1,R and Λ∞1,R, we say they are non-characteristic with

respect to each other, if Λ∞1,t ∩ Λ∞1,t = ∅ for all t ∈ R.

Suppose Λ∞t is constant outside [a, b], we use Λ∞− (resp. Λ∞+ ) to denote the value of

Λ∞t for t < a (resp. t > b).

Definition 5.1.2. A deformation of sheaf is a sheaf GR ∈ Sh(M ×R), such that the

Legendrian SS∞(GR) is a deformation of Legendrian. For any t ∈ R, let Gt = GR|Mt be

the restriction of GR over t. Let G− (resp. G+) be the value of Gt for t� 0 (resp. t� 0).

Let Λ∞R be a deformation of Legendrian Λ∞R ⊂ T∞(M × R), if SS∞(GR) and Λ∞R are
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non-characteristic with respect to each other, then we say G− and G+ are Λ∞R -isotopic.

If Λ∞R has constant fiber Λ∞t ≡ Λ∞ ⊂ T∞M , we also say G− and G+ are Λ∞-isotopic. If

G+ = 0, we say G− is Λ∞-null-isotopic. If Λ∞R = ∅, we may simply say G− and G+ are

isotopic.

Proposition 5.1.3. Let GR and FR be deformations of sheaves. If

SS∞(Gt) ∩ SS∞(Ft) = ∅ for all t ∈ R,

then

hom(Ft, Gt) ∼= hom(Fs, Gs) for all t, s ∈ R

Proof. First, we claim that

homMt(Ft, Gt) ∼= homM×R(CMt [−1], hom(FR, GR)).

Since SS∞(jt∗CMt)∩SS∞(FR) = ∅, by Petrowsky theorem for sheaves ([S], Cor. 4.6), we

have isomorphism

hom(CMt ,CM×I)⊗ FR
∼−→ hom(CMt , FR)

Since hom(CMt ,CM×I) ∼= CMt [−1], we have

ΓMtFR ∼= (FR)Mt [−1], ΓMtGR ∼= (GR)Mt [−1].
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where we use the notation FZ = (jZ)∗(jZ)∗F ∼= CZ ⊗ F and ΓZF = hom(CZ , F ). Thus

homMt(Ft, Gt) = homMt(jt
∗FR, jt

∗GR) ∼= homM×R(FR, jt∗j
∗
tGR)

∼= homM×R(FR, hom(CMt , GR)[1]) = homM×R(CMt , homM×R(FR, GR))[1]

= homM×R(CMt [−1], homM×R(FR, GR))

Next, we show that

homM×R(CMt [−1], homM×R(FR, GR)) ∼= [πR∗homM×R(FR, GR)]t

Indeed from [KS], Eq (2.3.10) and taking global sections, we have

homR(C{t}, πR∗homM×R(FR, GR)) ∼= homM×R(CMt , homM×R(FR, GR))

Hence suffice to show that

homR(C{t}, πR∗homM×R(FR, GR)) ∼= πR∗homM×R(FR, GR)⊗ C{t}[1]

This follows from Petrowsky theorem if πR∗homM×R(FR, GR) is a local system, which we

now prove. Since ΛG
t ∩ ΛF

t = ∅, we have Λ∞F ∩ Λ∞G = ∅, hence

SS∞(hom(FR, GR)) = SS∞(hom(FR,CM×R)⊗GR) = [SS(GR)− SS(FR)]∞

however, SS∞(Ft) ∩ SS∞(Gt) = ∅, that means if (p, τ) ∈ T ∗x,t(M × R) is in SS∞(G) for

some p 6= 0, then there is no τ ′ such that (p, τ ′) ∈ SS∞(F ), hence if (p, τ) ∈ SS(G) −
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SS(F ) then p 6= 0. In other words SS∞(hom(FR, GR)) ∩ (T ∗MM × T ∗I)∞ = ∅, hence

(πR)∗hom(FR, GR) is a local system. This concludes the proof of the proposition. �

Example 5.1.4. Let M = R and G = C[−1,1), then G is null-isotopic via a right-cusp-

like sheaf.

Indeed, let χ : R→ R be a smooth non-increasing function, such that χ(t) = 1 for t ≤ 0

and χ(t) = 0 for t ≥ 1, then the sheaf

GR := cone(C{(x,t)|x≤χ(t)}
res−→ C{(x,t)|x≤−χ(t)})[−1] = C{(x,t)|−χ(t)<x≤χ(t)}

is the desired deformation of sheaf. 4

Example 5.1.5. Let M = R2, jB : B = {x ∈ M | |x| < 1} ↪→ M be the inclusion of

the open disk. Let f : B → R be given by

f(x) = x1 exp

(
1

1− |x|2

)
.

Let G′ ∈ Sh(B) be sheaf given by

G′ := cone(C{x:f(x)≤1}
res−→ C{x:f(x)≤−1})[−1] = C{x:−1<f(x)≤1}
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and G = jB∗G
′.

G G

Then G is null-isotopic via a sheaf GR = (jB × idR)∗G
′
R for G′R ∈ Sh(B × R) defined by

G′R := cone(C{(x,t)∈B×R|f(x)≤χ(t)}
res−→ C{(x,t)∈B×R|f(x)≤−χ(t)})[−1] = C{(x,t)∈B×R|−χ(t)<f(x)≤χ(t)}.

This generalizes straightforwardly to M = Rn case. 4

Proposition 5.1.6. If G is Λ-null-isotopic, then for any F ∈ Sh(M,Λ), hom(G,F ) =

0 and hom(F,G) = 0.

Proof. This is from Definition 5.1.2 of null-isotopic deformation of sheaves and Propo-

sition 5.1.3 for the constancy of hom-complex. �

5.2. Constructible Sheaf as Yoneda Functor

In this section we explain the main idea of how to deform a constructible sheaf. First,

we recall the definition of a presheaf: a presheaf F on M valued in chain complex takes

in open set and output chain complexes, in a way consistent with the restriction map.

If the sheaf F ∈ Sh(M,Λ) is constructible, then we may deform the open set U in a

Λ-non-characteritic way, while keeping F (U) invariant up to quasi-isomorphism

(5.2.1) SS∞(CUt) ∩ SS∞(F ) = ∅ for all t ∈ R ⇒ F (Ut) ∼= F (Us) for all t, s ∈ R.
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More generally, we can view F (U) as hom(CU , F ) and deform CU as a sheaf, say by a

sheaf-quantization ϕ̂t of Hamiltonian isotopy ϕt : T∞M → T∞M . Let Pt = ϕ̂tCU , we

call Pt probe sheaves. Then we have

(5.2.2)

SS∞(Pt) ∩ SS∞(F ) = ∅ for all t ∈ R ⇒ hom(Pt, F ) ∼= hom(Ps, F ) for all t, s ∈ R.

Let Λ∞t be a deformation of Legendrian, and assume Ft ∈ Sh(M,Λ∞t ) is a deformation

of constructible sheaves (see Definition 5.1.2), and Pt is a deformation of probe sheaves,

then we have

(5.2.3)

SS∞(Pt) ∩ SS∞(Ft) = ∅ for all t ∈ R ⇒ hom(Pt, Ft) ∼= hom(Ps, Fs) for all t, s ∈ R.

Hence, if we know F0 and want to know the value of F1 on certain probe sheaf P1,

hom(P1, F1), we only need to deform P1 back to P0 avoiding collision with Λ∞t along the

way. And if we know the value of F1 on sufficiently many such probe sheaves, we may

reconstruct F1.

Example 5.2.1. In this example, we illustrate how to deform a probe sheaf. Let

X = R2, and Λt ⊂ T ∗X for t ∈ [−1, 1] is given by

Λt = T ∗XX
⋃ (

3⋃
i=1

{(x, ξ) ∈ T ∗X | fi(x) = t, ξ = λdfi(x), λ > 0}

)
⋃ ( ⋃

1≤i<j≤3

{(x, ξ) ∈ T ∗X | fi(x) = fj(x) = t, ξ = λidfi(x) + λjdfj(x), λi, λj > 0}

)

where fi(x) = x1 cos θi + x2 sin θi, and θ1 = π/2, θ2 = −5π/6, θ3 = −π/6.
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Let F−1 ∈ Sh(X,Λ−1) be the standard sheaf supported in the closed set ∪i{fi(x) ≥

−1}. We claim that as Λt changes from t = −1 to t = 1, F−1 changes to the costandard

sheaf F1 ∈ Sh(X,Λ1) supported on the open triangle ∩i{fi(x) < 1} at degree −2.

To verify the claim of the stalk of F1, we pick an open ball B(0, 1/2) in the interior of

the triangle, shown in the right of the picture Figure 6.1. Let P = C{|x|<0.5} be a constant

sheaf C supported on this open ball, then the stalk of F+1 at 0 can be computed as

(F+1)0
∼= hom(P, F+1).

Apply the unit speed geodesic flow R on the cosphere bundle S∗R2 with respect to the

Euclidean metric on R2 for time −3, then by a result of [GKS] (Example 3.10), P

changes to Φ−3(P ) = C[−2]{|x|≤2.5}, where Φt quantizes the geodesic flow for time t.

Since SS∞(Φt(P )) remains disjoint from Λ+1, as t ∈ [−3, 0], we have

hom(P, F+1) ∼= hom(Φ−3(P ), F+1).

Finally, as Λ+1 varies back to Λ−1 and F+1 changes back to F−1, Λs for s ∈ [−1, 1] remains

disjoint for Φ−3(P ). Hence, we get

hom(Φ−3(P ), F ′) ∼= hom(Φ−3(P ), F ) ∼= hom(C[−2]{|x|≤2.5}, F ) ∼= Γc(B(0, 2.5), F )[2] ∼= C[2]

4



98

C

F−1

C[2]

F1

Figure 5.1. As the Legendrian moves, the sheaf F changes to F ′.

Figure 5.2. Invariance of hom-complex hom(P, F ) during deformation. The
first three picture shows deformation of the probe sheaf P whose singular
support is marked in red ,with F fixed as F+1, then the last two picture de-
forms F keeping P fixed. Note that the SS∞(P )∩SS∞(F ) = ∅ throughout
this deformation.

5.3. Family of Probe Sheaves and Reproducing Kernel

Let M be an n-dimensional manifold, Λ∞ ⊂ T∞M a Legendrian, and S = {Sα}α∈A a

Whitney stratification of M compatible with Λ∞. We will define a family of probe sheaves

{Pp | p ∈ M}, such that their singular support at infinity SS∞(Pp) is disjoint from Λ∞

and hom(Pp, F ) compute the stalk of F at p for any F ∈ Sh(M,Λ∞).

We then assemble the probe sheaves into a reproducing kernel ΠΛ ∈ Sh(M×M), which

is supported on the graph of the almost retraction r. The main result in this section is

Proposition 5.4.12, which says if a sheaf has singular support at infinity SS∞(F ) close

enough to Λ∞, then under the pushforward of the almost retraction r∗F has SS∞(r∗F ) =

Λ∞.
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5.4. Whitney Stratification

We recall the definition of almost retraction, following ([N3], Section 2.2) closely.

A tubular neighborhood of a submanifold (may be not closed) Y ⊂ M consists of an

inner product on the normal bundle p : NY → Y , and a smooth embedding

(5.4.1) ϕ : NY [< ε] = {v ∈ NY |〈v, v〉 < ε} ↪→M

of the open ball bundle determeind by some ε > 0. The image T = ϕ(NY [< ε]) is requried

to be an open neighborhood of Y ⊂ M , and the restriction of ϕ to the zero-section

Y ⊂ NY is required to be the identity map to Y ⊂ M . By rescaling the inner product,

we can assume that ε = 1.

By transport of structure, the neighborhood T comes with (smooth) tubular distance

function ρ : T → R≥0 and smooth tubular projection π : T → Y defined by

(5.4.2) ρ(x) = 〈ϕ−1(x), ϕ−1(x)〉, π(x) = p(ϕ−1(x))

We will write (T, ρ, π) to denote the tubular neighborhood, and remember that π : T → Y

is an open unit ball bundle.

Given small ε ≥ 0, we have the inclusion

(5.4.3)

j[ε] : T [ε] = {x ∈ T | ρ(x) = ε} ↪→ T, j[< ε] : T [< ε] = {x ∈ T | ρ(x) < ε} ↪→ T

and similarly with < ε replaced by ≤ ε,≥ ε or > ε, or any subinterval of [0, 1].

Any Whitney stratified subspace X ⊂M admits a compatible system of control data

consisting of a tubular neighborhood (Tα, ρα, πα) of each stratum Xα ⊂ X. Whenever
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α < β, that is Sα ⊂ Sβ, we require

(5.4.4) πα(πβ(x)) = πα(x), ρα(πβ(x)) = ρα(x)

on the common domain x ∈ Tα ∩ Tβ, such that πβ(x) ∈ Tα.

Fix ε to be small enough. Let rα : Tα[(0, 2ε)]→ Tα[2ε] be a family of lines. We further

require that ε is so small that different strata has disjoint tubes Tα[< 2ε]. If α < β,

(5.4.5) ρβ = ρβrα, ρα = ραrβ, πα = παrα, rαrβ = rβrα

and further more, the restriction rα|Tα[(0,2ε)]∩Sβ : Tα[(0, 2ε)] ∩ Sβ → Tα[2ε] ∩ Sβ is smooth

([Go], P194, property (7)).

For each chain of stratum α1 < α2 < · · · < αk, and B = {α1, · · · , αk}, we define a

homeomorphism, (as a stand-in for polar coordinate)

(5.4.6) hB : ∩α∈B(Tα[(0, 2ε)])→ (∩αTα[2ε])×
∏
α∈B

(0, 2ε).

Fix a smooth non-decreasing function q : R→ R, such that q(t) = 0, for t ≤ ε and q(t) = t

for t ≥ 2ε, and q′(t) > 0 for t ∈ (ε, 2ε). For each stratum Sα, we introduce

(5.4.7) Πα : M →M, Πα(x) =


x, when x /∈ Tα[< 2ε]

h−1
α (rα(x), q(ρα(x))), when x ∈ Tα[< 2ε]\Sα

One can show that Πα commutes with each other. Define the ‘almost retraction’

(5.4.8) r : M →M, r =
∏
α∈A

Πα
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Thanks to the commutativity of Παs, the product is well-defined.

Proposition 5.4.1. (1) If p ∈ M is not in any Sα, then its preimage under r is a

point in the same connected component of |S|.

(2) If p ∈ Sα, then for any β 6= α, Π−1
β (p) = {p′} for some p′ ∈ Sα, depending smoothly

on p; and

(5.4.9) Π−1
α (p) = π−1

α (p) ∩ Tα[≤ ε].

(3) If p ∈ Sα, then there exists p′ ∈ Sα depending smoothly on p, such that

(5.4.10) r−1(p) = π−1
α (p′) ∩ Tα[≤ ε]

Proof. A similar result is recorded in [GoMa] 6.13.4. �

For any family of lines rα, and for any 0 < δ < ε, we may define r
(δ)
α : Tα[(0, 2δ)] →

Tα[2δ] induced by the family of lines. We may define the corresponding Π
(δ)
α and almost

retraction r(δ).

5.4.1. Probe Sheaves

Recall in Section 5.4, for a stratification S, we can define the control data (Tα, ρα, πα)

and a family of lines rα, that is πα : Tα → Sα is a tubular neighborhood of Sα, and ρα

is a distance function to Sα, with certain compatibility conditions between strata. Let r

denote the almost retraction

r : M →M, r =
∏
α∈A

Πα.
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Definition 5.4.2. For each point p ∈M , we define the probe set for p to be the closed

set

(5.4.11) Ap = r−1(p),

and jAp be the inclusion map of Ap into M . We define the probe sheaf for p to be the

costandard sheaf

(5.4.12) Pp = jAp!ωAp = D(jAp∗CAp).

If p is in a stratum Sα of dimension k for 0 ≤ k ≤ n, then Ap is a fiber of πα : Tα[≤

ε] → Sα an embedded (n − k) closed disk (Proposition 5.4.1). Pp has support in the

relative interior of Ap, with stalk isomorphic to C[n − k]. The singular support of Pp at

infinity is the outward-conormal to Ap. The following proposition justifies the name for

probe sheaf.

Proposition 5.4.3. Fix a Riemannian metric g on M , and let Ap[< ε] be the set of

points with distance to Ap less than ε. There exists a small enough 1� ε0 > 0 depending

on (M, g,S), such that for any constructible sheaf F ∈ ShS(M) adapted to the Whitney

stratification S, we have

(5.4.13) Fp ∼= F (Ap[< ε]) ∼= hom(Pp, F )

for all 0 < ε < ε0.
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Proof. Fp can be computed by any small enough open ball around this point, thanks

to the contructibility. We claim that the costandard sheaf on Ap[< ε] and the one on Ap

are isotopic with respect to Λ∞S , and the isotopy is given by geodesic flow. �

5.4.2. Reproducing Kernel

A classical reproducing kernel in functional analysis is the following, let X be a space,

H ⊂ L2(X) is a Hilbert subspace, {Kx}x∈X is a family of functions in H, such that

for any f ∈ H, f(x) = 〈f,Hx〉. We may equivalently define the reproducing kernel

K : X ×X → R, by K(x, y) = Kx(y), then we have

f(x) =

∫
y

f(y)K(x, y)dy, for all f ∈ H,

hence K is called the reproducing kernel for H.

Here we use the word reproducing kernel in a much looser sense: let H ⊂ V be a

subspace, then we say an operator T : V → V reproduces H, if T |H = idH . For example,

if V the set of smooth complex valued function on C, and Tε(f)(z) =
∮
|w−z|=ε

f(w)
w−z

dw
2πi

,

then Tε reproduces the subspace of holomorphic function (also harmonic functions).

In our case, we want to assemble these probe sheaves together into a reproducing kernel

ΠΛ ∈ Sh(M ×M), such that (ΠΛ)! reproduces the subcategory Sh(M,Λ) in Sh(M). Let

π1, π2 be the projection from M ×M to the first and second factor, and our convention

is always to use the first factor as input and the second factor as output.
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The definition of the kernel is just the constant sheaf over the graph of the almost

retraction.

(5.4.14) ΠΛ := CΓr , Γr := {(p, r(p)) ∈M ×M | p ∈M}

Recall the definition of kernel operation K∗, K! in Eq. (3.4.2) and (3.4.4),

K! : F 7→ π2!(K ⊗ π∗1F ), K∗ : F 7→ π2∗(hom(K, π!
1F ))

Lemma 5.4.4.

(5.4.15) ΠΛ∗ = r∗ = r! = ΠΛ!

Proof. r∗ = r! since r is a proper map. The other two equal sign is by Proposition

3.4.1. �

Remark 5.4.5. We will use r∗ and r! interchangeably from now on.

It is instructive to see the computation of a stalk of F at p to see the relation of the

kernel and the probe sheaf.

Proposition 5.4.6. Let F ∈ ShS(M), p ∈M , then hom(Pp, F ) = (r!F )p = (r∗F )p.

Proof. Let F ∈ ShS(M), let p ∈ M , and Up be a small enough open ball around p,

such that F (U) = Fp.Then

[ΠΛ!F ]p = [π2!(CΓr ⊗ π∗1F )]p = Γc(r
−1(p), F |r−1(p)) = Γ(r−1(p), F |r−1(p))
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where we have changed Γc to Γ since r−1(p) is compact.

[ΠΛ∗F ]p = [ΠΛ∗F ](U) = hom(ΠΛ|π−1
2 (U), π

!
1(F )|π−1

2 (U))

= hom(π1!ΠΛ|π−1
2 (U), F ) = hom(Cr−1(U), F ) = F (r−1(U))

On the other hand

hom(Pp, F ) = Γhom(Pp, F ) = Γ(DPp ⊗ F ) = Γ(CAp ⊗ F ) = Γ(r−1(p), F |r−1(p))

Hence hom(Pp, F ) , (r!F )p and (r∗F )p are the same. �

Proposition 5.4.7 ([N3], Lemma 6.3). r∗ is canonically equivalent to the identity

operator when restricted to S-constructible sheaves

(5.4.16) r∗ ∼= id : ShS(M)
∼−→ ShS(M)

Corollary 5.4.8. If Λ ⊂ Λ∞S is a closed Legendrian, then r∗ is canonically equivalent

to the identity operator restricted to Sh(M,Λ).

We want to show that r∗ has certain ‘straightening effect’, in that if a constructible

sheaf F has its singular support at infinity SS∞(F ) in a small enough neighborhood of

Λ∞ in T∞M , then r∗F would has its singular support in Λ∞. We fix a Riemannian metric

on M and induce a Riemannian metric on S∗M , we also identify T∞M with S∗M . If Λ∞

is a Legendrian in S∗M , we denote Λ∞[< ε] the set of points in S∗M whose distance to

Λ∞ are less than ε.
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Proposition 5.4.9. There exists ε0 small enough, such that for any p ∈M

SS∞(Pp) ∩ Λ∞S [< ε0] = ∅.

Proof. For each strata Sα, we claim there exists a εα > 0, such that SS∞(SS∞(Pp))∩

Λ∞S [< εα] = ∅ for all p ∈ Sα, then ε0 = minα εα satisfy the condition. We define rα =∏
β<α Πβ : Sα → Sα, then r−1

α (Sα) is a relative compact subset in Sα, denoted as Bα. For

any p ∈ Sα, the probe set Ap is a fiber of Tα[< ε]→ Sα, where the base of the fiber is in

Bα. Define

εα := min
q∈Bα

dist(T∞
Π−1
α (q)

M,Λ∞S ),

where since Bα is a compact subset in Sα, the minimum can be realized and is non-zero.

Since Ap = Π−1
α (r−1

α (p)), and SS∞(Pp) ⊂ T∞ApM , we have

SS∞(Pp) ∩ Λ∞S [< εα] = ∅.

This finishes the claim and proves the proposition. �

Proposition 5.4.10. Let ε0 be as in Proposition 5.4.9. For any constructible sheaf

F ∈ Sh(M),

SS∞(r∗F ) ∩ Λ∞S [< ε0] = ∅.

Proof. Let F be constructible with respect to a Whitney triangulation T , which can

be further refined such that any simplices in T is contained in some stratum in S. Since F

can be generated by the costandard sheaves in ShT (M), and that r∗ is an exact functor,

it suffices to prove that for any simplex τ in T , the costandard sheaf jτ !ωτ satisfies the
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condition in the proposition. We note that

SS∞(r∗jτ !ωτ ) ⊂
⋃
p∈τ̄

SS∞(Pp),

hence is disjoint from Λ∞S [< ε0], hence proves the proposition. �

Proposition 5.4.11. Let ε0 > 0 be small enough as in Proposition 5.4.9. Then for

any F ∈ Sh(M) such that SS∞(F ) ∈ Λ∞S [< ε0]), we have SS∞(r∗F ) ⊂ Λ∞S , i.e.

(5.4.17) r∗ = r! : Sh(M,Λ∞S [< ε0])→ Sh(M,Λ∞S ).

Proof. Fix any F ∈ Sh(M,Λ[< ε0]), suffice to show that r!F = r∗F is locally constant

on each stratum of S. Let p0, p1 ∈ Sα, then there is a path {pt}t∈[0,1] in Sα connecting

p0, p1. Consider the set of probe sheaves for point in this path, we have

SS∞(Ppt) ∩ SS∞(F ) ⊂ SS∞(Ppt) ∩ Λ∞S [< ε0] = ∅, for all t ∈ [0, 1].

Hence by the non-characteristic deformation proposition (Proposition 5.1.3),

hom(Ppt , F ) ∼= hom(r∗(Cpt [n− k]), F ) ∼= hom(Cpt [n− k], r∗F )

is constant for all t ∈ [0, 1], hence r∗F has constant (co)stalk along Sα for all α, thus is S

constructible. �

Next, we prove the more refined version.
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Proposition 5.4.12. Let ε0 > 0 be small enough as in Proposition 5.4.9. Then for

any F ∈ Sh(M) such that SS∞(F ) ∈ Λ∞[< ε0]), we have SS∞(r∗F ) ⊂ Λ∞, i.e.

(5.4.18) r∗ = r! : Sh(M,Λ∞[< ε0])→ Sh(M,Λ∞).

Proof. This proof follows that of Theorem 6.7 in [N3]. To show that r∗F actually

lands in Sh(M,Λ), one need to show that r∗F has no non-trivial microlocal stalk on

Λ∞S \Λ.

For each strata Sα, we define Λ∞,smSα = Λ∞Sα \∪β>αΛ∞Sα , and Λ∞,smS = ∪αΛ∞,smSα , then

we have

SS∞(r∗F ) ∩ Λ∞,smS = SS∞(r∗F ), Λ∞ ∩ Λ∞,smS = Λ∞.

Hence SS∞(r∗F ) ⊂ Λ∞ is equivalent of

SS∞(r∗F ) ∩ Λ∞,smS ⊂ Λ∞ ∩ Λ∞,smS

which in turn is equivalent of

Λ∞,smS \SS∞(r∗F ) ⊃ Λ∞,smS \Λ.

That is, for any u ∈ Λ∞,smS \Λ, we need to show that u /∈ SS∞(r∗F ).

We induct on the number of strata of S ⊂ M . The base case S = ∅ is clear, r is the

identity map on M .

Suppose given a closed stratum i0 : S0 ↪→M . Let M [> ε] = M\TS0 [≤ ε], S[> ε] = S∩

M [> ε]. Then the Whitney stratification, system of control data and family of lines are the

same for S[> ε]. Denoting the resulting almost retraction by r[> ε] : M [> ε]→M [> ε].
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Since S[> ε] has fewer strata than S, by induction, the push-forward induces a functor

r[> ε]∗ : Sh(M [> ε],Λ∞[< ε0]|M [>ε])→ Sh(M [> ε],Λ∞|M [>ε])

Since (r∗F ) ∈ Sh(M,Λ∞S ) and

(r∗F )|M\S0 = (Π0)∗r[> ε]∗(F |M [>ε]),

hence

(r∗F )|M\S0 ∈ Sh(M\S0,Λ
∞|M\S0).

Thus, it suffices to show that SS∞(r∗F )|S0 ⊂ Λ∞|S0 , or as remarked in the beginning

Λ∞,smS0
\ (SS∞(r∗F )|S0) ⊃ Λ∞,smS0

\ (Λ∞|S0).

By taking the normal slice to S0 at p, we may assume S0 is zero dimensional.

Let u ∈ Λ∞,smS0
\(Λ∞|S0), a covector over p ∈ S0, we shall prove u is not in SS∞(r∗F )|S0 .

Since T0 is the image of a smooth embedding of an open ball in Rn, hence by a diffeomor-

phism, we may assume T0 = B(0, 1) ⊂ Rn, p = 0, and ρ0 is the standard Euclidean inner

product. Let S ′ = S ∩ T0 be the induced strata in T0. We may choose a linear function

u that realize the covector, and a small enough δ > 0, such that u has no critical points

on S ′β ∩B(0, δ) for all positive dimensional strata S ′β ∈ S ′. We want to prove that

cone(r∗F (B(δ))→ r∗F (B(δ) ∩ {u < 0})) ∼= 0,
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or equivalently,

(5.4.19) cone(F (U+)→ F (U−)) ∼= 0

where U+ = r−1(B(δ)) and U− = U+ ∩ {u ◦ r < 0}. Note r−1(B(δ)) = B(q−1(δ)) by

definition of the almost retraction (5.4.7). By Corollary 5.4.8, CU− and CU+ are Λ∞-

isotopic. By Proposition 5.4.10, we have SS∞(CU−) and SS∞(CU+) are disjoint from

Λ[< ε0], hence CU− and CU+ are Λ∞[< ε]-isotopic, in particular SS∞(F )-isotopic. Thus,

by Proposition 5.1.3, we have

hom(CU+ , F ) ∼= hom(CU− , F ).

This proves Eq.(5.4.19) and finishes the proof of this proposition. �

Corollary 5.4.13. Let ε0 > 0 be small enough as in Proposition 5.4.9. Let G ∈

Sh(M,Λ∞[> ε0]) and F ∈ Sh(M,Λ∞[< ε0]), then we have

hom(G,F ) ∼= hom(G, r∗F )

and similarly

hom(F,G) ∼= hom(r∗F,G)

Proof. Let ε be the parameter that controls the family of lines. Given a family of

lines with parameter ε, it naturally induces the same family of lines for smaller ε. let r(tε)

be the almost contraction with the parameter 0 ≤ t ≤ 1, we claim that {r(tε)
∗ F}t∈[0,1],

is a variation of sheaves, non-characteristic with respect to Λ∞[> ε′], hence to SS∞(G).

Applying Proposition 5.1.3, we get the desired result. �
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5.5. Quantization of Contactomorphism of the Legendrian Complement

In many cases studying the dual object is easier than the original object. For example,

to define the weak derivative on distribution one use integration by part and let the

derivative acts on the smooth test function. Here the idea is similar, to deform a sheaf

such that its singular support at infinity adhere to a prescribed singular Legendrian is

hard, but it is much easier to deform a probe sheaf whose singular support at infinity avoid

the prescribed Legendrian. Just like the GordonLuecke theorem about knot complement,

which says if K and K are two knots with homeomorphic complements in three-sphere

then there is a homeomorphism of the three-sphere taking one knot to the other, here

we shall prove that categories Sh(M,Λ∞t ) are equivalent to each other as long as the

complement T∞M\Λ∞t are contactomorphic to each other.

Theorem 7. Let Λ∞R be a variation of Legendrian in T∞(M ×R). If for any t, s ∈ R,

we have contactomorphism

ϕt→s : T∞M\Λ∞t → T∞M\Λ∞s .

such that for any t1, t2, t3 ∈ R,

ϕt2→t3 · ϕt1→t2 = ϕt1→t3 , ϕt1→t1 = id,

and ϕt change smoothly with t. Then, there are equivalences of categories

ϕ̂t→s : Sh(M,Λ∞t )→ Sh(M,Λ∞s ),
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such that for any t1, t2, t3 ∈ R,

ϕ̂t2→t3 · ϕ̂t1→t2 ∼= ϕ̂t1→t3 , ϕ̂t1→t1
∼= id.

Remark 5.5.1. This may seems a useless theorem in practice, since the geomet-

ric question of finding contactomorphism between non-compact contact spaces might be

harder than the algebraic question of finding equivalences of categories, however it maybe

useful to prove non-existence result on contactomorphism. Later, we will give some easy

to check sufficient conditions that implies the existence of contactomorphisms.

Let ft : T∞M\Λ∞t → R be a family of smooth functions, such that ft ◦ϕs→t = fs and

ft(x)→∞ as dist(x,Λ∞t )→ 0 uniformly in x. For example, we may fix t0 ∈ R, construct

ft0 first, then define ft = ft0 ◦ ϕt→t0 .

For each t ∈ R, let Xt be the contact vector field on T∞M\Λ∞t given by Xt(x) =

dϕt,t+ε(x)

dε
. And let Ht = 〈α,Xt〉 be the Hamiltonian function generating Xt. Fix a standard

smooth cut-off function χ : R → R, i.e. χ(x) = 1 for all x ≤ 1 and χ(x) = 0 for x ≥ 2,

and χ′(x) ≤ 0. For any R > 0, we define the truncated Hamiltonian function

Ht,R(x) := Ht(x) · χ
(
ft(x)

R

)
,

and let Xt,R be the corresponding contact vector field on the entire T ∗M .

For any t ∈ R, we let ε(t) be small enough, as in Proposition 5.4.3, such that

SS∞(Pp,t) ∩ Λ∞t [< ε(t)] = ∅, for all p ∈M.
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We let R(t) be large enough, such that

Λ∞t [< ε(t)] ⊂ {ft(x) < R(t)}.

This can always be achieved, since ft(x)→∞ as dist(x,Λ∞t )→ 0 uniformly in x.

From the GKS construction of the quantization for Hamiltonian contactomorphism,

for each R > 0 and t, s ∈ R, we have a family of kernels

K
(R)
t→s ∈ Sh(M ×M)

such that

K
(R)
t→t = C∆, KR

t→s = (KR
s→t)

t and K
(R)
t2→t3 ◦K

(R)
t1→t2 = K

(R)
t1→t3 .

However, they only perform the desired quantization for contactomorphism on {ft < R}.

We will use almost retraction to finish the construction.

Definition 5.5.2. For any t, s ∈ R, and any R ∈ R such that R > R(t) and R > R(s),

we define functor

ϕ̂Rt→s : Sh(M)→ Sh(M), F 7→ (ΠΛs)!(K
R
t→s)!(ΠΛt)!F.

Proposition 5.5.3. If F ∈ Sh(M,Λ∞t ), then SS∞(ϕ̂Rt→s(F )) ∈ Λ∞s .

Proof. The Hamiltonian flow ϕRt,s of Xt,R from t to s gives a diffeomorphism {ft < R}

to {fs < R}, also give a diffeomorphism of the complement {ft > R} and {fs > R}.
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Hence

SS∞((KR
t→s)!F ) = ϕRt→s(SS

∞(F )) ⊂ {fs > R} ⊂ Λ∞s [< ε(s)].

From Proposition 5.4.12, and (ΠΛr)! = (rs)!, we have

(ΠΛs)!(K
R
t→s)!(ΠΛt)!F = (ΠΛs)!(K

R
t→s)!F ∈ Sh(M,Λ∞s ).

�

Proposition 5.5.4. For any t, s ∈ R, and any R ∈ R such that R > R(t) and

R > R(s),

ϕ̂Rt→s : Sh(M,Λ∞t )→ Sh(M,Λ∞s )

is independent of R.

Proof. Consider any sheaf in G ∈ Sh(M,T∞M), and any sheaf F ∈ Sh(M,Λ∞t1 ).

Then we have

hom(G, ϕ̂Rt→sF ) = hom(G, (Πs)K
R
t→s∗F )

= hom(Π∗sG,K
R
t→s∗F )

Since as we vary R, KR
t→s∗F will vary such that SS∞(KR

t→s∗F ) remains in Λs[< ε(s)]. On

the other hand, SS∞(Π∗sG) has singular support disjoint from Λs[< ε(s)] by Proposition

5.4.10. Hence, by non-characteristic deformation result in Proposition 5.1.3, the hom

complex is invariant as R varies. By faithfulness of Yoneda embedding functor, we see

ϕ̂Rt→sF is independent of R. �
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Remark 5.5.5. We will drop the R supscript from ϕ̂Rt→s and simply write ϕ̂t→s. We

will also write Πt for ΠΛ∞t
.

Now that we have constructed the functors ϕt→s, we proceed to finish the proof of the

theorem.

Proof of Theorem 7. We only need to verify the compositions of ϕ̂t→s, since there

are only finitely many ti involved, we can fix an R large enough for all R(ti). Consider

any sheaf in G ∈ Sh(M,T∞M), and any sheaf F ∈ Sh(M,Λ∞t1 ) then we have

hom(G, ϕ̂t2→t3 ◦ ϕ̂t1→t2F ) = hom(G,Πt3!Kt2→t3!Πt2!Πt2!Kt1→t2!Πt1!F )

= hom(G,Πt3!Kt2→t3!Πt2!Kt1→t2!Πt1!F )

= hom(Kt3→t2!Π
∗
t3
G,Πt2!Kt1→t2!F )

Since SS∞(Kt3→t2!Π
∗
t3
G) and SS∞(Kt1→t2!F ) satisfies the hypothesis of Corollary 5.4.13,

we may take out the almost retraction Πt2! in the last line above on the right slot. Thus,

we have

hom(G, ϕ̂t2→t3 ◦ ϕ̂t1→t2F ) ∼= hom(Kt3→t2!Π
∗
t3
G,Kt1→t2!F )

∼= hom(G,Πt3!Kt2→t3!Kt1→t2!F )

= hom(G, ϕ̂t1→t3F ).

By faithfulness of Yoneda embedding functor, we have ϕ̂t2→t3 ◦ ϕ̂t1→t2F ∼= ϕ̂t1→t3F . �
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5.6. Thickening of Legendrian: Definition and Existence

The sufficient condition in Theorem 7 is quite general, though hard to check in practice.

We now give an easier to check sufficient condition based on the singular Legendrian itself

(or rather, its tubular neighborhood) rather than its complement.

The intuitive idea is that, there should be no new self-intersection of the Legendrian

during the deformation. Since the initial singular Legendrian itself can be viewed as several

component of smooth Legendrians glued together, there are intersections (non-transversal

even) between the smooth components to begin with. There are several possible geometric

conditions, which we now discuss below. As always, we fix a Riemannian metric on M

and hence on S∗M , and identify T∞M with S∗M . Let Rt denote the Reeb flow by time

t. We also use L ⊂ S∗M to denote a Legendrian, Λ ⊂ T ∗M a conical Lagrangian, and

Λ∞ ⊂ T∞M the corresponding Legendrian at infinity.

(1) The first possible condition is that there is no short Reeb chord emerging or disap-

pearing during the deformation. More precisely, for a deformation of Legendrian

{Ls}, there exists a small ε > 0 so that

(5.6.1) Ls ∩Rt(Ls) = ∅, for all 0 < |t| < ε, uniformly in s.

This condition prevent self-collision along the Reeb direction, but not when two

local pieces of the Legendrian approaches each other within the contact distribu-

tion ker(α). For example, consider two Legendrians in J1(R) with α = dz− ydx,

one with the front of z = 0, the other with front z = x3 + tx, with parameter

t ∈ [0, 1]. As t tends to 0 from above, the second Legendrian approaches the first
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one, at meets when t = 0, and there is no short Reeb chord with non-zero length

between them for all t ∈ [0, 1]. The resulting sheaf categories are different for

t = 0 and t > 0. Hence, this condition alone is not enough to guarantee the sheaf

categories to be invariant.

(2) The second possible condition is to strenghen the first one, by requiring the

singular Legendrian Ls to be contained in a hypersurface Hs transverse to the

Reeb flow, such that Hs deformation retracts to Ls and

(5.6.2) Hs ∩Rt(Hs) = ∅, for all 0 < |t| < ε, uniformly in s.

We call such hypersurface a thickening of L. Of course the condition of a hyper-

surface transverse to Reeb flow is not an intrinsic notion on a contact manifold,

since for any point p in a contact manifold C, any vector R not in the contact

distribution can be made into a Reeb vector by choosing some contact one-form.

We will show that the second condition above (with some Liouville flow condition on

Hs) is enough to construct a family tubular neighborhoods Us for Ls, by thicken Hs in

the (positive and negative) Reeb flow direction, such that there is a contact vector field

flowing across the tubular boundary ∂Us. This condition is enough to show that the

complement of the tubular neighborhoods {Us} are contactomorphic to each other, hence

allows one to show equivalence of sheaf categories just as the Theorem 7.

In the remaining part of this section, we will first review some elementary properties

about hypersurface in contact manifold and tubular neighborhood around singular Leg-

endrian. Then, we construct a tubular neighborhood for any singular Legendrian. The

result is summarized in Theorem 8.
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5.6.1. Contact Hamiltonian vector field

Let M be a smooth manifold, T ∗M its cotangent bundle with the canonical one-form

α = pdq, two form ω = dα = dp ∧ dq, and the outward Liouville vector field (or the

Euler vector field) V = p∂p such that ιV ω = α. Given a Hamiltonian function H, the

Hamiltonian flow ξH is defined by ιξHω = −dH. We will use ξH for sympletic Hamiltonian

vector field, and XH for contact Hamiltonian vector fields.

Let g be any Riemaninan metric on M , then T ∗M has induced norm. Let Ṫ ∗M =

T ∗M\M , where M is identified with the zero section in T ∗M . Let S∗M = {(q, p) ∈ T ∗M |

|p| = 1} be the unit cosphere bundle, the one-form α restrict to S∗M to be a contact

form, and the contact distribution ξ = ker(α). In fact, any smooth function f : S∗M → R

defines another hypersurface Hf , by flowing every point in p ∈ S∗M along the expanding

Liouville vector field V by time f(p), and let Pf : S∗M → Hf denote this diffeomorphism.

Then (Hf , α|Hf ) is also a contact manifold, contactomorphic to (S∗M,α|S∗M) via Pf , and

P ∗f (α|Hf ) = ef · α|S∗M .

The Reeb vector field R corresponding for a contact one-form α, is such that

(5.6.3) ιRα = 1, ιRdα = 0.

Its flowline is the characteristic foliation of the hypersurface S∗M with respect to ω. And

R is also the restriction of the symplectic Hamiltonian flow for function |p| on its level set

|p| = 1.
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Given a smooth function H : S∗M → R, the contact Hamiltonian vector field XH is

defined by

(5.6.4) XH = H ·R +X
‖
H ∈ RR⊕ ξ, ιXHdα = 〈H,R〉α− dH

Proposition 5.6.1 ([Ge] Theorem 2.3.1). With a fixed choice of contact form α there

is a one-to-one correspondence between infinitesimal automorphisms X of ξ = kerα and

smooth functions HM → R. The correspondence is given by

X 7→ H = 〈α,X〉, H 7→ XH .

Alternatively, one can think in terms of homoegenous Hamiltonian vector field, ex-

tending H on S∗M to Ṫ ∗M as a homogeneous degree-one function

(5.6.5) H|p| : Ṫ ∗M → R

then take the usual symplectic Hamiltonian vector field ξH|p|. This flow ξH|p| is conic, in

that it commutes with the fiberwise scaling action by R>0. However it does not perserve

the hypersurface S∗M but only level sets of H|p|. Let πS∗M denote the projection of

T (T ∗M)|S∗M ∼= T (S∗M)⊕RV onto the factor T (S∗M), then we can recover the contact

Hamiltnonian flow XH on S∗M by restricting ξH|p| on S∗M then projection away the

radial component RV . We have proved the following lemma:

Lemma 5.6.2. Let H : S∗M → R be any smooth function, with XH the contact

Hamiltonian vector field for H. Let H|p| be the homogeneous degree-one function on
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Ṫ ∗M with ξH|p| the symplectic contact vector field, then

XH = πS∗M(ξH|p||S∗M).

Lemma 5.6.3.

(5.6.6) 〈XH , dH〉 = H〈R, dH〉

Proof. Since XH = HR +X
‖
H , where X

‖
H ∈ ker(α), we have

(5.6.7)

〈XH−HR, dH〉 = 〈XH−HR, dH−α〉 = 〈XH−HR,−ιXH (dα)〉 = dα(XH−HR,XH) = 0

where we have used R ∈ ker(dα). �

5.6.2. Hypersurface Thickening of a Legendrian

Let (C, ξ = ker(α)) be a co-oriented contact manifold with fixed contact form α and Reeb

vector field R, L a Legendrian in C, we will construct hypersurface H containing L such

that H is transverse to R.

Let H be any smooth hypersurface transverse to R, we identify UH,ε: = H× (−ε,+ε)

with a neighborhood of H via Reeb flow for small enough ε, and smooth function

H : UH,ε → R, (x, t) 7→ t.

In particular, we have R(H) = 1, and H = {H = 0}. We have the following property
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Proposition 5.6.4. We use the above notation.

(1) The contact flow XH generated by H preserves H.

(2) H is an exact symplectic manifold with the one-form α|H, with the Liouville flow equal

to the restriction of the contact flow XH |H. If H is tangential to ξ = ker(α) at p ∈ H,

then the Liouville flow on H vanishes at p.

(3) If L is a Legendrian contained in H, then L is an exact Lagrangian in H with α|TL = 0,

and is invariant under the Liouville flow.

(4) Let πH : UH,ε → H be the projection along the Reeb trajectory, then the contact form

α is

α = dH + π∗H(α|H).

Proof. (1) This follows from Lemma 5.6.3 and 〈R,H〉 = 1. OnH, we have 〈XH , dH〉 =

H〈H,R〉 = 0, hence XH preserves the zero set of H.

(2) Since R is transversal to H and R span ker(dα), we have dα|H = d(α|H) is non-

degenerate. To compute the Liouville field, we notice that

(5.6.8) ιXH (dα)|H = (〈H,R〉α− dH)|H = α

where we have used 〈H,R〉 = 1 and dH|{H=0} = 0.

(3) From the definition of Legendrian, we have TL ⊂ ker(α), hence α|TL = 0. For any

p ∈ L and Y ∈ TpL, we have

(5.6.9) dαp(XH , Y ) = αp(Y ) = 0

hence (XH)p ∈ (TpL)⊥ = TpL, hence XH is tangential to L.
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(4) Let (x, t) ∈ H × (−ε,+ε), we may decompose the tangent space at this point

as 〈∂t〉 ⊕ TxH. When tested against ∂t, we use ∂t = R to get equality. When tested

against Y ∈ TxH, we may apply exp(−tR) to go from (x, t) to (x, 0). Since LRα = 0,

exp(−tR)∗α = α, we have

(5.6.10) α(x,t)(Y ) = [exp(−tR)∗α](x,t)(Y ) = α(x,0)(exp(−tR)∗Y ) = α|H(Y ).

�

Remark 5.6.5. The above statement still holds if H and H are only C1.

Next, we construct hypersurface containing singular Legendrian. To fix idea, we con-

sider the special case when the Legendrian L is smooth. Locally, there is a neighborhood

U of L, and a embedding ι : U ↪→ J1(L), sending L to the zero section, such that

ι∗(αJ1L) = α, where J1(L) ∼= R × T ∗L is equipped with contact form αJ1L = dz − pdq

(see e.g. Theorem 6.2.2 in [Ge]). Thus, we may work in a tubular neighborhood of L in

J1L. The local hypersurface can be taken as {z = 0} in U , we see it is indeed transverse

to R = ∂z.

In the above construction, the hypersurface H is smooth and contains L as the fixed

point for the contracting Liouville flow: −XH = −p∂p− z∂z in local coordinate of J1L =

Rz × T ∗L(q,p). If L is singular, in general we cannot achieve both conditions that H is

smooth and H tangent to the contact distribution ξ along L. There are two options, we

either give up smoothness of H, or we allow the Liouville flow along L to be non-zero.

We only give results in the first direction.
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Definition 5.6.6. Let L be a singular Legendrian in a contact manifold (C, α, ξ =

ker(α)). We say (H, U) is a local C1-hypersurface thickening of L in U if

(1) U is a tubular neighborhood of L, H is a C1 hypersurface in U , and L ⊂ H,

(2) H is transverse to the Reeb vector field R,

(3) αH := α|TH vanishes exactly on L.

Proposition 5.6.7. Let L be a compact singular Legendrian in S∗M , then there exists

a C1-hypersurface thickening of L.

Proof. We first prove a local version. For any p ∈ L, we identity a neighborhood U of

p with a neighborhood of origin J1Rn with contact form α = dz−
∑

i yidxi, hence suffice to

construct a hypersurface containing a singular Legendrian in J1Rn. We write L∩U as L

as a local singular Legendrian in J1Rn. Take the Lagrangian projection π : J1Rn → T ∗Rn,

then π(L) is a singular exact Lagrangian L in T ∗Rn near the origin. If π : L → L is not

bijective, then there is a Reeb chord corresponding to the self-intersection of L, since the

Reeb chords has lower bound on length, we may shrink the neighborhood around the

origin so that there is no Reeb chord. Note that since 0 ∈ L, we have 0 ∈ L.

We now define a function f : L→ R, such that
f(0) = 0

df |TL = (ydx)|TL.

In fact, for any point (x, y) ∈ L, f(x, y) is the z-value of the corresponding point in L

under the Lagrangian projection h. Our goal here is to extend the definition of L to a

neighborhood of the origin in T ∗Rn, with additional condition that for any (x, y) ∈ L and
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any (vx, vy) ∈ T(x,y)(T
∗Rn), we have

〈df(x, y), (vx, vy)〉 = 〈α, (vx, vy)〉 =
∑
i

yi(vx)i.

In other words, we prescribe the first derivatives of f along L. This extension problem can

be achieved by the Whitney extension theorem (see e.g. [?], Theorem 2.3.6), which gives

a C1 function F (x, y) with prescribed first derivative on L, and smooth away from L.

Then the local hypersurface H is defined by {(x, y, F (x, y)) | (x, y) ∈ W} for sufficiently

small neighborhood W of the origin.

One still need to glue the locally constructed the hypersurfaces together. This can be

done by standard partition of unity and we omit the detail here. �

5.6.3. Convex Tubular Neighborhood of Singular Legendrian

Given a C1-hypersurface H transverse to the Reeb flow, we may construct a C1 Hamil-

tonian function H locally near H, such that {H = 0} and R(H) = 1. The Hamiltonian

vector field XH is well-defined, but will be only be C0. The C0 vector field −XH vanishes

on L and is a local attracting basin.

Proposition 5.6.8. There exists a function ρ : U → [0, 1) (possibly for smaller U),

such that

(1) ρ|L = 0, ρ|∂U = 1 and ρ|U\L is positive and smooth with no critical point

(2) XH is gradient-like for ρ, i.e. 〈XH , dρ〉 > δ(|XH |2 + |dρ|2) for some positive δ.

Proof. Suffice to construct nested family of smooth hypersurfaces transverse to XH

converging to L, then let ρ be defined with these as level sets. �
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The next proposition says we can smooth the construction while keeping the attracting

property of vector field −XH .

Proposition 5.6.9. Let (C, α) be a contact manifold with fixed contact one-form α.

Let L be any singular Legendrian in C, and (H, U) be a C1 hypersurface thickening of L,

and ρ : U → R a defining function for L satisfying properties in Proposition 5.6.8. Then

for any ε > 0, we may find a smooth Hamiltonian function H̃, such that XH̃ is gradient

like for ρ on {x ∈ U : ρ(x) ≥ ε}.

Proof. We take a smoothing H̃ of H, that is C1-close to the original H but may no

longer contain L, and define a Hamiltonian function H̃ and vector field XH̃ . Then XH̃ is

a vector field C0 close to XH , hence the transversality of XH̃ to level sets of ρ with ρ ≥ ε

can be perserved if H̃ is close enough to H, since {ρ ≥ ε} is a compact set. �

We collect the above construction into the following definition and Theorem.

Definition 5.6.10. Let (C, α) be a contact manifold with fixed contact one-form α.

A convex tubular neighborhood of a Legendrian L is the following data (U, ρ,H,H):

(1) U is an open neighborhood of L, that admit a deformation retract to L.

(2) ρ : U → [0, 1) with continuous extension to U , such that ρ|L = 0, ρ|∂U = 1 and

ρ|U\L is smooth and with dρ 6= 0.

(3) H : U → R is a C1-function, such that XH is gradient-like for ρ,

(4) H = {x ∈ U : H(x) = 0} is a C1-hypersurface thickening of L. (c.f. Definition

5.6.6)
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Theorem 8. For any singular Legendrian L, there exists a convex tubular neighbor-

hood (U, ρ,H,H) for L. For any non-zero level set ρ−1(c) of ρ, there is a smooth contact

vector field XH̃ transverse to it.

Proof. This follows from Proposition 5.6.7 and 5.6.8, and the existence of smooth

transverse contact vector field is due to Proposition 5.6.9. �

5.7. Quantization of Variation of Thickened Legendrian

In previous subsections, we saw that any singular Legendrian there exists a convex

tubular neighborhood in the sense of Definition 5.6.10. However, as the singular Legen-

drian varies the neighborhood may not be able to vary continuously. We show that if

there exists a continuous deformation of the convex tubular neighborhoods as well, then

there exists a contactomorphism of the complement of the convex tubular neighborhoods,

and we can quantize the variation of Legendrians.

First we define what is a variation of a convex tubular neighborhood for a variation

of Legendrian. Here it is more convenient to work in T ∗M × R instead of T ∗(M × R),

and similarly T∞M × R instead of T∞(M × R). Given a variation of Legendrian Λ∞R in

T∞(M × R), we define L(Λ∞R ) ⊂ T∞M × R by

L(Λ∞R ) := ∪t∈RΛ∞t × {t} ⊂ S∗M × R

Definition 5.7.1. Let Λ∞R be a variation of Legendrian in T∞(M × R), and LR =

L(Λ∞R ) ⊂ S∗M × R. A variation of convex tubular neighborhood for Λ∞R is the following

data (UR, ρR, HR,HR), where UR is a tubular neighborhood of LR, HR ⊂ UR is a hyper-

surface, and ρR, HR are functions on UR. Let Ut = UR|S∗M×{t}, and ρt, Ht,Ht be the
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restriction of ρR, HR,HR on Ut, then we require (Ut, ρt, Ht,Ht) to be a convex tubular

neighborhood of LR and is constant for t� 0 and t� 0.

Theorem 9. Let Λ∞R be a variation of Legendrian in T∞(M × R). If Λ∞R admits

variation of convex tubular neighborhood (UR, ρR, HR,HR), then there exists equivalence

of categories

ϕ̂t→s : Sh(M,Λ∞t )→ Sh(M,Λ∞s )

that is identity when t = s and compatible with composition:

(5.7.1) ϕ̂t1→t2 ◦ ϕ̂t0←t1 ∼= ϕ̂t0→t2 , ϕ̂t→t ∼= Id.

We prove the above theorem analogously as in Theorem 7. The only difference is one

need to construct contactomorphism across different t.

5.7.1. Construction of the slice reproducing kernel

Let M be a smooth compact manifold. For any t ∈ R, let Mt = M × {t} ⊂ M × R be

the t-slice, and jt : Mt ↪→ M × R be the inclusion. Let Λ∞R ⊂ S∗(M × R) be a variation

of Legendrian, with slice Legendrian Λ∞t ∈ S∗Mt. Let SR be projection image of Λ∞R in

M × R and St the image for Λ∞t .

Let SR be equipped with a minimal Whitney stratification

SR =
⋃
α∈AR

Sα,

and St be equipped with the induced stratification St,α = Sα ∩ Mt, and let At ⊂ AR

consists of α such that St,α 6= ∅. We assume that the restriction of the projection map
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πR : M × R → R to each stratum Sα with positive dimension is non-singular. Let

{t1, · · · , tN}, t1 < t2 · · · < tN , be the projection images of the zero-dimensional strata,

which we assume to be distinct, and let t0 = 0, tN+1 = 1. Then the stratification St is

topologically constant over intervals (ti, ti+1). (cf [N1], §3.7).

Fix a t ∈ R, let (Tα, ρα, πα, rα)α∈At be a control system with a family of lines, for

the Whitney stratification St, as in §5.4. Let rt be the almost retraction for Mt, and let

ΠΛ∞t
= CΓ(rt) be the reproducing kernel for Sh(Mt,Λ

∞
t ) as in §5.3.

Let ε′t denote a lower bound between the distance of the singular support of the probe

sheaves in Mt defined by rt and the Legendrian Λ∞t , as given in Proposition 5.4.9. We

note that ε′t does not have a uniform lower bound over t ∈ R, it may tends to zero as

t→ ti for i = 1, · · ·N .

For each Λ∞t , let (Ut, ρt, Ht,Ht) be a convex tubular neighborhood of Lt, as defined

in Section 5.6.3, varying smoothly and compactly in t. Let H̃t(q, p) be the homogeneous

degree-one extension on Ṫ ∗Mt, and Ĥ(q, p, t) = Ĥt(q, p) the function on Ṫ ∗M × R. We

may extend ϕ to be 1 outside U .

5.7.2. Symplectic fibration over Rt × Rs

Let E = Ṫ ∗M × Rt × Rs be the total space, B = Rt × Rs be the base. Here Rt is the

deformation direction, and Rs is the direction that generates the Hamiltonian flow.

Let T ∗M = {(q, p) | q ∈M, p ∈ T ∗qM}. Let ωT ∗M = dp∧dq be the standard symplectic

form (up to sign), and let

(5.7.2) ΩE = π∗T ∗MωT ∗M − dĤ(q, p, t) ∧ ds.



129

be a two-form that restricts to each fiber of Et,s of (t, s) ∈ B is non-degenerate. This

gives πB : E → B a sympletic bundle structure.

The ΩE orthogonal complement for each fiber of E defines a horizontal distribution

in TE, called the symplectic connection. The horizontal lift is given by

∂t 7→ ∂t ∈ TE, ∂s 7→ ∂s + ξĤ ∈ TE

where our sign convention is ιξH (ω) = −dH. Indeed for any vertical tangent vector

Y ∈ TE|v, we have

(5.7.3) ΩE(Y, ∂s + ξĤ) = ωT ∗M(Y, ξH)− dĤ(q, p, t)(Y ) = 0

For each r ∈ (0, 1), let

(5.7.4) C2(r) = inf{〈XHt , ρ(q, p, t)〉 | (q, p, t) ∈ U, ρ(q, p, t) = r} > 0

(5.7.5) C3(r) = sup{|〈∂t, ρ(q, p, t)〉| | (q, p, t) ∈ U, ρ(q, p, t) = r} ≥ 0

and let C4(r) > 0 be large enough, such that C4(r)C2(r)− C3(r) > 1.

Definition 5.7.2 (Admissable for level r). We say a tangent vector a∂t + b∂s ∈ TB

is admissible for level r, if b > C4(r)|a|. If a smooth path on B has all its tangent vectors

admissible for level r, we say the path is admissible for level r. A piecewise smooth path

is admissible for level r if its each smooth component is.
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Proposition 5.7.3. For any piecewise smooth path γ : [0, 1] → I × R, the symplec-

tic parallel transport from Ṫ ∗Mγ[0] to Ṫ ∗Mγ[1] is conic, and induces a contactomorphism

(isotopic to identity) from S∗Mγ[0] to S∗Mγ[1]. Furthermore, if γ is admissible for level r,

then it will send S∗Mγ[0]\Λ∞γ[0][< r] into S∗Mγ[1]\Λ∞γ[1][< r].

Proof. For any (q, p, t) that ρ(q, p, t) = r, we have

(5.7.6) 〈a∂t + bXH , ρ(q, p, t)〉 ≥ |a|C3(r) + bC2(r) > |a|(C3(r) + C4(r)C2(r)) > |a| ≥ 0

Hence for a point in U with initial value ρ above r, its value will never get below r along

the parallel transport trajectory. �

Paths in B can be translated in the s variable, hence an admissible path of level r

from t0 to t1 means a level r path from (t0, s0) to (t1, s1) for some s1 > s0.

Paths can be concatenated in the obvious way. By definition, piecewise smooth level

r path will concatenate into piecewise smooth level r path.

The space of all level r path with the same endpoints (t0, s0) and (t1, s1) are con-

tractible.

Fix any r ∈ (0, 1). We may shrink ε′t, such that ε′t < r for all t ∈ R.

For any t ∈ R, there is a large enough Tt > 0, such that the a straightline path γt

from (t, 0) to (t, Tt) sends Λ∞t [> ε′t] into Λ∞t [> r]. We may choose Tt as

(5.7.7) Tt =
r − ε′t

inf{〈XHt , ρt(q, p)〉 | (q, p) ∈ Ut, ρt(q, p) ∈ [ε′t, r]}

For any t0, t1 ∈ R, we may build a path γt1←t0 from t0 to t1 admissible for level r. For

example, we can take the straightline from (t0, 0) to (t1, |t1 − t0|C4(r)).
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To summarize the above construction, we make the following definitions:

Definition 5.7.4. (1) For any t ∈ R, let γt be the straightline path from (t, 0) to

(t, Tt); φt be the contactomorphism induced on S∗M that sends Λ∞t [> ε′t] into Λ∞t [> r];

and Kt ∈ Sh(M ×M) be the GKS kernel for φt.

(2) For any t, s ∈ R, let γt→s be the straightline path from (t0, 0) to (t1, |t1− t0|C4(r));

φt→s be the contactomorphism induced on S∗M that sends Λ∞t [> r] into Λ∞s [> r]; and

Kt→s ∈ Sh(M ×M) be the GKS kernel for φt→s.

Proposition 5.7.5. Fix t0, t1 ∈ R. Let γa, γb be two level-r path from t0 to t1. Fix an

isotopy in level r path hu(l) : [0, 1]×[0, 1]→ B, where u ∈ [0, 1], such that h0 = γa, h1 = γb.

Let Ku be the 1-parameter family of kernels in Sh(Mt1 ×Mt0) with parameter in u, such

that Ku is the GKS quantization of the sympletic parallel transport over the path hu ◦ γt0.

Then, for any F ∈ Sh(M,Λ∞t1 [< r]), p ∈M , u1, u2 ∈ [0, 1]), we have

hom(Ku0 !Pp,t0 , F ) ∼= hom(Ku1 !Pp,t0 , F )

Proof. The one-parameter family of probe sheaves Ku!Pp,t0 over parameter u defined

a variation of sheaves in Λ∞t1 [< r]), hence is SS∞(F )-non-characteristic. �

5.7.3. Constructing the parallel transport kernel

As before, we denote the reproducing kernel for slice t by Πt, and Kt and Kt→s are the GKS

kernels defined in Definition 5.7.4. We use subscript t → s and s ← t interchangeably.

We define kernel Φt1←t0 , by

(5.7.8) Φt1←t0 = Πt1 ◦Kt
t1
◦Kt

t0←t1 ,
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recall Kt represent the transpose of the kernel (cf. Section 3.6)

Proposition 5.7.6. If F ∈ Sh(Mt0 ,Λ
∞
t0

[< r]), then Φt1←t0∗F ∈ Sh(Mt1 ,Λ
∞
t1

).

Proof. Since (Kt)∗ = K !, we have

(5.7.9) Φt1←t0∗F = ΠΛ∞t1
∗ ◦K !

t1
◦K !

t0←t1F.

Then since K! is adjoint to K !, and SS∞((Kϕ)!F ) = ϕSS∞(F ), hence SS∞((Kϕ)!F ) =

ϕ−1SS∞(F ), and we have

(5.7.10) SS∞(K !
t1
◦K !

t0←t1F ) = φ−1
t1
◦ φ−1

t0←t1SS
∞(F ).

Since φt0←t1 sends Λ∞t1 [> r] into Λ∞t0 [> r], then φ−1
t0←t1 pullback the complement Λ∞t0 [≤ r]

into Λ∞t1 [≤ r]. Similarly, φ−1
t1 (Λ∞t1 [< r]) ⊂ Λ∞t1 [< ε′t1 ]. Hence, we have

(5.7.11) K !
t1
◦K !

t0←t1F ∈ Sh(Mt1 ,Λ
∞
t1

[< ε′t1 ])

Apply Proposition 5.4.12 to (rt1)∗, we get

(5.7.12) rt1∗K
!
t1
◦K !

t0←t1F ∈ Sh(Mt1 ,Λ
∞
t1

)

�

Next, we prove Eq (5.7.1).

Proposition 5.7.7. Given an isotopy of level r paths

h : γt2←t1 ◦ γt1 ◦ γt1←t0 ◦ γt0  γt2←t0 ◦ γt0
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and given any G ∈ Sh(M), we have

hom(G,Φt2←t1∗ ◦ Φt1←t0∗F ) ∼= hom(G,Φt2←t0∗F )

natural in G. Hence there is an isomorphism Φt2←t1∗ ◦ Φt1←t0∗F → Φt2←t0∗F .

Proof. The proof is analogous to the proof of Theorem 7. We will be brief here.

hom(G,Φt2←t1∗ ◦ Φt1←t0∗F )

∼= hom(Kt1←t2! ◦Kt2! ◦ Π∗t2(G), Πt1∗ ◦K !
t1
◦K !

t0←t1F )

∼= hom(Kt1←t2! ◦Kt2! ◦ Π∗t2(G), K !
t1
◦K !

t0←t1F )

∼= hom(Kt0←t1! ◦Kt1! ◦Kt1←t2! ◦Kt2! ◦ Π∗t2(G), F )

∼= hom(Kt0←t2! ◦Kt2! ◦ Π∗t2(G), F )

= hom(G,Φt2←t0∗F )

where in the third line above, we applied Corollary 5.4.13, to drop Πt1∗ on the right slot;

and in the fifth line above, we apply the Proposition 5.7.5 to quantize the isotopy that

changes the composition φt0←t1 ◦ φt1 ◦ φt1←t2 to φt0←t2 . This proves the first statement,

and a standard Yoneda faithfulness argument gives the second statement. �

This also conclucdes the proof of the Theorem 9.
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CHAPTER 6

Variation of Constructible Sheaves: II

In the last chapter, we studied two sufficient conditions on deformation of Legendrians

in T∞M , such that the corresponding sheaf categories are invariant. While being quite

general, those conditions are still hard to verify in practice. Here we consider a special

case of Legendrian deformation, Legendrians supported on affine hyperplanes on Rn (c.f.

Example 5.0.3).

Results from this section will be used in the proof of non-equivariant coherent-constructible

correpondence, and in the proof of Fukaya-Seidel category equivalent to constructible sheaf

category on a torus, since in both cases we need to vary the singular support on the torus

ΛT ,Θ by changing the function Θ (see the notation section in the introduction for the

definition of ΛT ,Θ).

The main idea is illustrated in the following example.

Example 6.0.1. We still consider the following deformation of sheaves on R2.

C

F

C[2]

F ′

Figure 6.1. As the Legendrian moves, the sheaf F changes to F ′.
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The generators for Sh(X,Λ−1) and Sh(X,Λ+1) are shown in Figure 6.2. It is clear

that hom(Pi, Pj) ∼= hom(P ′i , P
′
j) for all i, j, hence there is an equivalence of categories. F

is quasi-isomorphic to the following chain complex

F ∼= (P0 → P1 ⊕ P2 ⊕ P3 → P4 ⊕ P5 ⊕ P6)

with P0 at degree −2 and maps given by the obvious restriction maps, and F ′ is quasi-

isomorphic to a similar complex with Pi replaced by P ′i . Hence F is sent to F ′ under the

equivalence.

P0 P1 P2 P3 P4 P5 P6

P ′0 P ′1 P ′2 P ′3 P ′4 P ′5 P ′6

Figure 6.2. The generators for Sh(X,Λ−1) (first row) and Sh(X,Λ+1) (sec-
ond row), as standard sheaves supported on closed set marked by the shaded
regions. Under the deformation of Legendrian, Pi changes to P ′i .

4

Our main theorem in this chapter is the following

Theorem 10. Let M be a smooth compact manifold, Λ∞R ∈ T∞(M × R) a variation

of Legendrian. If M × R admits a Cech covering with product open sets {Ui × Ii}i, such
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that on each patch the Legendrian deformation is diffeomorphic to admissible deforma-

tion of hyperplane arrangements on Rn, then the sheaf categories are invariant under

deformation.

We will first study the deformation of affine hyperplanes (by translation only) as the

local picture. Then we study how to glue the local sheaves (of complexes) into a global

sheaf. Finally, we prove the theorem by patching the local sheaf deformations.

6.1. Affine Hyperplanes on Vector Space

6.1.1. Legendrian supported on affine hyperplanes.

Let V ∼= Rn be an n-dimensional real vector space, V ∗ be the dual space. Let 〈, 〉 :

V × V ∗ → R denote the canonical pairing.

Let v1, · · · , vm be nonzero covectors in V ∗, and Ω = {1, · · · ,m}. Let S be a collection

of subsects of Ω, such that

(1) S = tnk=0Sk, where Sk is a (possibly empty) collection of size k subsets of Ω.

(2) S0 = {∅} and S1 = {{1}, · · · , {m}}.

(3) If σk ∈ Sk, then {vi : i ∈ σk} are linearly independent.

(4) If σk ∈ Sk, then any non-empty subsets of σk is also in S.

Then S is a partially ordered set, with σ1 ≤ σ2 if and only if σ1 ⊂ σ2.

Pick m real numbers b1, · · · , bm ∈ R. Using the co-vectors vi and the ‘offsets’ bi, we

may define the closed half-spaces Qi and their boundaries Hi for for all 1 ≤ i ≤ m

Qi = {x ∈ Rn : 〈x, vi〉 ≥ bi}, Hi = ∂Qi = {x ∈ Rn : 〈x, vi〉 = bi}.
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For each σ ∈ S, we define the closed ‘corners’ Qσ, and their ‘spine’ Hσ

Qσ =
⋂
i∈σ

Qi, Hσ =
⋂
i∈σ

Hi.

Note that Hσ 6= ∂Qσ. We define Q∅ = V and H∅ = V .

For any σ ∈ S, let

vσ = cone{vi | i ∈ σ} = {
∑
i∈σ

aivi | ai ≥ 0} ⊂ V ∗

be the closed cone, with v∅ = 0. And we define the conical Lagrangian

Λ =
⋃
σ∈S

Λσ ⊂ T ∗V where Λσ = Hσ × vσ ⊂ V × V ∗ ∼= T ∗V.

Finally, let

Lσ = Leg(Λσ) and L = Leg(Λ),

be the corresponding Legendrian for the conical Lagrangians Λσ and Λ. For example,

if σ = {i}, then Lσ consists of unit covectors with foots on Hi and pointing in the

vi direction. And if σ = {i, j}, then Lσ consists of unit covectors with foots on the

codimension-2 affine linear subspace Hi ∩ Hj, and pointing in the direction within the

cone spanned by vi and vj.

Let b = (b1, · · · , bm) ∈ Rm, and we will write the subscript b explicitly, as in Hσ,b

and Lb, when we want to emphasize the dependence on b. We call the above data,

{(vi, bi)}i=1,··· ,m, S, a hyperplane arrangement, and denoted by Hv,b,S, or sometimes only

Hb if v, S are clear from the context.
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We will consider the category of constructible sheaves on V , with singular support

contained in Λb, denoted as Sh(V,Λb), or Sh(V,Lb). As the offset parameter b changes,

the Legendrian Lb also changes, and we are interested in how a sheaf F ∈ Sh(V,Lb)

changes along with b.

For a generic choice of b, the hyperplanes have transversal intersection, then as b

undergoes a small perturbation, the stratification induced by Lb has the same structure,

hence the constructible sheaf F has a natural continuation. As b changes along a path

through a critical moment b0, when a non-generic intersection occurs, then some strata

will disappear as b approaches b0 from one side, and some new strata will apear as b leaves

b0 from the other side, the question then is how to define F on the new strata.

The idea is to resolve F using sheaves that each admits an obvious deformation as b

changes. One choice of such sheaves are standard sheaves supported on the closed sets

Qσ for σ ∈ S. More precisely, let jσ : Qσ ↪→ V be the closed embedding, and CQσ be the

constant sheaf with stalk C on Qσ, then we define

Pσ := (jσ)∗CQσ , with stalks at x (Pσ)x =


C if x ∈ Qσ

0 otherwise

.

The problem then reduces to the two following steps:

(1) Show that all the sheaves can be generated using {Pσ | σ ∈ S}, and

(2) Show that as b chanages, the full subcategory with objects {Pσ | σ ∈ S} is invariant.

If σ ⊂ τ , then Qσ ⊃ Qτ , then there is a restriction morphism between the standard

sheaves Pσ → Pτ . These morphism are induced by the poset relation of S, and is stable
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under changes of b. However, there may be other morphisms, which is sensitve to b, as

the following examples shows. In this case, the step (2) above would fail.

Example 6.1.1. Consider the following Legendrian, given by four co-oriented hyper-

planes Hi for i = 1, · · · , 4 and the corner at 1, 2 and 3, 4.

1 2

3

4

P0

P1

P2

P3

P4

P12

P34

The standard sheaves are

P0, P1, · · · , P4, P12, P34

where P0 = CR2 , Pi supported on the half-space Qi for i = 1, · · · , 4 , and Pij supported on

Qi∩Qj for ij = 12, 34. The solid arrows in the diagram (and their compositions which are

not drawn) represent the homs induced by restriction morphism, e.g. Hom(P0, P1) ∼= C

is generated by the restriction morphism P0 → P1. These morphisms are stable under

changes of the offset parameter b. The dotted arrows represent other homs

hom(P12, P34) = Γ(R2, hom(P12, P34)) = Γ(R2, )

∼= C•([0, 1]× [0, 1], {0, 1} × [0, 1];C) ∼= C[−1].
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The dashed arrows are not stable under changes of b. For example, if we shift the horiz-

tonal wedge to the left, then we get

1 2

3

4

P0

P1

P2

P3

P4

P12

P34

Here P2 → P34 is given by restriction, since Q34 ⊂ Q2. 4

Here we do not know if the {Pσ} generates the sheaf categories associated to the two

Legendrians; even if they do, by matching the generators will not induce an equivalence

of categories, since the morphisms between the generators changed as b changed. This

motivates the following conditions on the hyperplane arrangments.

Definition 6.1.2. We say a hyperplane arrangment Hv,b,S is admissible, if there exists

a fan Σ in V ∗, such that the set of cones in Σ has a one-to-one correspondence with

{σ ∈ S}, by σ 7→ vσ.

We will sometimes denote the cone vσ by σ, to be consistent with usual convention.

Remark 6.1.3. In the example above, the cones v{1,2} and v{3,4} have intersecting

interiors, hence cannot be fit into a fan, thus the hyperplane arrangment is not admissible.

As pointed out in [N3] by Nadler, the change of the hom space is related with the change
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of the short Reeb trajectories starting and ending on Lb. In this case, as the Legendrian

moves from the first picture to the second one, the Reeb chord from L{3,4} to L{2}, the

interval from H3 ∩H4 and ending perpendicularly on H2, disappears and is replaced by a

Reeb chord from L{2} to L{3,4}.

The above condition is first studied by [FLTZ1] as condition (Z1) in Theorem 5.2,

the (Z2) condition there is automatically satisfied by condition (4) in the definition of S.

They considered more general situations, which allow for multiple hyperplanes with the

same co-vectors. The simpler case we study here will serve as the local model, e.g. in a

small open ball, hence we do not allow for multiple occurence of a cone in Σ.

The following two results from [FLTZ1] will be used.

Proposition 6.1.4. If Hv,b,S is an admissible hyperplane arrangment with fan Σ.

Then for any cones σ, τ ∈ Σ, we have the following hom-complex

hom(Pσ, Pτ ) =


C · ρσ→τ if σ ⊂ τ

0 otherwise.

where ρσ→τ : Pσ → Pτ is the canonical restriction morphism. In particular, the hom-space

is independent of the offset parameter b.

Proof. This follows from [FLTZ1] Proposition 3.3. Here we note that, σ ⊂ τ if and

only if Qσ ⊃ Qτ . �

Proposition 6.1.5. The category Sh(V,Λb) is generated by {Pσ,b | σ ∈ Σ}.

Proof. This is proved in [FLTZ1], Theorem 5.2. �
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Explicitly, any sheaf F ∈ Sh(V,Λb) admits a resolution using Pσ’s:

(6.1.1)

[F ] :=

(
· · · →

⊕
σ1<σ2∈S

Pσ1 ⊗ hom(Pσ1 , Pσ2)⊗ hom(Pσ2 , F )→
⊕
σ1∈S

Pσ1 ⊗ hom(Pσ1 , F )

)

6.1.2. Universal deformation space for hyperplane arrangements

Let Hv,b,S be an admissible hyperplane arrangement with fan Σ, where v = (v1, · · · , vm) ∈

(V ∗)m, and b = (b1, · · · , bm) ∈ Rm.

Let Ṽ = V ×Rm and Vb = V ×{b} ∼= V for each b ∈ Rm. Let ιb : V ∼= Vb ↪→ Ṽ be the

inclusion, and πV : Ṽ → V be the projection. We define the closed half-spaces and their

intersections

Q̃i = {(x, b) ∈ V × Rm : 〈x, vi〉 ≥ bi}, Q̃σ =
⋂
i∈σ

Q̃i

and similarly

H̃i = {(x, b) ∈ V × Rm : 〈x, vi〉 = bi} = ∂Q̃i, H̃σ =
⋂
i∈σ

H̃i.

Let Ṽ ∗ be the dual space of Ṽ and let πV ∗ : Ṽ ∗ → V ∗ be the projection. We lift vi ∈ V ∗

as

ṽi = (vi,−ei) ∈ V ∗ × (Rm)∗ = Ṽ ∗.

Then as vi spans cones in Σ, we may define the lifted fan Σ̃ ∈ Ṽ ∗ as

Σ̃ = {ṽσ : σ ∈ S} where ṽσ = cone{ṽi : i ∈ σ}.
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Then we have an admissible hyperplane arrangments H̃ = H̃ṽ,̃b=0,S with fan Σ̃. Let the

conical Lagrangian Λ̃ and the associated Legendrian L̃ be defined as

Λ̃ =
⋃
σ∈S

H̃σ × ṽσ ⊂ T ∗Ṽ , L̃ = Leg(Λ̃).

Let P̃σ be the standard sheaf on the closed set Q̃σ. By Proposition 6.1.4, we have

(6.1.2) Hom(P̃σ, P̃τ ) ∼=


C if σ ⊂ τ

0 otherwise

, for any σ, τ ∈ S.

And by Proposition 6.1.5, Sh(Ṽ , Λ̃) is generated by {P̃σ | σ ∈ S}.

Proposition 6.1.6. With the above notation, the restriction functor

ι∗b : Sh(Ṽ , Λ̃)→ Sh(Vb,Λb)

is an quasi-equivalence of dg derived category, where ιb : Vb ↪→ Ṽ in the inclusion.

Proof. ι∗b sends the generators P̃τ to Pτ,b, while preserving the morphisms and their

compositions, hence induces an quasi-equivalence of dg derived category. �

We denote the inverse of ι∗b by

εb = (ι∗b)
−1 : Sh(Vb,Λb)→ Sh(Ṽ , Λ̃),

that sends generators {Pτ,b} to generators {P̃τ}.
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Corollary 6.1.7. For any b1, b2 ∈ Rm, we have an equivalence of category

Φb1→b2 = εb1 ◦ ι∗b2 : Sh(V,Λb1)→ Sh(V,Λb2)

such that

Φb1→b1
∼= id, Φb1→b2 ◦ Φb2→b3

∼= Φb1→b3 ,

where compositions are from left to right, and ∼= means natural isomorphism of functors.

Proof. Φb1→b2 is a composition of equivalence of categories. In particular, it sends

generators Pτ,b1 to Pτ,b2 , and induces isomorphism

hom(Pσ,b1 , Pτ,b1) ∼= hom(Pσ,b2 , Pτ,b2) ∼=


C if σ ⊂ τ

0 otherwise

,

such that the restriction morphism Pσ,b1 → Pτ,b1 for b1 goes to the corresponding restric-

tion morphism for b2, if σ ⊂ τ .

To be more concrete about the natural equivalence, for F ∈ Sh(V,Λb), we consider

the resolution ηF : [F ]
∼−→ F as in Eq. (6.1.1). Then Φb1→b2(F ) is defined by first build the

resolution [F ], then replace Pσ,b1⊗· · · by Pσ,b2⊗· · · for all σ ∈ Σ in the above resolution.

Thus we have the natural equivalence η : Φb1→b1 = [·] ∼= id:

ηF : Φb1→b1(F ) = [F ]→ F = id(F )
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We note that M = ι∗b ◦ εb = [·] : Sh(Ṽ , Λ̃) → Sh(Ṽ , Λ̃) is naturally equivalent to id,

with η : M → id. Then

Φb1→b2 ◦ Φb2→b3 = εb1 ◦ ι∗b2 ◦ εb2 ◦ ι
∗
b3

= εb1 ◦M ◦ ι∗b3
εb1◦η◦ι

∗
b3−−−−−→ εb1 ◦ id ◦ι∗b3 = Φb1→b3 .

�

6.1.3. Cut-off and Extension functor

So far we have discussed sheaves on a linear space V . This can be used as a local model

for the Legendrian deformation over the torus TM under study here. Thus, we need to

be able to go back and forth between sheaves defined on the entire linear space V , and

sheaves defined on a ‘extendable’ open set U of V , where extendable is going to be defined

shortly.

Let Hv,b,S be an admissible hyperplane arrangement on V with fan Σ. Let iU : U ↪→ V

be an open inclusion of an open subset U of V . The cut-off functor is the restriction

i∗U : Sh(V,Λ)→ Sh(U,Λ|U).

However, if U is too small, say contained in an open stratum of the stratification given

by Λ, then Sh(U,Λ|U) ∼= Loc(U) is a local system on U , and i∗U would fail to be an

equivalence of category. Hence we are interested in open sets U such that i∗U admits an

inverse εU ,

εU : Sh(U,Λ|U)
∼−→ Sh(V,Λ),

and we call these open sets U extendable (for Hv,b,S).
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One special case is easy to consider, that is when the hyperplanes Hi in Hv,b,S all

pass through the origin of V . In this case, sheaves in Sh(V,Λ) is invariant under the R>0

dilation action on V , and any convex open set U containing the origin is extendable.

Let Hb = Hv,b,S be an admissible hyperplane arrangement, Sb = S(Λv,b,S) be the

induced Whitney stratification with Sk the set of dimension k strata. Then all the strata

are convex polytopes, some possibly non-compact.

Proposition 6.1.8. If U is a convex open set that intersects with all the strata of S,

then U is extendable for H.

Proof. Let S|U denote the stratification of U by {Sα∩U | α ∈ A}. By the proposition

hypothesis, for any α ∈ A, Sα ∩ U is convex and non-empty. Let Pα,U denote standard

sheaves with stalk C support on Sα ∩ U , then

hom(Pα,U , Pβ,U) =


C if Sα ∩ U ⊃ (Sβ ∩ U)

0 otherwise.

If Sα ⊃ Sβ, then Sα ∩ U ⊃ Sα ∩ U ⊃ Sβ ∩ U . Conversely, if Sα ∩ U ⊃ (Sβ ∩ U), then

Sα ∩ Sβ 6= ∅, hence Sα ⊃ Sβ. Hence we have

hom(Pα,U , Pβ,U) ∼= hom(Pα, Pβ).

Let Sh(V,S) be the category of constructible sheaves on V with stratification S, and

Sh(U,S|U) the corresponding restriction. We first claim that

ι∗U : Sh(V,S)
∼−→ Sh(U,S|U)
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is an equivalence of category. Since both categories are generated by standard sheaves

supported on convex strata, and restriction matches the generators and preserves the

homs and compositions, hence ι∗S is an equivalence. Let εU be the inverse functor of ι∗S ,

εU : Sh(U,S|U)
∼−→ Sh(V,S),

and be called the extension functor.

Since Sh(V,Λ) is a full subcategory of Sh(V,S), we have a fully-faithful functor

ι∗U : Sh(V,Λ) ↪→ Sh(U,Λ|U).

To show it is essentially surjective, we want to show that εU applied to sheaves in

Sh(U,Λ|U) will land in the subcategory Sh(V,Λ).

For any stratum Sα, let x ∈ Sα and ξ ∈ T ∗SαV |x\Λ|x. Let y ∈ Sα ∩ U . Since Sα

is a convex polytope, hence ξ ∈ T ∗SαV |y ∼= T ∗SαV |x, and γ(t) = ((1 − t)x + ty, ξ) for

t ∈ [0, 1] is a path from (x, ξ) to (y, ξ) in the smooth part of T ∗SαV . Let F ∈ Sh(U,Λ|U),

and F ′ = εS(F ) ∈ Sh(V,S). Since the cohomology of the microlocal stalk of F ′ is

locally constant along the path γ, and vanishing at γ(1) = (y, ξ), hence it vanishes at

γ(0) = (x, ξ). Thus F ′ ∈ Sh(V,Λ). �

Proposition 6.1.9. Let U be a convex neighborhood of 0 ∈ V . Then there is a

neighborhood W of 0 ∈ Rm, such that for any b ∈ W , U is extendable for Hv,b,S.

Proof. For any b ∈ Rm, and any subset I ⊂ {1, · · · ,m} such that {vi | i ∈ I}

are linearly independent, we define the intersection of hyperplanes HI,b = ∩i∈IHi,b. Let

xI,b ∈ HI,b be the points that is closest to 0. For example, if b = 0, then xI,0 = 0 ∈ V for
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all HI,0. Let r(b) := maxI |xI,b|, then r(b) depends on b continuously, r(b) = 0 ⇐⇒ b = 0

and r(λb) = λr(b).

Claim: for any r > r(b), B(0, r) intersects all the strata of Sv,b,S.

Indeed, if Sα is a closed strata (minimal under inclusion relation), then Sα = HI,b

for some intersection of hyperplane, and B(0, r) ∩ Sα 3 xI,α hence is not empty. For

any stratum Sβ, there exists a minimal strata Sα ⊂ Sβ, hence B(0, r) ∩ Sβ 6= ∅, hence

B(0, r) ∩ Sβ 6= ∅. This finishes the proof of the claim.

Let r be small enough, such that B(0, r) ⊂ U . Take W open neighborhood of b small

enough, such that for all b ∈ W , r(b) < r. Thus for all b ∈ W , U intersects all the strata

of Sv,b,S, hence is extendable for Hv,b,S by Proposition 6.1.8. This finishes the proof of the

proposition. �

Corollary 6.1.10. . Let U be an open set in V and W be a contractible open set in

Rm, such that for any b ∈ W , U is extendable for Hv,b,S. Then for any b1, b2 ∈ W , there

is a canonical equivalence of category

Φb1→b2,U = εU ◦ εb1 ◦ ι∗b2 ◦ ι
∗
U : Sh(U,Λb1|U)→ Sh(U,Λb2|U)

such that

Φb1→b1,U
∼= id, Φb1→b2,U ◦ Φb2→b3,U

∼= Φb1→b3,U ,

where compositions are from left to right, and ∼= means natural isomorphism of functors.

Proof. This follows from the definition of ‘extendable’ open set, and the Corollary

6.1.7. �
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6.2. Gluing Sheaves of Complexes

Let X be a topological space and let U = {Ui}i∈A be an open cover of X index by a

finite set A. In this section, we want to build a sheaf (of complexes) F on X from sheaves

Fi on Ui, together with some gluing data.

The complexity arises when the restrictions of sheaves on different patches, Fi|Ui∩Uj

and Fj|Ui∩Uj , are not isomorphic as sheaf of set, but only isomorphic in the dg derived

category. For example, if x ∈ Ui ∩ Uj, then on the stalk level, one only has zig-zag

of quasi-isomorphism of chain complex of C-vector spaces (Fi)x
q-iso−−→ (Fj)x in Sh({x})

means (Fi)x
q-iso←−− B1

q-iso−−→ B2
q-iso←−− · · ·Bk

q-iso−−→ (Fj)x in Shnaive({x}) , instead of an

honest (bijection) isomorphism of chain complexes (Fi)x
iso−→ (Fj)x.

In the remaining part of the paper, we will always work with dg derived category

of sheaves Sh(X), with quasi-isomorphism denoted as F
q-iso−−→ G or F

∼−→ G, meaning

isomorphism in H(Sh(X)).

6.2.1. Gluing Sheaf of Sets

First we review the simpler case of gluing sheaf of sets, where the gluing data are honest

isomorphism with tricycle condition on the nose. We specify the following local data: for

each i ∈ A, let Fi be a sheaf on Ui, and for each i, j ∈ A, let

ϕi→j : Fi|Ui∩Uj
iso−→ Fj|Ui∩Uj
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be an isomorphism, such that for distinct triples i, j, k ∈ A, such that Ui ∩ Uj ∩ Uk 6= ∅,

we have tricycle condition

ϕi→j ◦ ϕj→k ◦ ϕk→i = id : (Fi)x
iso−→ (Fi)x, ∀x ∈ Ui ∩ Uj ∩ Uk.

Then, we may define the global sheaf F as the equalizer, that is for any open set U ⊂ X,

we define

F (U) = eq

 ∏
i

Fi(U ∩ Ui)
∏
i 6=j

Fi(U ∩ Ui ∩ Uj)

 .

6.2.2. Cech Resolution

Let F be a sheaf over X, valued in sets or chain complexes. We have the following Cech

resolution of F (e.g. see Kashiwara-Schapira [KS], §2.8). Fix a total ordering of A (for

the purpose of having correct signs), and for each subset I ⊂ J , we let UI = ∩i∈IUi, then

UI ⊂ UJ when I ⊃ J . Let jU : U ↪→ X be the inclusion, and let jU !CU be the constant

sheaf with stalk C supported on the open set U , and for U ⊂ V let ρU↪→V : jU !CU → jV !CV

denote the canonical morphism. Then we have a resolution of CX :

P• :=

(
· · · d−→

⊕
I1

jUI1 !CUI2

d−→
⊕
I0

jUI0 !CUI0
→ 0

)
, Ik ⊂ A, |Ik| = k + 1

where Pk corresponds to the direct sum over Ik and the differential on direct summand

PIk is given by

d|PIk =
k∑
j=0

(−1)jρUIk ↪→UIk−vj , where Ik = {v0, v1, · · · , vk}, v0 < v1 < · · · < vk.
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Using F ∼= F ⊗CX or F ∼= hom(CX , F ), we get resolution of F by replacing CX with

P•:

C•(U ;F ) := F ⊗ P• =

(
· · · d−→

⊕
I2

jUI2 !F |UI2
d−→
⊕
I1

jUI1 !F |UI1 → 0

)
,

and

C •(U ;F ) := hom(P•, F ) =

(
0→

⊕
I1

jUI1∗F |UI1
d−→
⊕
I2

jUI2∗F |UI2
d−→ · · ·

)
,

for all Ik ⊂ A, and |Ik| = k + 1.

6.2.3. Local Data on Cech Cover

Here we define the necessary gluing data for sheaf of complexes.

Let P (A) be the partially ordered set

P (A) = {I | ∅ 6= I ⊂ A,UI 6= ∅}.

with ordering I ≤ J if I ⊂ J . Let P (A) also denote the category with objects being

elements in P (A) and morphism being I → J if I ≤ J and the obvious composition.

Definition 6.2.1. A path γ in P (A) is a sequence of composable morphisms I0 →

I1 → · · · → Ik. We say a path γ is non-degenerate if none of the morphisms in it is an

identity-morphism. The length of a path is the number of arrows.

Definition 6.2.2. The Cech data of sheaves of complexes with respect to a finite open

cover {Ui}i∈A is the following data (F = {FI}, h = {h(γ)}),

(1) For each I ∈ P (A), let FI be a complex of sheaves over UI .
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(2) For each non-degenerate path γ = (I → J) of length 1, there is a isomorphism

in the dg derived category of chain complexes

h(I → J) : FI |UJ
∼−→ FJ

(3) For each non-degenerate path γ = (I = I0 → · · · → Ik = J) of length k ≥ 2,

there is an element h(γ) in Hom1−k(FI |UJ , FJ), such that

dh(I0 → · · · → Ik)

=
k−1∑
i=1

(−1)i
(
−h(I0 → · · · Îi · · · → Ik) + h(I0 → · · · → Ii) ◦ h(Ii → · · · → Ik)

)
,

where h(I0 → · · · → Ii) is an abuse of notation for h(I0 → · · · → Ii)|UJ ∈

Hom1−k
UJ

(FI0|UJ , FIj |UJ )

Example 6.2.3. If F is a sheaf of complex over X, then it induces the following

canonical Cech data:

(1) For each I ∈ P (A), FI := F|UI .

(2) For each non-degenerate path γ = (I → J) of length 1, let h(I → J) : FI |UJ → FJ

be the identify morphism, since FI |UJ = (F|UI )|UJ = F|UJ = FJ .

(3) For each non-degenerate path γ = (I = I0 → · · · → Ik = J) of length k ≥ 2, let

h(γ) = 0.

4

The following proposition show that given a Cech data of sheaves of complexes, we

may construct a global sheaf of complexes (or complex of sheaves).
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Proposition 6.2.4. Let X be a topological space with a finite open cover {Ui}i∈A, and

let (F, h) be a Cech data of sheaves with respect to this cover. Then there exists a complex

of sheaves F := FF,h, such that for each i ∈ A, there is a quasi-isomorphism

ψi : F|Ui
∼−→ Fi.

Proof. We give the construction of the global sheaf first. We will write F for F•,

and understand sheaf as sheaf of complexes. The hom-complex is in the category of dg

derived category of sheaves over X. Let

F =

(⊕
I

FI , d =
∑
I⊂J

dI→J

)
, FI := jI∗FI [1− |I|], dI→J ∈ Hom1(FI ,FJ)

where the sums are over I ∈ P (A) and over I, J ∈ P (A). The restriction isomorphism

ψi : F|Ui → Fi is given by its restriction on the direct summands:

ψi|FI |Ui =


id if I = {i}

0 else

.

(Step 1: sign conventions). To specify d, such that d2 = 0, we need to treat the signs

carefully. Fix any linear ordering of A, and let any subset of A be equipped with the

induced linear order. If I = {v1, · · · , vk} is a set with linear ordering, with v1 ≤ · · · ≤ vk,

we identify I with the sequence (or k-tuple) (v1 · · · vk). If I1 and I2 are two sequences that

are disjoint as sets, then let I1 t I2 denote the concatenation of the two. If J is a linear

ordered set, and I ⊂ J , then let J − I be the complement of I in J equipped with the



154

induced linear ordering. For an ordered set J , let Σ(J) be the permutation group acting

on J .

Let ∅ 6= I ⊂ J be a nested pair of linearly ordered sets. Let σ(I, J) ∈ Σ(J) be the

permutation, that ‘pushes I to the left inside J ’,

σ(I, J) : J 7→ I t (J − I).

Let 6= I ⊂ J ⊂ K be a nested triple of linearly ordered sets. Let σ(I, J,K) ∈ Σ(K) be

the permutation that

σ(I, J,K) : K 7→ I t (J − I) t (K − J).

Then we have relation

σ(I, J,K) = σ(I, J) ◦ σ(J,K) = σ(J − I,K − I) ◦ σ(I,K).

For any permuation σ, let (−1)σ = ±1 be the signature of σ.

(Step 2: define d). Now we define dI→J . For I = J , we have

dI→I = (−1)|I|−1dFI .

For I ⊂ J with |J − I| = 1, we have

dI→J = (−1)|I|−1(−1)σ(I,J)h(I → J).

where h(I → J) ∈ Hom0(FI |UJ , FJ) is the quasi-isomorphism specified in the Cech data.
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For I → J with |J − I| = k ≥ 2, we have

dI→J = (−1)|I|−1(−1)σ(I,J)
∑

σ∈Σ(J−I)

(−1)σh(γσ)

where γσ = (Iσ0 → Iσ1 → · · · → Iσk ) is a non-degenerate path in P (A) from I to J and

Iσi = I t (first i terms in σ(J − I)).

(Step 3: checking d2 = 0). We claim that, for any I → J ,

∑
K,I⊂K⊂J

dIK ◦ dKJ = 0

where the composition is from left to right.

dIIdI→J + dI→JdJJ

=
∑

σ∈Σ(J−I)

(−1)2(|I|−1)+σ(I,J)(−1)σ(dFI ◦ h(γσ)− (−1)1−kh(γσ) ◦ dFJ )

=
∑

σ∈Σ(J−I)

(−1)σ(I,J)(−1)σd(h(γσ))

=
∑

σ∈Σ(J−I)

k−1∑
i=1

(−1)σ(I,J)(−1)σ(−1)i−1
(
h(Iσ0 → · · · Îσi · · · → Iσk ) + h(Iσ0 → · · · → Iσi )

◦h(Iσi → · · · → Iσk ))

=
∑

σ∈Σ(J−I)

k−1∑
i=1

(−1)σ(I,J)(−1)σ(−1)i−1h(Iσ0 → · · · → Iσi ) ◦ h(Iσi → · · · → Iσk )
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where the double sum of terms
∑k−1

i=1

∑
σ(−1)i(−1)σh(Iσ0 → · · · Îσi · · · → Iσk ) is zero, as

it is the differential of a top-dimensional cycle in the relative simplicial chain of the k-

cube Ck([0, 1]k, ∂[0, 1]k), where [0, 1]k is equipped with the canonical triangulation into k!

simplices.

Next we rearrange the sum of the permutations σ, by summing over σ with fixed Iσi

first.

dIIdI→J + dI→JdJJ

=
∑

σ∈Σ(J−I)

k−1∑
i=1

∑
K∈P (A)

(−1)σ(I,J)(−1)σ(−1)i−1 · IK=Iσi
· h(Iσ0 → · · · → Iσi−1 → K)

◦h(K → Iσi+1 → · · · → Iσk )

=
∑

K:I(K(J

∑
σL∈Σ(K−I)

∑
σR∈Σ(J−K)

(−1)|K−I|−1+σR+σL+σ(K−I,J−I)+σ(I,J)h(γσL) ◦ h(γσR)

=
∑

K:I(K(J

−

 ∑
σL∈Σ(K−I)

(−1)|I|−1(−1)σ(I,K)(−1)σRh(γσL)

 ◦
 ∑
σR∈Σ(J−K)

(−1)|K|−1(−1)σ(K,J)(−1)σRh(γσR)


= −

∑
K:I(K(J

dIK ◦ dKJ .

This finishes the proof of the claim that d2 = 0.
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Given the claim, we have d2 = 0. Indeed, let (d2)I→J denote the component that goes

from FI to FJ , then

(d2)I→J =
∑

K:I⊂K⊂J

dIKdKJ =



d2
I→I = 0 if I = J,

dI→IdI→J + dI→JdJ→J = 0 if |J − I| = 1,∑
K:I⊂K⊂J dI→KdK→J = 0 if |J − I| ≥ 2

where the case I = J follows since F •I are chain complexes, |J − I| = 1 since dI→J are

quasi-isomorphism, and |J − I| ≥ 2 follows from the claim.

(Step 4): Finally, we verify that ψi is indeed a quasi-isomorphism. First, we note that ψi

is a closed degree 0 morphism, that is ψi◦dF = dFi◦ψi. Then, suffice to the check the claim

at the stalk level. Fix any x ∈ Ui, then suffice to prove that the cone of ψi,x : Fx → Fi,x

K• := cone(ψi,x)[−1] =

Fx ⊕ Fi,x[−1],

−dFi,x π{i}

0 dF


 .

is acyclic. We will use the spectral sequence of a filter complex to show this ([GeMa]

§III.7.5). Consider a finite decreasing filtration F pK•, p ≥ 0

F pK• =



⊕
I∈P (A)FI,x ⊕ Fi,x[−1] if p = 0

⊕
I∈P (A),|I|≥p+1FI,x if p ≥ 1
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At E0 page, we have d0 =

−dFi,x π{i}

0
∑

I∈P (A) dII

, the cohomology of E0 is

Ep,q
1
∼= Hp,q(E0, d0) =

⊕
I∈P (A),I 6={i},|I|=p+1

Hq(F•I,x, dII).

At E1 page, we consider the horizontal differential d1 =
∑

I⊂J,|J−I|=1 dI→J . Let EI,q
1 =

Hq(F•I,x, dII), for I 6= {i}. Let P (A)x consists of I such that x ∈ UI . Then P (A)x can be

decomposed as

P (A)x = P (A)′x t P (A)′′x t P (A)′′′x := {{i}} t {I | i /∈ I} t {I | i ∈ I, I 6= {i}}.

There is a bijection from P (A)′′x to P (A)′′′x , sending I 7→ I t {i}. On the otherhand, for

|J − I| = 1, dI→J = h(I → J) are isomorphism on the cohomology. Hence, for each fixed

q, the chain complex (E•,q1 , d1) admits a contraction homotopy

g : Ep,q
1 → Ep−1,q

1 , g|EI,q1
=


d−1
I−i,I if i ∈ I

0 else,

Then d1 ◦ g + g ◦ d = id. Hence, for each q, E•,q is acyclic, and

Ep,q
2
∼= Hp,q(E1, d1) = 0.

Thus, K• is acyclic, and ψi,x is a quasi-isomorphism. This finishes the proof of the

proposition. �
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Example 6.2.5. Let F0 be a sheaf of complex over X and (F, h) be the canonical

Cech data induced by F0. Then the reconstruction in the above proposition reduces to

the Cech resolution hom(P•,F0). 4

6.2.4. Equivalence of Cech data

Let (F, h) be a Cech data associated with the open cover U of X. Sometimes we want

to replace the local sheaves FI by certain nice resolutions F̃I , the next proposition gives

a recipe for changing the gluing data ‘by conjugation’.

Proposition 6.2.6. Let (F, h) be a Cech data associated with the open cover U of

X. Suppose for each I ∈ P (A), we have the following quasi-isomorphisms,

fI : FI F̃I : gI , gI ◦ fI = idGI +dαI , fI ◦ gI = idFI +dβI

where fI , gI are degree-zero closed morphism, and αI , βI are degree-(−1) morphism, and

composition is from left to right.

Then for any path γ = (I = I0 → · · · → Ik = J), we may define h̃(I0 → · · · → Ik) =

gI0 ◦ ĥ(I0 → · · · → Ik) ◦ fIk , where

ĥ(I0 → · · · → Ik) =
k−1∑
m=0

∑
0<r1<···<rm<k

h(I0 · · · Ir1)◦βIr1◦h(Ir1 · · · Ir2)◦· · ·◦βIrm◦h(Irm · · · Ik).

Then (F̃ , h̃) is a Cech data. And there is a quasi-isomorphism ψ : FF̃ ,h̃
∼−→ FF,h.

Proof. First, we verify that h̃ satisfies the condition (2) and (3) in the definition of

Cech data. The condition of quasi-isomorphism in (2) and the condition of degree in (3)
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are easy to check. We now check the differential condition in (3).

d(h̃(I0 → · · · → Ik))

=
k−1∑
m=0

∑
0<r1<···<rm<k

gI0 ◦ d[h(I0 → · · · Ir1) ◦ βIr1 ◦ h(Ir1 · · · Ir2) ◦ · · ·

· · · ◦ βIrm ◦ h(Irm · · · Ik)] ◦ fIk .

If d hit β, then we have dβIi = (fIi ◦ gIi − idFIi ), and denote the corresponding terms

as ‘f ◦ g’-type or ‘id’-type terms. If d hit h(· · · ), then we have ‘h(· · · Î · · · )’-type and

‘h ◦ h’-type terms. By a straightforward yet tedious calculation, we find that ‘id’-type

term cancels with h ◦ h’-type terms, and ‘h(· · · Î · · · )’-type term become h̃(· · · Î · · · )-type

term, and ‘f ◦ g’-type term become h̃ ◦ h̃ type term. This finishes the proof that (F̃ , h̃) is

a Cech data.

Next we define ψ : F̃ = FF̃ ,h̃
∼−→ FF,h. Recall that as sheaf of graded vector space, we

have

F̃ =
⊕

I∈P (A)

F̃I , F =
⊕

I∈P (A)

FI .

Then ψ =
∑

I⊂J ψI→J is given schematically as

ψ = g ◦ (1 + q ◦ β + q ◦ β ◦ q ◦ β + · · · ) = g ◦ 1

1− q ◦ β

where the composition is from left to right, and

(1) g : F̃ → F component-wise by gI : F̃I → FI ,

(2) q : F → F is given by dF = dF ,0 + q, or q =
∑

I(J dF ,I→J ,

(3) β : F → F is given component-wise by βI : FI → FI , a degree-(−1) morphism.
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In the above notation, we have

dF̃ = dF̃ ,0 + q̃ = dF̃ ,0 + g ◦ 1

1− q ◦ β
◦ q ◦ f

where f : F → F̃ is given componentwise by fI : FI → F̃I .

To show that ψ indeed is a chain map, we need to show

dF̃ ◦ ψ = ψ ◦ dF

The left hand side is (suppressing ◦ sign, and let d̃0 = dF̃ ,0, d0 = dF ,0)

(
d̃0 + g

1

1− qβ
qf

)
g

1

1− qβ
= gd0

1

1− qβ
+ g

1

1− qβ
qfg

1

1− qβ

Since (d0 + q)2 = 0 and d2
0 = 0, we have

d0qβ = −(qd0 + q2)β = −q2β − q(d0β + βd0 − βd0) = −q2β − q(fg − 1) + qβd0.

Hence [d0, qβ] = q(1− fg − qβ), and we have

[d0,
1

1− qβ
] =

1

1− qβ
q(1− fg − qβ)

1

1− qβ
=

1

1− qβ
q − 1

1− qβ
qfg

1

1− qβ

Thus we have

dF̃ ◦ ψ = g
1

1− qβ
d0 + g

1

1− qβ
q − g 1

1− qβ
qfg

1

1− qβ
+ g

1

1− qβ
qfg

1

1− qβ

= g
1

1− qβ
(d0 + q) = ψ ◦ dF

Thus ψ is indeed a chain map.
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Finally, we want to show that ψ is a quasi-isomorphism, or K = cone(ψ) is acyclic.

Let K be equipped with a decreasing filtration K = F 0K ⊃ F 1K ⊃ · · · , where F pK

contains component of F̃I and FI with |I| ≥ p + 1. The spectral sequence sequence has

Ep,q
1 = 0, hence K is acyclic. �

6.3. Deformation of Constructible Sheaves: Existence and Uniqueness

We have seen in the first section how to deform constructible sheaves whose singular

supports lies in the conormal of co-oriented affine hyperplanes and their intersections. In

this section, we show that if a deformation on a manifold is locally of the above type,

then local deformations can be glued together uniquely to give a global deformation.

First, we state a uniqueness result about sheaf extension.

Proposition 6.3.1. Let Λ∞R be a variation of Legendrian in T∞(M × R). Suppose

ΛR+̂Λa
R is disjoint from T ∗M×{t}(M × R) away from the zero section for all t, then the

restriction functor

ι∗t : Sh(M × R,ΛR)→ Sh(M × {t},Λt)

is fully faithful, where ιt : M × {t} ↪→M × R is the inclusion.

Proof. Suffice to check on the hom space between objects. Let F,G ∈ Sh(M×R,ΛR),

hence the hom-sheaf has the following bound on singular support

SS(hom(F,G)) ⊂ SS(G)+̂SS(F )a ⊂ ΛR+̂Λa
R.

By the assumption of the proposition, we have

SS(hom(F,G)) ∩ T ∗M×{t}(M × R) ⊂ T ∗M×R(M × R).
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Hence section of hom(F,G) can propagate from a thin strip M × (t− ε, t+ ε) around any

slice M × {t} to the entire space M × R, thus we have

hom(F,G) ∼= ι∗thom(F,G) ∼= hom(ι∗tF, ι
∗
tG),

where the last step follows from a similar argument in Proposition 5.1.3. �

Corollary 6.3.2. With the same setup as Proposition 6.3.1. Fix any t0 ∈ R, if Ft0 ∈

Sh(M,Λ∞t0 ) and GR, HR are two sheaves in Sh(M,ΛR) such that we have isomorphism

ϕ : Gt0
∼−→ Ft0 , ψ : Ht0

∼−→ Ft0 ,

then there is unique isomorphism Φ : GR ∼= HR.

Proof. Since hom(GR, HR) ∼= hom(Gt0 , Ht0), we can extend the isomorphism ψ−1◦ϕ :

Gt0
∼−→ Ht0 to Φ : GR → HR uniquely. The cone cone(Φ) restricts to the slice t0 is trivial,

hence the entire cone is trivial, thus Φ is a quasi-isomorphism. �

Next, we prove that one can glue the sheaf deformation over local patches, hence

proving the theorem 10.

Proof of Theorem 10. Given any slice M × {t} ⊂ M × R, and any sheaf Ft ∈

Sh(M × {t},Λt), we may cover M × {t} by finitely many open patches U (t) := {Ui |

t ∈ Ii}, and fix ε(t) > 0 small enough, such that I(t) = (t − ε(t), t + ε(t)) ⊂ Ii for all

i with t ∈ Ii. Since locally Ft|Ui can be represented by chain complexes of standard

sheaves in Ui with singular support in Λt|Ui , as in Proposition 6.1.5, and these standard

sheaves in Ui can be extended to the open patch Ui × Ii, hence we can extend Ft|Ui to
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Ui× I(t). We also do so for all the intersection of patches in U (t). Then for the sheaf Ft

on initial slice M×{t}, with respect to cover U (t), we may build the set of local Cech data

(Definition 6.2.2) as in Example 6.2.3. In other words, we resolve Ft as a chain complex

of sheaves supported on Cech covers and their intersection, such that each building block

can be extended from t to the open neighborhood I(t) of t and their hom’s are preserved

during the extension, hence we can extend the chain-complex of sheaves itself, which is a

resolution of Ft. This way, we extended Ft from M ×{t} to M × I(t). Since ∪tI(t) covers

R, and the variation of Legendrian is compactly supported in R, hence we may extend Ft

to the entire M × R. By Corollary 6.3.2, we know such extension is unique. �



165

CHAPTER 7

Twisted Polytope Sheaves and Coherent-Constructible

Correspondence for Toric Variety

7.1. Introduction

Toric varieties are certain compactifications of the complex torus (C∗)n. They provide

many interesting examples, and can be studied in various ways, using algebraic geometry,

symplectic geometry or combinatorics.

For example, let XΣ be a smooth projective toric vareity corresponding to a fan Σ, and

L an ample line bundle with a lifting of the (C∗)n-action. Then there is a convex polytope

∆L in Rn, where Rn is identified with the dual Lie algebra Lie(T n)∨ and T n = (U(1))n is

the maximal compact real subgroup of (C∗)n. The convex polytope ∆L can be understood

in the following ways,

(1) Algebraically, ∆L is the convex hull of the characters appearing in the weight

decomposition of H0(X,L) under the (C∗)n-action.

(2) Symplectically, ∆L is the moment polytope of the Hamiltonian action T n on

(X,ω), where ω is a symplectic 2-form with [ω] = c1(L).

(3) Combinatorially, ∆L is the intersection of half-spaces Qρ = {x ∈ Rn | 〈x, vρ〉 ≤

aρ}, one for each compactifying divisor Dρ of X given by a vector vρ ∈ Zn, and

aρ is the vanishing order of the invariant (meromorphic) section along the divisor

Dρ.



166

In the case where L is not ample, the corresponding polytope becomes a ‘twisted polytope’,

as explained in Figure 1.2. The name originates from the paper of Karshon and Tolman

[KT], where they generalized the moment map to the case where ω is degenerate.

The above correspondence between equivariant line bundles and twisted polytopes

enjoys a categorification under the name of (equivariant) Coherent Constructible Corre-

spondence (CCC).

Theorem 11 ([FLTZ1]). If X is a proper toric variety, there is a corresponding

conical Lagrangian ΛΣ ⊂ T ∗Rn and an equivalence of derived (or rather, triangulated dg

categories)

κ : PerfT (XΣ)
∼−→ Shcc(Rn,ΛΣ)

where

• PerfT (XΣ) is the triangulated dg category of perfect complexes of torus-equivariant

coherent sheaves on XΣ.

• Shcc(Rn,ΛΣ) is the triangulated dg category of constructible sheaves on Rn which

are compactly supported, whose singular supports lie in ΛΣ.

The equivariant CCC implies that there is a quasi-embedding for the non-equivariant

case:

Proposition 7.1.1 ([Tr],Proposition 2.4, 2.7). Let π : Rn → T n ∼= Rn/Zn be the

projection. Then there exists a functor κ and commutative diagrams

PerfT (XΣ) Shcc(Rn,ΛΣ)

Perf(XΣ) Sh(T n,ΛΣ),

∼κ

forget π!

κ
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Remark 7.1.2. When XΣ is smooth, the homotopy category of PerfT (XΣ) (resp.

Perf(XΣ)) coincide with the usual DbCohT (XΣ) (resp. DbCoh(XΣ)).

Remark 7.1.3. Under the quotient map π : Rn → T n, all the upstairs objects in Rn

are unadorned, and downstairs objects in T n have overlines.

And it is conjectured that this quasi-embedding is a quasi-equivalence. The conjecture

has been verified in certain cases by Treumann [Tr], Scherotzke-Sibilia [SS] and Kuwagaki

[Ku1]. Recently, it has been fully proven by Kuwagaki [Ku2] in the generality of toric

stacks, using gluing descriptions of ∞-categories on both sides.

In this paper, we prove the non-equivariant CCC for smooth projective toric varieties,

by showing the κ-images of line bundles generate the constructible sheaf category.

Theorem. Let XΣ be a smooth projective toric variety of complex dimension n, then

there is an quasi-equivalence of category

κ : Coh(XΣ)
∼−→ Sh(T n,ΛΣ)

where ΛΣ is a conical Lagrangian in T ∗T n.

The key part of the proof is as following. For any point θ ∈ T n, there is a constructible

sheaf P [θ] on T n as the κ-image of a certain line bundle (c.f. Definition 7.5.1), such that

for any sheaf F ∈ Sh(T n,ΛΣ), its stalk at the point θ can be computed by

(7.1.1) Fθ ∼= hom(P [θ][−n], F ).
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This immediately implies that if F satisfies hom(κ(L), F ) = 0 for all the line bundles L

on XΣ, then F = 0. In other words, the stalk functors in Sh(T n,ΛΣ) are co-represented

by κ-images of line bundles on XΣ. We thank David Treumann for the suggestion of

co-representing the stalk functors.

The quasi-isomorphism (7.1.1) is due to a non-characteristic deformation argument

for constructible sheaf. We define a 1-parameter family of sheaves {Pt}t∈[0,1], such that

(1) P0 = jB!CB, where B is a small enough convex open set around θ, such that

Fθ ∼= Γ(B,F ) ∼= hom(P0, F ).

(2) P1 = P [θ][−n].

(3) For t ∈ (0, 1), take the linear interpolation between P0 and P1, and show that

SS∞(Pt) ∩ Λ
∞
Σ = ∅.

By the non-characterstic deformation lemma1, hom(Pt, F ) is invariant during the defor-

mation, hence we get (7.1.1).

Example 7.1.4 (Expanding family of twisted polytope sheaves). The example of

Hirzebruch surface F2, see Figure 7.1. Here we describe the sheaf P[x] upstairs in R2,

where P [π(x)] := π∗P[x] and π : R2 → T 2 is the quotient map. The point we want to

probe is at x = (−0.5, 0), marked in black. The green, blue, red and black curves are the

boundaries of the twisted polytopes in the interpolating family Pt. The green and blue

ones are still open convex polytopes, the red and black ones are twisted. We marked the

direction of the singular support for the sheaf Pred corresponding red curve, and note that

SS∞(Pred) ∩ Λ∞ = ∅. 4

1One needs to be careful about the endpoint t = 1, since SS∞(P1) ∩ Λ
∞
Σ 6= ∅. The non-characteristic

deformation lemma for sections over open sets, Proposition 3.5.1, avoids this problem.
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Figure 7.1. Expanding family of twisted polytope sheaves on R2.

Remark 7.1.5. The collection of line bundles as the κ-preimages of {P [θ]} is a finite

collection, since sheaves in Sh(T n,ΛΣ) admits a finite stratification depending only on

ΛΣ. In the case of Pn, they turn out to be O(1), · · · ,O(n + 1), and form an exceptional

collection. However, for general toric variety, even smooth Fano ones, the collection of

line bundles cannot always be an exceptional collection [?, ?].

However, for any collection of line bundles L1, · · · , LN , Craw-Smith [CS] considered

the endomorphism algebra A = End(⊕Ni=1Li) and defined a bound quiver of sections

(Q,R) associated with A. It would be interesting to study our collection of line bundles

using this quiver approach.

7.2. Review of Toric Geometry

An n-dimensional smooth projective complex manifold X is toric if there is a holo-

morphic (C∗)n-action with an open dense orbit Xo on which (C∗)n acts freely. The com-

plement of the open orbit D = X\Xo is a simple normal crossing divisor with irreducible

torus-invariant components.

We first review the standard setup and notation for the combinatorial data used for

defining a toric variety. Then we explain the relationship between equivariant line bundles,
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toric divisors, and twisted polytopes (as a collection of labeled vertices). Finally, we

review ‘twisted polytope sheaves’, the corresponding constructible sheaves for equivariant

line bundles under the equivariant CCC.

The data of a toric manifold can be expressed combinatorically using a fan. Let

N ∼= Zn be a rank n lattice, with NR = N ⊗Z R. Let M = Hom(N,Z) be the dual

lattice and MR = M ⊗Z R be the dual vector space. Let 〈−,−〉 : MR × NR → R be the

dual pairing. Let TM = MR/M be a real n-dimensional torus, and π : MR → TM be the

quotient map. We recall the following definitions.

(1) A convex polyhedral cone σ ⊂ NR is a set of the form σ = cone(S) = {
∑

u∈S λuu |

λu ≥ 0}, where the cone generator S ⊂ NR is a finite subset. A cone σ is rational

if there is a generator S for σ such that S ⊂ N . A cone is strongly convex if it

does not contain any non-trivial linear subspace of NR.

(2) Let σ ∈ Σ be a cone, we define the dual (closed) cone σ∨ as

σ∨ := {x ∈MR | 〈x, y〉 ≥ 0,∀y ∈ σ}.

We also define σ⊥ = {x ∈M | 〈x, y〉 = 0,∀y ∈ σ} ⊂MR, and σo (resp. (σ∨)o) as

the relative interior of σ (resp. σ∨).

(3) A face of a cone σ is the subset Hm ∩ σ for some m ∈ σ∨ and Hm = m⊥. We use

σ(r) to denote the collection of r-dimensional faces of σ.

(4) A fan Σ in NR is a finite collection of strongly convex rational polyhedral cones

σ ⊂ NR, such that (a) if σ ∈ Σ then any face of σ is in Σ, and (b) if σ1, σ2 are

cones in Σ then σ1 ∩ σ2 is a face in both σ1 and σ2. We use Σ(r) to denote the

collection of r-dimensional cones in Σ.
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(5) A fan Σ in NR is complete, if its support |Σ| := ∪σ∈Σσ is the entire NR. A

complete fan Σ is smooth, if each maximal cone σ ∈ Σ(n) is generated by a

lattice basis of N .

(6) A smooth complete fan Σ is projective, if there exists a convex piecewise linear

function ϕ : NR → R, such that the maximal linearity domains of ϕ are the

maximal cones of Σ. (cf. Proposition 7.3.6)

See Example 7.4.10 for a fan of P2.

Assumption: We will always assume Σ to be a smooth projective fan.

The affine toric variety Xσ is then defined by

Xσ = Spec(C[σ∨ ∩M ])

where C[σ∨ ∩M ]) is the group ring of the abelian semi-group σ∨ ∩M . If τ ⊂ σ is a face

of σ, then σ∨ ⊂ τ∨, hence C[σ∨∩M ]) ↪→ C[τ∨∩M ]), and Xτ ↪→ Xσ is an open inclusion.

We may equip Σ with a partial ordering, for τ, σ ∈ Σ, τ ≤ σ ⇐⇒ τ ⊂ σ. Then XΣ can

be glued together from affine open pieces Xσ, as a colimit of schemes

XΣ = colimσ∈Σ Xσ.

7.3. Toric Divisors, Support Functions and Twisted Polytopes

For each ray ρ ∈ Σ(1), let vρ ∈ ρ∩N be a minimal ray generator, λvρ : C∗ → N ⊗ZC∗

as the one-parameter subgroup, and Dρ = {limt→0 λvρ(t) · x | x ∈ Xo} the torus-invariant

divisor, or, a toric divisor. We write
∑

ρ for a summation over the rays ρ ∈ Σ(1) when

there is no danger of confusion.
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Let D =
∑

ρ aρDρ be a toric R-divisor on XΣ, aρ ∈ R. If aρ ∈ Z for all ρ, then D is

an integral toric divisor, or toric Z-divisor. There are two equivalent ways to describe a

toric divisor, either using a support function ϕD on NR, or a twisted polytope χD on MR.

Definition 7.3.1 (Support function). A support function for Σ is a continuous piece-

wise linear function ϕ : NR → R, such that for each maximal cone σ ∈ Σ(n), the restriction

ϕ|σ is linear.

• A support function ϕ is integral if it sends N to Z.

• A support function ϕ is convex, if for any x, y ∈ NR

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y).

• Furthermore, we say ϕ is strictly convex, if the strict inequality holds whenever

x, y is not contained in the same cone.

Definition 7.3.2 (Twisted polytope). A twisted polytope for Σ is an assignment of

element in MR to top-dimensional cones in Σ,

χ : Σ(n)→MR, σ 7→ χσ,

such that if σ, τ ∈ Σ(n) then 〈χσ, ·〉 = 〈χτ , ·〉 on σ ∩ τ .

• A twisted polytope χ is integral if the function χσ ∈M for all σ ∈ Σ(n).

• If χ is a twisted polytope, then for any cone σ ∈ Σ, we define χσ ∈MR/σ
⊥ by

χσ = Affine Hull({χτ | τ is a maximal cone containing σ}) ⊂MR.
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• For any x ∈ MR, let χ + x denote the translated twisted polytope that sends

σ 7→ χσ + x for any σ ∈ Σ(n).

Remark 7.3.3. The data for a twisted polytope is a collection of the vertices, labelled

by Σ(n).

Proposition 7.3.4. Let Σ be an n-dimensional smooth projective fan. Then we have

a canonical equivalences among the following three types of objects. (1) A toric R-divisor

D =
∑

ρ aρDρ, aρ ∈ R.

(2) A twisted polytope, χ : Σ(n)→MR.

(3) A support function, ϕ : NR → R.

In particular, integral toric divisors corresponds to integral twisted polytopes and integral

support functions.

Proof. (2) ⇔ (3). Given χ, we may define ϕ by ϕ(x) = 〈χσ, x〉 if x ∈ σ for some

maximal cone σ ∈ Σ(n). This is well-defined since if x ∈ σ ∩ τ , then 〈χσ, x〉 = 〈χτ , x〉.

Conversely, given ϕ, then for each maximal cone σ, the linear function ϕ|σ determines an

element in MR, denoted by χσ. The continuity of ϕ ensures 〈χσ, ·〉 = 〈χτ , ·〉 on σ ∩ τ .

(1) ⇔ (3). Given a toric R-divisor D =
∑

ρ aρDρ, for each ρ ∈ Σ(1), we define

ϕ|ρ : ρ → R by vρ 7→ aρ. Since the cones of Σ are simplicial, there is a unique piecewise

linear extension of ϕ to NR that is linear in each cone of Σ. Conversely, given ϕ, let

aρ = ϕ(vρ) for each ρ ∈ Σ(1).

The claim on integrality is straightforward to verify. This finishes the proof of the

Proposition. �
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Remark 7.3.5. (1) If D is a toric R-divisor, we let χD and ϕD be the corresponding

twisted polytope and support function. (2) If χ is a twisted polytope for Σ, and ϕ is

the corresponding support function, then χσ ∈MR/σ
⊥ corresponds to the linear function

ϕ|σ : σ → R.

Proposition 7.3.6. Let XΣ be a smooth complete toric variety. Let D =
∑

ρ aρDρ be

an integral toric divisor. Then

(1) D is base-point free if and only if ϕD is convex.

(2) D is ample if and only if ϕD is strictly convex.

Proof. [CLS], Chapter 4 and 6. �

Definition 7.3.7. If D =
∑

ρ aρDρ is ample, we define the open convex polytope ∆D

as the interior of the convex hull of {χσ | σ ∈ Σ(n)}. Equivalently, we have

∆D = {x ∈MR | 〈x, vρ〉 < aρ, for all ρ ∈ Σ(1)}.

7.4. Constructible Sheaves and Twisted Polytope Sheaves

Let M,N be dual rank-n lattices, and Σ a smooth complete fan in NR. We define the

conical Lagrangians ΛΣ in T ∗MR as 2

(7.4.1) ΛΣ =
⋃
σ∈Σ

(σ⊥ +M)× σ ⊂MR ×NR = T ∗MR.

2Our definition differs in sign convension from that in [FLTZ1]. If we change Σ to −Σ in this paper,
then the definition agrees.
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We denote the push-forward of ΛΣ to T ∗TM by ΛΣ, or directly we have

(7.4.2) ΛΣ =
⋃
σ∈Σ

(σ⊥/σ⊥ ∩M)× σ ⊂ TM ×NR = T ∗TM .

Definition 7.4.1 (Standard Shard Sheaves). For any cone σ ∈ Σ, c ∈ MR/σ
⊥, we

define the closed subset Q(σ, c) ⊂MR and the standard sheaf P (σ, c) as

Q(σ, c) := c+ σ∨ ⊂MR, P (σ, c) := jQ(σ,c)∗CQ(σ,c).

Definition 7.4.2 (Twisted Polytope Sheaves on MR). Let χ be a twisted polytope

for Σ, let D be the corresponding toric R-divisor. The twisted polytope sheaf P (χ) on MR

is defined by the following chain complex of sheaves, with CMR at degree −n,

P (χ) :=

CMR
d1−→

⊕
σ1∈Σ(1)

P (σ1, χσ1)
d2−→

⊕
σ2∈Σ(2)

P (σ2, χσ2)
d3−→ · · · dn−→

⊕
σn∈Σ(n)

P (σn, χσn)


where dk for k = 1, · · · , n is given in the following way:

dk =
∑

σk−1⊂σk

sgn(σk−1, σk)ρσk→σk+1

where the sum is over σk−1 ∈ Σ(k − 1), σk ∈ Σ(k), and

ρσk−1→σk : P (σk−1, χσk−1
)→ P (σk, χσk)

is the canonical restriction, and the sign sgn(σk−1, σk) = ±1 is chosen such that d2 = 0

(see the following remark).
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If D is any toric R-divisor, χ = χD the corresponding twisted polytope, we sometimes

write P (D) for P (χD).

Remark 7.4.3. We can be more concrete about the sign choices sgn(σk−1, σk). One

way is to fix a linear ordering of the rays Σ(1), then a k-dimensional simplicial cone σk

can be identified with the ordered set σk(1) = {ρ1 < ρ2 < · · · < ρk}. If σk−1 = σk − {ρj},

then we set sgn(σk−1, σk) = (−1)j−1. Another way is to fix the orientations of all cones in

Σ once and for all, and sgn(σk−1, σk) = ±1 depending on if σk−1 agrees with the induced

boundary orientation of σk.

Example 7.4.4. Consider the example of P1, where Σ(1) = {Rv1,Rv2}, where v1 = 1

and v2 = −1. We still need to fix the ‘offset parameters’ χi for each vi. We consider the

following three cases

(1) χ1 = −1, χ2 = 1, then

P (χ) ∼= (CR → C[−1,∞) ⊕ C(−∞,1]) ∼= C[−1,1]

(2) χ1 = 0, χ2 = 0, then

P (χ) ∼= (CR → C[0,∞) ⊕ C(−∞,0]) ∼= C{0}

(3) χ1 = 1, χ2 = −1, then

P (χ) ∼= (CR → C[1,∞) ⊕ C(−∞,−1]) ∼= C[1](−1,1)
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;

Figure 7.2. Twisted Polytope Sheaves for P1

.

where we briefly abuse notation and denote by CA the constant sheaf supported on the

subset A. The supports of the standard sheaves in the chain complexes also shown in

Figure 7.2. 4

Since MR is a vector space, we have the addition operation v : MR ×MR →MR. The

addition operation induces the convolution product ? for sheaves Sh(MR)

F1 ? F2 := v!(F1 � F2).

We have the following properties of twisted polytope sheaves.

Proposition 7.4.5. Let Σ be a smooth projective fan, D =
∑

ρ aρDρ a toric R-divisor,

and P (D) the twisted polytope sheaves on MR. Then

(1) If D is integral, then there is a unique up to isomorphism equivariant line bundle

OX(D) on XΣ, and

κ(OX(D)) = P (D).

In particular P (0) = j{0}∗C{0} is the skyscraper sheaf at point 0.

(2) If D is an ample divisor, then P (D) is a costandard sheaf supported on a simpli-

cial convex polytope, with each facet corresponding to a ray ρ ∈ Σ(1), and each

vertex corresponding to a maximal cone σ ∈ Σ(n).
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(3) If −D is an ample divisor, then P (D) is a standard sheaf supported on a simplicial

convex polytope. P (D) = a∗D(P (−D)), where a : MR →MR sends x 7→ −x.

(4) P (D) has compact support in MR. For any x ∈ MR, the stalk P (D)x has coho-

mology in degrees between −n and 0.

(5) If D = D1 +D2, then P (D) = P (D1)?P (D2), where ? is the convolution product

on MR.

(6) Let χ be any twisted polytope, then (−) ? P (χ) : Sh(MR,ΛΣ) → Sh(MR,ΛΣ) is

an equivalence of cateogry. The functor (−) ? P (χ) has an inverse (−) ? P (−χ)

Proof. The results are given in [?, Tr], with straightforward adaptations from integer

to real coefficients. �

Lemma 7.4.6. Let D =
∑

ρ aρDρ. If aρ is not an integer for any ρ ∈ Σ(1), then

SS∞(P (D)) ∩ Λ∞Σ = ∅.

Proof. From the chain complex definition for P (χ), we have

SS(P (χ)) ⊂
⋃
σ∈Σ

SS(P (σ, χσ)) =
⋃
σ∈Σ

(χσ + σ⊥)× σ.

If (x, p) ∈ SS(P (χ)) ∩ ΛΣ and p 6= 0, then there are non-zero cones σ, τ ∈ Σ, such that

(x, p) ∈
(
(χσ + σ⊥)× σ

)⋂(
(M + τ⊥)× τ

)
.

Hence p ∈ σ ∩ τ .Thus σ ∩ τ contains at least a ray ρ ∈ Σ(1), otherwise p = 0. Consider

〈x, vρ〉. Since x ∈ χσ + σ⊥, we have 〈x, vρ〉 = aρ. On the other hand, x ∈ M + τ⊥,

hence 〈x, vρ〉 ∈ Z. This contradicts with aρ /∈ Z for any ρ ∈ Σ(1). Thus the lemma is

proven. �
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Definition 7.4.7 (Twisted Polytope Sheaves on TM). Let χ be a twisted polytope

for Σ, P (χ) the twisted polytope sheaf for χ on MR, then the twisted polytope sheaf for

χ on TM is

P (χ) := π∗P (χ) = π!P (χ).

where π∗ = π! since π is proper on SuppP (χ).

Remark 7.4.8. For any lattice point x ∈ M , the shifted polytope χ + x defines the

same twisted polytope sheaf, P (χ) = P (χ+ x), since π = π ◦ (·+ x) : MR → TM .

The following is stated in [Tr].

Proposition 7.4.9. If D is an integral twisted polytope, then the non-equivariant

CCC functor κ sends OX(D) to P (D).

Example 7.4.10. Consider the following two dimensional fan Σ, with ray generators

v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1). Let D = D1 + D2 + D3 where Di is the toric

divisor for the ray vi, then ϕD is a strictly positive function on NR, such that ϕD(vi) = 1.

The vertices for the twisted polytope χD are (1, 1), (−2, 1), (1,−2) in MR. The twisted

polytope sheaf P (χ) is the costandard sheaf supposed on the interior of the shaded region.

The blue hairs indicate the singular support SS∞(P (χ)) at infinity.

;

4
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7.5. Proof of the Main Theorem

Let P be the full dg subcategory of Sh(MR,ΛΣ) spanned by the integral twisted

polytope sheaves on MR, and let P be the full dg subcategory of Sh(TM ,ΛΣ) spanned by

the integral twisted polytope sheaves on TM .

The follow proposition is the heart of this paper. We first define the probe sheaves for

the stalk over x ∈MR and θ ∈ TM .

Definition 7.5.1. For any x ∈MR, let the integral toric divisor D[x] be defined by

D[x] :=
∑
ρ

(b〈x, vρ〉c+ 1)Dρ, P[x] := P (D[x]).

For any θ ∈ TM , we may fix any lift x of θ in MR, then define

P [θ] := π∗P[x].

Since different lifts of x differ by an element in M , hence the push-forward is independent

of the choice of the lift. (cf. Remark 7.4.8. )

Proposition 7.5.2. For any point θ ∈ TM , there is a unique twisted polytope sheaf

P [θ] on TM , such that for any sheaf F ∈ Sh(TM ,ΛΣ), the stalk at θ can be computed by

F θ
∼= hom(P [θ][−n], F ).

Proof. Fix any x ∈ π−1(θ). For any sheaf F ∈ Sh(TM ,ΛΣ), let F = π−1F = π!F .

Then we have canonical isomorphisms

Fx ∼= F θ,
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and

hom(P [θ][−n], F ) ∼= hom(π!P[x][−n], F ) ∼= hom(P[x][−n], π!F ) = hom(P[x][−n], F ).

Hence it suffices to prove that for any fixed x ∈MR, we have

(*) Fx ∼= hom(P[x][−n], F ).

Since Σ is smooth projective, there exists an integral ample toric divisor

A =
∑
ρ

aρDρ, aρ ∈ Z>0.

Then the twisted polytope sheaf P (A) is supported on ∆A, with stalk C[n]. Since aρ > 0,

we have 0 ∈ ∆A.

Fix ε0 > 0 small enough, depending only on x and ΛΣ, such that for any 0 < ε ≤ ε0,

Fx ∼= Γ(∆D(x)+εA, F )

where ∆D(x)+εA,= x + ε∆A is a shifted open convex polytope around x. This is possible

since F is a polyhedral constructible sheaf, and ∆A is a convex set. In particular, we may

shrink ε0 and further assume that

ε0aρ + 〈x, vρ〉 < b〈x, vρ〉c+ 1, for all ρ ∈ Σ(1).

Fix R > 0 a large enough integer, such that D[x] + RA is an ample integral toric

divisor. Let ∆D[x]+RA be the corresponding open convex polytope.
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For any s ∈ [0, 1], we define a 1-parameter family of ample divisors Ds, interpolating

between x+ (R + ε0)A and D[x] +RA.

Ds =
∑
ρ

aρ,sDρ, aρ,s = (1− s)(〈x, vρ〉+ (R + ε0)aρ) + s(b〈x, vρ〉c+ 1 +Raρ),

and let

∆s := ∆Ds , and Ps := P (Ds).

Since b〈x, vρ〉c + 1 > 〈x, vρ〉 + ε0aρ > 〈x, vρ〉, and there is no integer in the open interval

(〈x, vρ〉, b〈x, vρ〉c+ 1), hence for any s ∈ (0, 1),

〈x, vρ〉+ ε0aρ < aρ,s −Raρ < b〈x, vρ〉c+ 1, and aρ,s /∈ Z.

Thus from Lemma 7.4.5 ,

SS∞(Ps) ∩ Λ∞Σ = ∅ for all s ∈ (0, 1).

Apply the non-characteristic deformation result in Proposition 3.5.1, let

Ut =


∆0, t ≤ 0

∆t/(1+t), t > 0

we have for any sheaf G ∈ Sh(MR,ΛΣ),

Γ(∆1, G) = Γ(∪s∈(0,1)∆s, G) ∼= Γ(∆t, G) for all t ∈ [0, 1).
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Since Ds are ample divisor for all s ∈ [0, 1] (since ample cone is convex), and P (Ds) =

j∆s!ω∆s
∼= j∆s!C∆s [n], we have

Γ(∆s, G) = hom(j∆s!C∆s , G) ∼= hom(P (Ds)[−n], G), for all s ∈ [0, 1].

Finally, we use convolution ? is an equivalence of category on Sh(MR) to get

Fx ∼= Γ(x+ ε∆A, F ) ∼= hom(jx+ε∆A!Cx+ε∆A
, F )

∼= hom(jx+ε∆A!Cx+ε∆A
? P (RA), F ? P (RA))

∼= hom(P (D0)[−n], F ? P (RA))

∼= hom(P (D1)[−n], F ? P (RA))

∼= hom(P (D1 −RA)[−n], F )

∼= hom(P (D[x])[−n], F ).

This finishes the proof of the Proposition. �

Now we prove the main theorem stated in the introduction section.

Proof of the Main Theorem. First we claim that there exists a semi-orthogonal

expansion

Sh(TM ,ΛΣ) ∼= 〈〈P〉⊥, 〈P〉〉.

Since κ is an quasi-embedding, hence

Coh(XΣ)
∼−→ κ(Coh(XΣ)).
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Since line bundles generates Coh(XΣ), hence

κ(Coh(XΣ)) ∼= κ(〈{L : line bundles}〉) ∼= 〈P〉.

Kawamata proved that Coh(XΣ) admits an exceptional collection [?], hence 〈P〉 also ad-

mits an exceptional collection. By Proposition 2.6 and Corollary 2.10 in [BK], 〈P〉 is

saturated and is left and right admissible. In other words, the semi-orthogonal decompo-

sition in the claim exists.

From Proposition 7.5.2, we have 〈P〉⊥ = 0. Hence Sh(TM ,ΛΣ) ∼= 〈P〉 ∼= Coh(XΣ). �

Example 7.5.3. We consider two toric surfaces, with some twisted polytopes P(x)

shown in Figure 7.3.

(1) Let XΣ = P2. The red, blue and yellow twisted polytopes are O(3),O(2),O(1)

respectively.

(2) Let XΣ = F3, with ray generators (1, 0), (0, 1), (−1,−3), (−1, 0). This is a smooth

non-Fano projective toric surface. The red polytope corresponds to the anti-

canonical bundle, with all aρ = 1. Indeed, it is non-Fano since the anti-canonical

bundle is twisted. The yellow polytope is ample.

4
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(A) P2 (B) Hirzebruch surface F3

Figure 7.3. Various probe sheaves P[x] (shown as colored twisted polytopes)
on MR for different x (shown as solid dots).
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CHAPTER 8

Lagrangian Thimbles and Vanishing Cycles

In this chapter, we will build a fully-faithful functor from the Fukaya-Seidel category

for a Laurent polynomial (with certain condition) to a category of constructible sheaves

on a real torus with certain singular support condition. Then we will show that this is an

equivalence of category.

Results from previous chapters will be used here, the result about Liouville skeleton

for a regular fiber of the Picard-Lefschetz fibration will be used to push the vanishing

cycles into a neighborhood of the skeleton; the autoequivalence of the constructible sheaf

category induce by changing singular support conditions will be used to study the effect

of changing the phase angles of the coefficients of the Laurent polynomial.

More precisely, we will proceed in the following three steps. We use the same notation

of lattices M,N and Newton polytope Q as in the introduction. For clarify, we chose an

identification M ∼= Zn and hence TM ∼= T n.

(1) Prove that any Lagrangian thimble ending in H can be extended canonically

to a asymptotically conical Lagrangian, which after an identification between

(C∗)n ∼= T ∗T n, gives an object in Fuk(T ∗T n,ΛT ). Consequently, we prove there

is a canonical embedding of

ΦT : FS((C∗)n, f) ↪→ Fuk(T ∗T n,ΛT )



187

(2) We show that there is a monodromy action of ZA = π1(TA) on both FS((C∗)n, f)

and Fuk(T ∗T n,ΛT ) ∼= Sh(T n,ΛT ), compatible with the above embedding ΦT .

(3) We show that the image of the distinguished real thimble, under the monodromy

action of ZA, generates the target category Sh(T n,ΛT ), hence ΦT is an equiva-

lence of categories.

8.1. From Thimble to Asymptotically Conical Lagrangian

Recall that our tropical polynomial is defined as

fR,h,θ(z) =
∑
α∈∂A

R−h(α)e−iθ(α)zα.

We choose the regular value at R−h(0)e−iθ(0) = e−iθ(0). Without loss of generality, we may

choose θ(0) = 0. Let

HR,h,θ := f−1
R,h,θ(1)

denote this regular fiber. Let fR,s,h,θ be Abouzaid’s tropical localization for value 1, and

HR,s,h,θ = f−1
R,s,h,θ(1). For simplicity of notation, we will drop h, θ from the subscript.

First, we introduce the parameter space (C∗)A of hypersurfaces defined by equations

with monomials from the set A, and define the descrimant locus, secondary polytope,

distribution of the critical values following the book [GKZ] and the paper [DKK]. We

will explain the reason for introducing the triangulation when Q is not a facet-simplicial

polytope.

Then, we begin the construction of an asymptotically conical Lagrangian from a thim-

ble. Here by a thimble we mean the sweep-out by the symplectic parallel transport from
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a singular fiber of fR to the regular fiber HR = f−1
R (1) along a vanishing path in C. We

now begin a sequence of deformation of the vanishing cycle S and then the thimble D:

(1) First, we deform the fiber HR = HR,0 to HR,1, and parallel transport S into HR,1.

(2) Then, we apply the contracting Liouville flow in HR,1 to contract the vanish-

ing cycle to a small enough tubular neighborhood neighborhood of the skeleton

Skel(HR,1). Here we use the special Kähler potential, hence the skeleton is home-

omorphic to the RSTZ-skeleton.

(3) Finally, we prove that the thimbles can be deformed along the way through

admissible Lagrangians, following [Ab1] section 2.

Finally, we will extend the deformed thimble to infinity through a one-parameter

family of hypersurfaces HR,1 with R running from the fixed value to ∞. We note that

this is different from let the regular value of f runs to infinity. We illustrate the difference

by the following example.

Example 8.1.1. Let Q be the convex polygon in R3 defined by

Q = conv(∂A), ∂A := {(1, 0, 1), (−1, 0, 1), (0, 1, 1), (0,−1, 1), (0, 0,−1)},

i.e an upside-down pyramid. For any Laurent polynomial f(x, y, z) with Newton polytope

Q, if the value R of f runs to infinity along the real line, then rescaled amoeba of f−1(R),

i.e.

AR =
1

logR
({log |z1|, log |z2|, log |z3|) | f(z) = R} ⊂ R3
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tends to the tropical amoeba corresponding to the PL function ĥ : Q → R such that

ĥ(0) = 0, ĥ|∂Q = 1. This ĥ induces a star subdivision of Q based at 0, but not a

triangulation.

On the other hand, if we choose a coherent star subdivision T of Q induced by h, and

fR,h =
∑

α∈∂AR
−h(α)zα, then as R→∞, the rescaled amoeba

A′R =
1

logR
({log |z1|, log |z2|, log |z3|) | fR,h(z) = 1} ⊂ R3

will tend to the tropical amoeba corresponding to h. There is a nice skeleton supported

on f−1
R,h(1) for all large R. 4

Remark 8.1.2. If the polytope Q is facet simplicial (we don’t require the verties of

the facet to be a Z-basis), and we take T to be the star triangulation generated by faces

of Q. Then the above construction can be much simplified. We do not have to take the

regular fiber of f at R and deform the thimble ending on the fiber, instead one can let

the thimble runs to ∞ and prove that the vanishing cycle automatically concentrate to

the skeleton of the fiber of ∞. This method will break down, if the cone over faces Q is

not simplicial, since as the value of f goes to infinity, one is essentially considering the

equation

1 =
∑
α

R−h(α)e−iθ(α)

f(z)
zα

we may view f(z) itself as a tropicalizing parameter, and the weight of the vertices are

all 1. The resulting polytope subdivision of Q is not a triangulation, and the tropical

skeleton is not defined.
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The (new) method adopted here has two additional advantages. First, we can choose

the triangulation T , and the resulting sheaf category should be all be equivalent (through

a non-canonical equivalence). This change of skeleton (by changing h, or equivalently,

the triangulation T ) is less well understood on the constructible sheaf side. Secondly, by

extending a Lagrangian thimble with boundary to a conical Lagrangian, we may consider

the sequence of nested Fukaya-Seidel categories FS1 ↪→ FS2 ↪→ · · · (the inclusion is

not canonical due to auto-equivalences), by considering more and more critical values,

as done in [DKK]. One can build corresponding conical Lagrangians Λ1,Λ2, · · · and get

equivalence on the filtered level. This would not be possible if we were to allow the value

of f to run to ∞.

8.1.1. Deformation of Lagrangian Thimbles with boundary

Let (M,ω) be a symplectic manifold. First, we state a result of Weinstein neighborhood

theorem for Lagrangian with boundary.

Proposition 8.1.3 ([Ab1], Lemma 2.1). Let (L, ∂L) be an exact Lagrangian with

boundary ∂L, and E be an oriented rank 1 sub-bundle fo the symplectic orthogonal com-

plement of T∂L such that the pairing

TL|∂L ⊗ E → R

induced by the symplectic form is non-degenerated and yields the appropriate co-orientation

on ∂L. In side a sufficiently small neighborhood of L in N , there exists a full dimensional

submanifold with boundary (VL, ∂VL), such that the inclusion (L, ∂L) ⊂ (VL, ∂VL) satisfies

the following properties:
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(a) The restriction of T∂VL to ∂L contains the sub-bundle E.

(b) There exists a symplectomorphism (VL, ∂VL) → (T ∗L, T ∗L|∂L) identifying L with the

zero section of its cotangent bundle, such that the following diagram commutes

(VL, ∂VL) (T ∗L, T ∗L|∂L)

(L, ∂L)

Proposition 8.1.4 ([Ab1], Lemma 2.2). Let L′ and L be two Lagrangian manifolds

of M which have the same boundary. Let VL be a submanifold of L in Proposition 8.1.3.

If L′ is transverse to ∂VL and there is a neighborhood of ∂L′ in L′ which is contained in

VL, then there exists a Lagrangian submanifold L′′ which satisfies the following conditions:

(a) L′′ is Hamiltonian isotopic to L.

(b) L′′ agrees with L′ in a sufficiently small neighborhood of ∂L′.

(c) L′′ agrees with L away from a larger neigbhorhood of the boundary.

Moreover, L′′ is independent, up to Hamiltonian isotopy, of the choices made in its con-

struction.

Next, we start moving the fiber HR,s = f−1
R,s(1) from s = 0 to s = 1. By Abouzaid’s

result, the 1-parameter family of hypersurfaces {HR,s}s are all symplectic hypersurfaces,

and in fact for each s, fR,s is a symplectic fibratio near value 1. In particular, we obtain a

symplectic connection. To be more precise, let U be a small enough neighborhood around

1, and we consider the fibration

fR,− : X = (C∗)n × [0, 1]→ C× [0, 1],
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restricted to U × [0, 1]. The ambient two-form ω is the pull-back from the one (C∗)n

defined by 2i∂∂̄ϕ. The path in the base, along which we define the parallel transport is

1× [0, 1]. Let YR,s be the horizontal lift of −∂fR,s
∂s

. We have the following bound on YR,s.

Proposition 8.1.5 ([Ab1], Lemma 4.11, 4.12, 4.13). YR,s is a bounded vector field,

hence integrates to a locall diffeomorphism near the fiber HR,s. The flow generated by YR,s

restricts to a symplectomorphism between HR,0 and HR,1.

More over, there exists a Hamiltonian time-dependent vector field Y ′R,s on (C∗)n, which

is supported in a neighborhood of HR,s, and which integrate to a symplectic flow ψs that

maps HR,0 to HR,s.

Definition 8.1.6. Let f : X → C be a symplectic fibration near value 0. We say a

Lagrangian (L, ∂L) is an admissible Lagrangian with respect to f ending in f−1(0) with

ending direction ν ∈ (−π, π), if the following holds:

(1) ∂L ⊂ f−1(0).

(2) f(L) agrees with the half-line R<0 · eiν near 0.

Let L,L′ be two admissible Lagrangians with respect to f , ending in f−1(0) with the

same ending direction ν ∈ (−π, π). We say L,L′ are Hamiltonian isotopic through admis-

sible Lagrangians, if for any small δ > 0, there exists a Hamiltonian isotopy {L(t)}t∈[0,1]

with L(0) = L, L(1) = L′, such that

(1) ∂L(t) ⊂ f−1(0).

(2) f(L(t)) is contained in the cone {R<0 · eiθ | θ ∈ (ν − δ, ν + δ)} near 0.

Proposition 8.1.7. Given a Lagrangian thimble DR,0 with respect to the Lefschetz

fibration fR,0, ending on vanishing spheres SR,0 in the fiber HR,0, with vanishing path
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γ : [0, 1] → C from a critical value to 1, such that γ̇(1) = ν ∈ T1C pointing to the right

half-plane, there exists an admissible Lagrangians disks DR,1 with respect to the Lefschetz

fibration fR,1, ending on an exact Lagrangian sphere SR,1 in the fiber HR,1, with the same

admissable direction ν, and DR,1 is Hamiltonian isotopic to ψ1(DR,0).

Proof. Recall ψs : ((C∗)n,HR,0) → ((C∗)n,HR,s) is a symplectomorphism defined in

Proposition 8.1.5. Let FR,s = fR,s ◦ ψs, then F−1
R,s(1) = HR,0for all s. The Lagrangian

disk DR,0 is admissible for FR,0, but cutting [0, 1] into sufficiently fine intervals with end

points 0 = s0 < s1 < · · · < sN = 1, and apply Proposition 8.1.4, we can define a family

of Lagrangians D̃R,si with the same boundary SR,0 that is admissible for all FR,si .

More precisely, for each s ∈ [0, 1], we symplectic parallel transport the vanishing sphere

SR,0 along a small straight line segment from 1 to 1−εν with respect to the fibration FR,s,

define that as Ls. The rank 1 sub-bundles Es along SR,0 , used in the construction of the

neighorhood of Ls in Proposition 8.1.3, can be chosen to be the horizontal lift of tangent

vector Jν with respect to FR,s. By successively apply Proposition 8.1.4 for a sufficiently

fine partition of [0, 1], we can get D̃R,si to agree with Lsi .

Finally, we define DR,1 = ψ1(D̃R,1). This finshes the proof of the proposition. �

Proposition 8.1.8. Any Hamiltonian isotopy of SR,1 inside HR,1 induces an Hamil-

tonian isotopy of the Lagrangian DR,1 through admissible Lagrangians.

Proof. Let t ∈ [0, 1] parameterize the Hamiltonian isotopy. Let Ht : SR,1 → R be

the time-dependent Hamiltonian inducing the isotopy. Using the Weinstein neighborhood

Proposition 8.1.3, we can extend the Hamiltonian isotopy of the boundary to a compactly

supported Hamiltonian isotopy of the zero-section. �
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Remark 8.1.9. Since SR,1 is diffeomorphic to Sn−1, for n > 2 any Lagrangian iso-

topy of SR,1 is automatically a Hamiltonian isotopy. The Lagrangian isotopy induced

by Liouville flow on any exact Lagrangian L is also automatically Hamiltonian, since

ιXλω|L = λ|L = dH by the definition of exact Lagrangian.

Combining the results in this section, we have the following deformation result of

thimbles.

Proposition 8.1.10. Let DR,1 be an admissible Lagrangian with respect to fR,1 ending

on the fiber HR,1, with ending direction ν ∈ T1C. Then for any ε > 0, DR,1 is Hamiltonian

isotopic to an admissible Lagrangians D′R,1 with ending direction ν where the boundary is

contained in an ε-neighborhood of the skeleton Skel(HR,1).

Proof. We apply the contractible Liouville flow Φt
−Xλ on the compact Lagrangian

SR,1 for time t ∈ [0, T ], such that ΦT
−Xλ(SR,1) is contained in an ε-neighborhood of the

skeleton Skel(HR,1). Since SR,1 is an exact Lagrangian, the Lagrangian isotopy generated

by the Liouville flow is an Hamiltonian isotopy. Using Proposition 8.1.8, we can extend

the Hamiltonian isotopy of the boundary to the Lagrangian DR,1. By a similar argument

as in Proposition 8.1.7, we can partition the time segment [0, T ] to sufficiently small

segments, such that the Lagrangian at the endpoints time are admissible. �

8.1.2. Extension of the Deformed Lagrangian Thimble to Infinity

In the previous subsection, we have deformed a Lagrangian thimble DR,0 with respect to

the holomorphic Picard-Lefschetz fibration fR,0 to an admissible Lagrangian DR,1 with

respect to fR,1, such that the boundary SR,1 = ∂DR,1 is close to the skeleton of fR,1.
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In this section, we will consider a family of hypersurface Hr,1 parametrized by r ∈

[R,∞), and parallel transport SR,1 along the way. We will prove that ∪r∈[R,∞)Sr,1 sweeps

out an asymptotically conical Lagrangians.

We recall the result from Abouzaid, adapted to our notation here.

Proposition 8.1.11 ( [Ab1] Proposition 4.9). After rescaling the symplectic form by

log(r), the pairs ((C∗)n,Hr,1) are symplectomorphic for all r ∈ [R,∞).

We will refine the result on the symplectic parallel transport in the neighborhood of

the Liouville skeleton Λr,1 ⊂ Hr,1. Let Zr,1 be the horizontal lift of − ∂fr,1
∂ log r

, that is, we

want

(8.1.1) (fr,1)∗(Zr,1) = − ∂fr,1
∂ log r

=
∑
α∈∂A

[−∂χr,1,α(z)

∂ log r
+ χr,1,α(z)h(α)]e−iθ(α)r−h(α)zα

and Zr,1(p) ∈ (TpHr,1)⊥, where ⊥ means the ω-orthogonal. First we find the parallel

transport vector Zr,1 on skeleton Λr,1.

For any p ∈ Hr,1 and v ∈ Tp(C∗)n, we define the following decomposition

v = v‖ + v⊥, v‖ ∈ TpHr,1, v⊥ ∈ (TpHr,1)⊥.

Recall the Liouville structure on (C∗)n is given by λ = −dcϕP =
∑

i ∂ρiϕP (ρ)dθi,

which corresponds by Legendrian transformation to λ =
∑

i pidθi on T ∗T n. The Liouville

flow on T ∗T n is then radial
∑

i pi∂pi , and since the Legendre transformation takes rays to

rays, the Liouville flow on (C∗)n also has integral curves as rays, i.e Xλ = b(ρ)
∑

i ρi∂ρi

for some positive function b(ρ).

Proposition 8.1.12. On skeleton Λr,1, we have Zr,1 ∝ X⊥λ .
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Proof. First, we claim that if p ∈ Λr,1, then − ∂fr,1
∂ log r

|p ∈ R>0 and Xλ(fr,1)|p > 0.

Recall that on skeleton, all the ‘relevant’ summand in fr,1 are positive and real. And the

cut-off function χr,1,α(z) = χα(ρ/ log r). Hence

− ∂fr,1
∂ log r

=
∑
α∈∂A

[
ρi

(log r)2
∂ρiχα| ρ

log r
+ χα(

ρ

log r
)h(α)

]
e〈ρ,α〉−log rh(α)

≥ inf
α∈∂A

h(α)− 1

log r
sup
α
‖Dχα‖C0

≥ inf
α∈∂A

h(α)− C

log r

hence is positive for r ≥ R for large enough R. Since Xλ is proportional to the radial

vector field
∑
ρi∂ρi

(
1

log r

∑
i

ρi∂ρi)(fr,1)|p

=
∑
α∈∂A

[
ρi

(log r)2
∂ρiχα| ρ

log r
+ χα(

ρ

log r
)〈 ρ

log r
, α〉
]
e〈ρ,α〉−log rh(α)

≥ inf
α∈∂A

h(α) +
∑
α∈∂A

[
χα(

ρ

log r
)(〈 ρ

log r
, α〉 − h(α))

]
e〈ρ,α〉−log rh(α) − C

log r

≥ inf
α∈∂A

h(α)− C

log r
− εχ

where 0 < εχ � 1 depending on the transition-width of the cut-off functions χα and can

be made arbitrarily small.

This shows Zr,1 is proportional to X⊥λ at the point p. �

Corollary 8.1.13. The flow-out of skeleton Λr,1 is a conical Lagrangian R>1 ·Λr,1, in

particular the flow Zr,1 takes skeleton to skeleton.
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Proof. The flow out of skeleton by Zr,1 = X⊥λ = Xλ−X‖λ, however X
‖
λ is the Liouville

flow of the hypersurface, which is tangent to the skeleton, hence the flow-out by Zr,1 is

the same as the flow-out by Xλ, again the same as the flow-out by the radial vector field,

denoted as ρ∂ρ. Hence the flow-out of the skeleton Λr,1 by Zr,1 is a conical Lagrangian

R>1 · Λr,1.

Under the Legendre transformation defined by the quadratic potential ϕP , the conical

Lagrangian R>0 · Λr,1 is exactly ΛT ,θ.

Since skeleton inHr′,1 is the intersectionHr′,1∩R>0 ·Λr,1, we see the flow takes skeleton

to skeleton. �

Next, we show that a point in Hr,1 in the neighborhood of the skeleton Λr,1 will tend

towards the skeleton under the flow, after proper rescaling. Let Λ∞T ,θ ⊂ M∞
R × TM be

the skeleton at infinity defined by (R>0 · Λr,1)/R>0 for any r. Choose any Riemannian

metric on M∞
R × TM , with distance function denoted by dist∞(−,−). And let π∞ :

MR\{0} × TM →M∞
R × TM denote the projection map.

Proposition 8.1.14. For any point (ρR, φR) of HR,1 in a tubular neighborhood of the

Liouville skeleton of ΛR,1, let (ρr, φr) denote its image in Hr,1 under the symplectic parallel

transport for the family of hypersurfaces {Hr,1}r>R. We have

lim
r→∞

dist∞(π∞(ρr, φr),Λ
∞
T ,θ) = 0.
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Proof. We first change the notation a bit. Let ~ = 1/ log r and ρ̂ = ~ρ. Let S~ :

MR ×MT →MR ×MT be the rescale map, (ρ, φ) 7→ (~ρ, φ). Then we define

H~ := S~Hr,1 = {(ρ̂, φ) ∈MR ×MT | 1 =
∑
α∈∂A

χα(ρ̂)ei〈φ,α〉−iθ(α)e~
−1[〈ρ̂,α〉−h(α)]}.

Suppose ~ decreases with t as d~
dt

= −~, we will first produce a curve (ρ(t), φ(t)) ∈ H~(t),

then we will project the tangent vector at t = 0 to its symplectic-orthogonal component.

Since on the skeleton, we have

1 =
∑
α∈∂A

χα(ρ̂)e~
−1[〈ρ̂,α〉−h(α)]

hence if e~
−1[〈ρ̂,α〉−h(α)] > 1/10, then χα(ρ̂) = 1, and we have |〈ρ̂, α〉 − h(α)| = O(~). We

will find a curve (ρ̂(t), φ(t)), such that for α-term dominating1, we have

0 =
d

dt
[~(t)−1(〈ρ̂(t), α〉 − h(α))]

= ~(t)−1(〈ρ̂(t), α〉 − h(α)) + ~(t)−1dρ̂(t), α〉
dt

⇒ dρ̂(t), α〉
dt

= −(〈ρ̂(t), α〉 − h(α)) = O(~)

Hence, we may choose a solution for ρ̂(t), such that (d/dt)ρ̂(t) = O(~). Thus, we have

d

dt
ρ(t) =

d

dt
[~−1(t)ρ̂(t)] = ~−1(ρ̂(t) +O(~)).

Next, we can take the symplectic orthogonal complement.

[
d

dt
ρ(t)]⊥ = ~−1(ρ̂(t)⊥ +O(~)) = ~−1(cX⊥λ |(ρ̂,φ) +O(~))

1Here we are being loose in definition. One way of defining α-term dominating is χα > 0, but this is too
large. A more useful definition is to have χα > 0 and 0 > h(α) − 〈ρ, α〉 < ~ε for some ε < 1. We also

ignore dχα terms, since when χα drops from 1 to 0, the corresponding term e~
−1[〈ρ̂,α〉−h(α)] = O(~∞).
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Here X⊥λ is symplectic orthogonal projection for the rescaled hypersurface H~, and

X⊥λ = Xλ −X‖λ.

Hence the symplectic transport vector Zr,1 at (ρ, φ), when push-forward by (S~)∗, can be

written as Xλ−X‖λ +O(~), note that Xλ is radial hence does change the projection image

to M∞
R , hence only the contracting Liouville vector field X⊥λ on the fixed size amoeba

A~ = {ρ̂ ∈MR | 1 =
∑

α χα(ρ̂)e~
−1[〈ρ̂,α〉−h(α)]} will affect the direction.

Thus, we have shown outside of O(~) small neighborhood of critical manifold of X
‖
λ on

H~, we have X
‖
λ dominating the O(~) term. Hence for any fixed arbitrarily small δ > 0,

we may first take ~ small enough, such that for a point p ∈ H~ that is δ-distance away

from the rescaled skeleton Λ~, the vector X
‖
λ dominate the O(~) term, then we flow p for

large enough time till it is contained in the δ-neighborhood of the skeleton Λ~. �

8.2. Monodromy Action

In this section, we allow the coefficients in the polynomial f to have arbitrary phase

angle, i.e.

fR,h,θ(z) =
∑
α∈∂A

e−iθ(α)R−h(α)zα.

Recall A is the vertices of the star triangulation T , and ∂A = A\{0}. In particular, we will

consider loops of θ ∈ TA ∼= Map(A, T ) based on 0 ∈ TA and the generated monodromy.

It is conceptually clear to think of the parameter space of the coefficients A → C∗.

Consider the fibration

πA : (C∗)n × (C∗)A → (C∗)A
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where we have a sub-bundle, such that over the fiber c = (cα) ∈ (C∗)A, we have the

hypersurface {fc(z) = 0} ⊂ (C∗)n, denote the fiber by Hc.

Let D ⊂ (C∗)A be the descriminant loci where the fiber Hc is singular. Given a Laurent

polynomial, is to give an affine line embedding ιf : C∗ ↪→ (C∗)A, the critical value are the

intersection of ιf (C∗) ∩D.

We identify (C∗)A ∼= RA × TA. By choosing cα = R−h(α)e−iθ(α) with fixed h and

varying θ(α), we are considering a point in RA near infinity, and a torus TA. By theorem

of GKZ, the projection of the discriminant loci D to Rn cut the boundary Rn into conical

chambers, each chamber corresponds to a triangulation of Q with vertices in A, and

chamber-crossing occurs when the triangulation changes. Hence for large enough R, we

are deep in one chamber and the torus {h} × TA by varying θ will be disjoint from D.

The embedded affine line ιf (C∗) is given by an affine linear embedding

ιf : R× T ↪→ RA × TA.

For large R, it intersects the walls of D at well separated places. In other words, the

critical values of f shows up in almost concentric circles [DKK].

As we vary θ ∈ TA though a loop, the embedding ιf has invariant R-factor, hence there

is no collision of critical values, and R remains a regular value. Thus, any vanishing path

from a critical value of f to the regular value R can be uniquely deformed as vanishing

path with fixed regular value when θ varies.

Thus, we have defined the monodromy action of π1(TA) on the set of Lagrangian

thimbles.
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8.3. Essential Surjectivity of ΦT .

In this section, we work with Sh(T n,ΛT ,θ) instead of Fuk(T ∗T n,ΛT ,θ), since the sheaf

language is more convenient.

Consider θ = 0 first. There is a distinguished real thimble in FS((C∗)n, fR,h), which

goes to the skyscraper sheaf C0. We apply the monodromy action ZA to C0 to get a class

of sheaves, called ‘twisted-polytope-sheaves’.

First, we will show that twisted polytope sheaves co-represent the stalks in Sh(T n,ΛT ),

that is for any point x ∈ T n, there is canonically a twisted polytope sheaf P[x] ∈

Sh(T n,ΛT ), such that for any sheaf F ∈ Sh(T n,ΛT ), we have

Fx ∼= hom(P[x], F ).

The proof proceeds by taking a costandard sheaf of a small open ball around x, then

expand it non-characteristically with respect to the conical Lagrangian ΛT until it cannot

be expanded further, then the probe sheaf also changes from the costandard sheaf to a

twisted polytope sheaf. It is entirely analagous to Propositionp:stalk.

On the other side, we define the set of thimbles obtained by applying the monodromy

operation of ZA on the real thimble as ‘monodromy-generated-thimbles’, denoted as {ZA ·

ThimbleR}. At this moment, we do not know whether 〈{ZA ·ThimbleR}〉 ∼= FS. However,

since the FS category is generated by an exceptional collection formed by a distinguished

set of vanishing cycles, then by Proposition 2.6 and Corollary 2.10 in [BK], hence 〈{ZA ·

ThimbleR}〉 is saturated. Hence the image under the embedding, 〈{ZA·C0}〉 ⊂ Sh(T n,ΛT )

is saturated and is left and right admissible. Since 〈{ZA ·C0}〉⊥ = 0 by the co-representing
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stalk property, we have

Sh(T n,ΛT ) ∼= 〈{ZA · C0}〉 ⊂ ΦT (FS) ⊂ Sh(T n,ΛT ).

Hence the above inclusions are actually equivalences.



203

References

[Ab1] Mohammed Abouzaid. Homogeneous coordinate rings and mirror symmetry for

toric varieties. Geometry & Topology 10 (2006) 1097-1156

[Ab2] —–. Morse homology, tropical geometry, and homological mirror symmetry for

toric varieties. Selecta Math. (N.S.) 15 (2009), no. 2, 189270

[AGV] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko. Singularities of Differentiable

Maps, Vol 2, Monodromy and Asymptotic Integrals. Monographs in Mathemat-

ics. Volume 82 1985

[AKO1] Auroux D., Katzarkov L., Orlov D.: Mirror symmetry for del Pezzo surfaces:

vanishing cycles and coherent sheaves. Invent. Math. 166(3), 537582 (2006)

[AKO2] —–.:Mirror symmetry for weighted projective planes and their noncommutative

deformations. Ann. Math. (2) 167(3), 867943 (2008)

[Au] A Beginners Introduction to Fukaya Categories. Contact and Symplectic Topol-

ogy. Volume 26 of the series Bolyai Society Mathematical Studies pp 85-136

[B] A. Bondal, “Derived categories of toric varieties”, in Convex and Algebraic ge-

ometry, Oberwolfach conference reports, EMS Publishing House 3 (2006) 284286.



204

[BFK] Matthew Ballard, David Favero, Ludmil Katzarkov. Variation of geometric in-

variant theory quotients and derived categories. Journal fr die reine und ange-

wandte Mathematik. DOI: 10.1515/crelle-2015-0096, February 2016

[BFDKK] Matthew Ballard, Colin Diemer, David Favero, Ludmil Katzarkov and Gabriel

Kerr. The Mori program and Non-Fano toric Homological Mirror Symmetry.

Trans. Amer. Math. Soc. 367 (2015), 8933-8974

[BK] A. I. Bondal, M. M. Kapranov. Representable functors, Serre functors, and mu-

tations. MATH USSR IZV, 1990, 35 (3), 519541

[CE] Kai Cieliebak and Yakov Eliashberg. From Stein to Weinstein and Back: Sym-

plectic Geometry and Affine Complex Manifolds. AMS Colloquium Publications,

vol. 59 (2012)

[CLS] David A. Cox, John B. Little, and Henry K. Schenck. Toric Varieties. American

Mathematical Soc., Jan 1, 2011

[CS] Alastair Craw, Gregory G. Smith. Projective toric varieties as fine moduli spaces

of quiver representations. American Journal of Mathematics 130 (2008) 1509-

1534

[Dr] V. Drinfeld. DG Quotients of DG categories. Journal of Algebra Volume 272,

Issue 2, 15 February 2004, Pages 643-691



205

[Do] Donaldson, S. K. (1) Symplectic submanifolds and almost-complex geometry. J.

Differential Geom. 44 (1996), no. 4, 666705. (2) Lefschetz pencils on symplectic

manifolds. J. Differential Geom. 53 (1999), no. 2, 205236.

[DKK] Colin Diemer, Ludmil Katzarkov, Gabriel Kerr: Symplectomorphism group re-

lations and degenerations of Landau-Ginzburg models. J. Eur. Math. Soc. 18

(2016), 2167-2271. doi: 10.4171/JEMS/640

[FO] Fukaya, Kenji; Oh, Yong-Geun Zero-loop open strings in the cotangent bundle

and Morse homotopy. Asian J. Math. 1 (1997), no. 1, 96180

[FLTZ1] Bohan Fang, Chiu-Chu Melissa Liu, David Treumann, Eric Zaslow. A categori-

fication of Morelli’s theorem. Invent. Math. 186 (2011), no.1, 79-114

[FLTZ2] —–, T-duality and homological mirror symmetry for toric varieties. Advances in

Mathematics Volume 229, Issue 3, 15 February 2012, Pages 1873-1911

[FU] Masahiro Futaki, Kazushi Ueda. Tropical coamoeba and torus-equivariant ho-

mological mirror symmetry for the projective space. Communications in Math-

ematical Physics November 2014, Volume 332, Issue 1, pp 5387

[GKS] Stephane Guillermou, Masaki Kashiwara, Pierre Schapira. Sheaf quantization

of Hamiltonian isotopies and applications to nondisplaceability problems. Duke

Math. J. Volume 161, Number 2 (2012), 201-245.

[GKZ] Israel Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. Discriminants, resul-

tants and multidimensional determinants. Birkh auser Boston, Inc., 2008.



206

[Ge] Hansjorg Geiges, An Introduction to Contact Topology.

[Go] M.Goresky, Triangulation of stratified objects. Proc.Amer.Math.Soc. 72(1978)

193-200

[GoMa] Mark Goresky, Robert MacPherson. Stratified Morse Theory. Ergebnisse der

Mathematik und ihrer Grenzgebiete Volume 14 1988

[GeMa] Gelfand, Sergei I., Manin, Yuri I. Methods of Homological Algebra.

[Ho] Hormander, Lars (1990), The analysis of linear partial differential operators. I.

Distribution theory and Fourier analysis, Springer-Verlag, ISBN 3-540-00662-1

[KS] Masaki Kashiwara, Pierre Schapira, Sheaves on Manifolds

[K] Kontsevich, Maxim (1994). ”Homological algebra of mirror symmetry”.

arXiv:alg-geom/9411018

[KT] Yael Karshon and Susan Tolman, The moment map and line bundles over

presymplectic toric manifolds. J. Differential Geom. Volume 38, Number 3

(1993), 465-484.

[Ku1] Tatsuki Kuwagaki, The nonequivariant coherent-constructible correspondence

for toric surfaces, arXiv preprint arXiv:1507.05393, to appear in Journal of Dif-

ferential Geometry (2015).

[Ku2] ———, The nonequivariant coherent-constructible correspondence for toric

stacks, arXiv 1610.03214



207

[Ke] Gabriel Kerr. Homological mirror symmetry of elementary birational cobor-

disms. arXiv:1603.08074

[KeZh] Gabriel Kerr, Ilia Zharkov. Phase tropical hypersurfaces. arXiv:1610.05290

[Mi] Grigory Mikhalkin. Decomposition into pairs-of-pants for complex algebraic hy-

persurfaces. Topology Volume 43, Issue 5, September 2004, Pages 10351065

[N1] David Nadler. Microlocal branes are constructible sheaves, Selecta Math. 15

(2009), no. 4, 563–619.

[N2] David Nadler. Arboreal Singularities. Geometry & Topology 21 (2017) 1231 –

1274, arXiv:1309.4122

[N3] David Nadler. Non-characteristic expansions of Legendrian singularities.

arXiv:1507.01513

[NZ] David Nadler, Eric Zaslow. Constructible Sheaves and the Fukaya Category. J.

Amer. Math. Soc. 22 (2009), 233-286

[RSTZ] H. Ruddat, N. Sibilla, D. Treumann and E. Zaslow, Skeleta of affine hypersur-

faces, Geometry and Topology 2014.

[S] Pierre Schapira. A short review on microlocal sheaf theory. Listed on personal

website.

[Sh] Nick Sheridan. On the homological mirror symmetry conjecture for pairs of

pants. J. Differential Geom. 89 (2011), no. 2, 271367.

https://webusers.imj-prg.fr/~pierre.schapira/lectnotes/MuShv.pdf
https://webusers.imj-prg.fr/~pierre.schapira/lectnotes/MuShv.pdf


208

[Se1] Paul Seidel. Fukaya categories and Picard-Lefschetz theory. European Mathe-

matical Society, 2008

[Se2] Paul Seidel. Homological mirror symmetry for the genus two curve. J. Algebraic

Geom. 20(4), 727769 (2011)

[Se3] Paul Seidel. Homological Mirror Symmetry for the Quartic Surface. Memoirs of

the American Mathematical Society 2015; 129 pp; . arXiv:math/0310414

[Se4] Paul Seidel. A long exact sequence for symplectic Floer cohomology. Volume 42,

Issue 5, September 2003, Pages 10031063

[Se5] Paul Seidel. Vanishing Cycles and Mutation. Talks given at European Congress

of Mathematics, Barcelona. arXiv:math/0007115

[Sm] Ivan Smith. Review on ‘Fukaya categories and Picard-Lefschetz theory ‘. Bull.

Amer. Math. Soc. 47 (2010), 735-742

[STW] Vivek Shende, David Treumann, Harold Williams. On the combinatorics of exact

Lagrangian surfaces. arXiv:1603.07449

[SS] Sarah Scherotzke and Nicol‘o Sibilla, The non-equivariant coherent-constructible

correspondence and a conjecture of King, Selecta Math. (N.S.) 22 (2016), no. 1,

389416. MR 3437841

[STW] Vivek Shende, David Treumann, Harold Williams. On the combinatorics of exact

Lagrangian surfaces. arXiv:1603.07449



209

[Tr] David Treumann, Remarks on the nonequivariant coherent-constructible corre-

spondence for toric varieties, arXiv preprint arXiv:1006.5756 (2010).


	Abstract
	Acknowledgments
	Table of Contents
	Chapter 1. Introduction
	1.1. Notation
	1.2. Lagrangian Skeleton of Affine Hypersurface
	1.3. Variation of Singular Support for Constructible Sheaves
	1.4. Non-equivariant Coherent-Constructible Correspondence
	1.5. Lagrangian Thimbles and Constructible Sheaves

	Chapter 2. Review of Fukaya-Seidel category
	2.1. Triangulated A-categories
	2.2. Symplectic Lefschetz fibration

	Chapter 3. Review of Constructible Sheaves
	3.1. Classical and differential graded derived categories of sheaves
	3.2. Useful Formulae for Computations
	3.3. Conical Lagrangian and Singular Support
	3.4. Kernel and Functors
	3.5. Non-characteristic Deformation Lemma
	3.6. Quantization of Contactomorphism

	Chapter 4. Lagrangian Skeleton of Hypersurface in (C*)n 
	4.1. Review of Weinstein Manifold and Skeleton
	4.2. Review of RSTZ-skeleton
	4.3. Convex function and Legendre transformation.
	4.4. Deformation of Tropical Hypersurface and Amoeba
	4.5. Gradient flow on Tropical Amoeba
	4.6. Liouville Flow on Tropical Hypersurface

	Chapter 5. Variation of Constructible Sheaves: I 
	5.1. Definition of Variation of Legendrians and Sheaves
	5.2. Constructible Sheaf as Yoneda Functor
	5.3. Family of Probe Sheaves and Reproducing Kernel
	5.4. Whitney Stratification
	5.5. Quantization of Contactomorphism of the Legendrian Complement
	5.6. Thickening of Legendrian: Definition and Existence
	5.7. Quantization of Variation of Thickened Legendrian

	Chapter 6. Variation of Constructible Sheaves: II 
	6.1. Affine Hyperplanes on Vector Space
	6.2. Gluing Sheaves of Complexes
	6.3. Deformation of Constructible Sheaves: Existence and Uniqueness

	Chapter 7. Twisted Polytope Sheaves and Coherent-Constructible Correspondence for Toric Variety 
	7.1. Introduction
	7.2. Review of Toric Geometry
	7.3. Toric Divisors, Support Functions and Twisted Polytopes
	7.4. Constructible Sheaves and Twisted Polytope Sheaves
	7.5. Proof of the Main Theorem

	Chapter 8. Lagrangian Thimbles and Vanishing Cycles
	8.1. From Thimble to Asymptotically Conical Lagrangian
	8.2. Monodromy Action 
	8.3. Essential Surjectivity of T.

	References

