Peng Zhou

stream of notes

User Tools

Site Tools


blog:2023-12-06

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
blog:2023-12-06 [2023/12/07 02:25] pzhoublog:2023-12-06 [2023/12/07 15:13] (current) – [Mittag-Leffler] pzhou
Line 34: Line 34:
 $$ \phi^k H^k \varprojlim \to \varprojlim H^k $$ $$ \phi^k H^k \varprojlim \to \varprojlim H^k $$
 Why? Because we have  Why? Because we have 
-$$ H^k_\infty = \frac{Z_\infty^k}{B_\infty^k} \to \frac{Z_n^k}{B_n^k} = H^k_n $$+$$ H^k (X_\infty= \frac{Z_\infty^k}{B_\infty^k} \to \frac{Z_n^k}{B_n^k} = H^k_n $$
  
 Now, is this map $H^k (\varprojlim_n X_n) \to \varprojlim H^k(X_n)$ surjective?  Now, is this map $H^k (\varprojlim_n X_n) \to \varprojlim H^k(X_n)$ surjective? 
 We consider taking two exact seq We consider taking two exact seq
-$$ B_\infty^k \to Z_\infty^k \to H_\infty^k \to 0 $$ +$$ \to B^k(X_\infty) \to Z^k(X_\infty) \to H^k(X_\infty) \to 0 $$ 
-$$ 0 \to \lim B_n^k \to \lim Z_n^k \to \lim H_n^k \to 0 $$+$$ 0 \to \lim B^k(X_n) \to \lim Z^k(X_n) \to \lim H_n^k \to 0 $$
 the last part is because $B_n^k$ are ML in $n$, hence the proj lim SES is also right exact.  the last part is because $B_n^k$ are ML in $n$, hence the proj lim SES is also right exact. 
 +  * we have snake lemma
 +  * middle column isom implies right column surjective
 +  * however, $B^k(X_\infty) =Im(X^{k-1}_\infty) \to \lim_n B^k(X_n)$ may not be surjective without further assumption. This is because $B^k$ is like taking cokernel of a map, and $\lim$ is taking projective lim, they don't commute. If we assume $H^{k-1}(X_n)$ is ML, then we know $Z^{k-1}(X_n)$ is ML. Then, we have 
 +$$ 0 \to Z^{k-1}(X_n) \to X^{k-1}_n \to B^k(X_n) \to 0 $$
 +then we use the proposition that the first term is ML, then the projective limit preserve the SES, and we get
 +$ B^k(X_\infty) \cong \lim B^k(X_n) $
  
 +----
  
 +But why do we care about these ML stuff? Why do we care about the non-characteristic deformation lemma? 
  
  
blog/2023-12-06.1701915951.txt.gz · Last modified: 2023/12/07 02:25 by pzhou