Peng Zhou

stream of notes

User Tools

Site Tools


blog:2022-12-14

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
blog:2022-12-14 [2022/12/15 16:05] pzhoublog:2022-12-14 [2023/06/25 15:53] (current) – external edit 127.0.0.1
Line 48: Line 48:
  
 ===== Here is a formula ===== ===== Here is a formula =====
 +$\gdef\End{\text{End}}$
 $$ T \otimes_{\End(T)} \Hom_{\End(I)}(\Hom(I, T),\Hom(I, L)) $$ $$ T \otimes_{\End(T)} \Hom_{\End(I)}(\Hom(I, T),\Hom(I, L)) $$
  
- +In principle, this should work, since we are doing nothing more than Koszul duality. For example, in the cotangent bundle case, if we do $L=T$, then we should get back $\Hom_{\End(I)}(\Hom(I, T),\Hom(I, T)) = \Hom(T, T)$. 
- +
  
  
blog/2022-12-14.1671120314.txt.gz · Last modified: 2023/06/25 15:53 (external edit)