This is an old revision of the document!
Table of Contents
2023-03-10
- Comonad
- todo list
Comonad
$\gdef\ccal{\mathcal{C}}$ $\gdef\dcal{\mathcal{D}}$ $\gdef\lra{\leftrightarrow}$ $\gdef\xto{\xrightarrow}$ $\gdef\Om{\Omega}$
What a comonad? Given two categories $$ L: \ccal \lra \dcal: R$$ We can form the comonad $\Om = LR \in End(\dcal)$, which have $$ \epsilon: \Om \to 1_\dcal, \quad L \eta R: \Om \to \Om \circ \Om $$
What is a comodule over $\Om$? We need an object $X$ in $\dcal$, with the structure map $$ a: X \to \Om X $$ that satisfies conditions like $$ X \xto{a} \Om X \xto{\epsilon} X == id_X $$ and one more condition.... $$ X \xto{a} \Om X \rightrightarrows \Om \Om X $$ where the second step is like, either stretch out $\Om$, or pull out from $X$.
That's a lot of conditions, you see. It is not easy to be a comodule.
Example
Consider sheaves on two points map to one point, we have functors $L = p_!, R = p^!, \Om = LR$ $$ \Om(V) = V \oplus V. $$ What's the structure maps on $\Om$?
出了趟门,得瑟了。我对$\Om(V)$说。$V$说,不是我的错,$\Om$对谁都这样。