Peng Zhou

stream of notes

User Tools

Site Tools


blog:2023-05-02

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
blog:2023-05-02 [2023/05/02 22:32] – created pzhoublog:2023-05-02 [2023/06/25 15:53] (current) – external edit 127.0.0.1
Line 43: Line 43:
 Trefoil knot? Alexandre polynomial? Look at the Alexandre polynomial for trefoil, we discover that Trefoil knot? Alexandre polynomial? Look at the Alexandre polynomial for trefoil, we discover that
 $$ \frac{x - x^{-1}}{\Delta_{3^1}(x^2)} = \sum_m \epsilon_m (x^m - x^{-m}) $$ $$ \frac{x - x^{-1}}{\Delta_{3^1}(x^2)} = \sum_m \epsilon_m (x^m - x^{-m}) $$
 +
 +3. There are 3-manifold invariants
 +$$ F_K(x,q) = \hat Z(S^3 \RM K) \frac{ADO}{Alexander}$$
 +expansion at $q=1$, gives Vasieliev invariant
 +
 +Quantum $A$-polymial!!
 +$$ A(x,y) F_K(x,q) = 0. $$
 +
 +4. Verma, R-matrix,  quantum group. Sunghyuk Park. https://arxiv.org/pdf/2004.02087.pdf
 +
 +5. Gukov-Manolescu: https://arxiv.org/pdf/1904.06057.pdf
 +
 +6. Lickorish-Wallace, any 3-manifold can be constructed from $S^3$ from a knot. 
 +
 +It is a cool fact, that, by capping-off the knot. And there are Kirby move, invariant. 
 +
 +===== Giovanni Felder: 2017 talk, on elliptic quantum group =====
 +1. shuffle product on symmetric functions. Three versions of theta functions
 +$$ \theta(t) $$
 +vanishes on the origin in the abelian group $\C, \C/\Z, \C/(\Z + \tau \Z)$. 
 +
 +? What is the (odd) Jacobi Theta function? $\theta(z; \tau)$ is a function that is periodic in $z+1$, but quasi-periodic in $\tau$, like
 +$$ \theta(z + \tau; \tau) = e^{-\pi i(\tau + 2 z)} \theta(z; \tau). $$
 +
  
  
blog/2023-05-02.1683066742.txt.gz · Last modified: 2023/06/25 15:53 (external edit)