Peng Zhou

stream of notes

User Tools

Site Tools


blog:2023-03-10

This is an old revision of the document!


2023-03-10

  • Comonad
  • todo list

Comonad

$\gdef\ccal{\mathcal{C}}$ $\gdef\dcal{\mathcal{D}}$ $\gdef\lra{\leftrightarrow}$ $\gdef\xto{\xrightarrow}$ $\gdef\Om{\Omega}$

What a comonad? Given two categories $$ L: \ccal \lra \dcal: R$$ We can form the comonad $\Om = LR \in End(\dcal)$, which have $$ \epsilon: \Om \to 1_\dcal, \quad L \eta R: \Om \to \Om \circ \Om $$

What is a comodule over $\Om$? We need an object $X$ in $\dcal$, with the structure map $$ a: X \to \Om X $$ that satisfies conditions like $$ X \xto{a} \Om X \xto{\epsilon} X == id_X $$ and one more condition.... $$ X \xto{a} \Om X \tworightarrows \Om \Om X $$ where the second step is like, either stretch out $\Om$, or pull out from $X$.

blog/2023-03-10.1678511056.txt.gz · Last modified: 2023/06/25 15:53 (external edit)