blog:2023-03-10
This is an old revision of the document!
2023-03-10
- Comonad
- todo list
Comonad
$\gdef\ccal{\mathcal{C}}$ $\gdef\dcal{\mathcal{D}}$ $\gdef\lra{\leftrightarrow}$ $\gdef\Om{\Omega}$
What a comonad? Given two categories $$ L: \ccal \lra \dcal: R$$ We can form the comonad $\Om = LR \in End(\dcal)$, which have $$ \epsilon: \Om \to 1_\dcal, \quad L \eta R: \Om \to \Om \circ \Om $$
blog/2023-03-10.1678510797.txt.gz · Last modified: 2023/06/25 15:53 (external edit)